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Generally speaking, entanglement entropy (EE) between two subregions of a

gapped quantum many-body state is proportional to the area/length of their

interface due to the short-range quantum correlation. However, the so-called

area law is violated logarithmically in a quantum critical phase. Moreover, the

subleading correction exists in long-range entangled topological phases. It is

referred to as topological EE which is related to the quantum dimension of the

collective excitation in the bulk. Furthermore, if a non-smooth sharp angle is in

the presence of the subsystem boundary, a universal angle dependent

geometric contribution is expected to appear in the subleading correction.

In this work, we simultaneously explore the geometric and edge contributions

in the integer quantum Hall (IQH) state and its edge reconstruction in a unified

bipartite method. Their scaling is found to be consistent with conformal field

theory (CFT) predictions and recent results of particle number fluctuation

calculations.
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1 Introduction

Quantum entanglement is a fundamental and important tool to probe the properties

of a variety of physical systems such as black holes in astrophysics, quantum phase

transition in condensed matter physics, and photosynthesis in biophysics [1]. In a

bipartite system, one usually calculates the von Neumann entropy or the α-Rényi

entropy to quantitatively describe the magnitude of the entanglement between two

subsystems. Once the system size is smaller than the correlation length, the entropy is

proportional to the volume of the system. For a gapped state, it is generally proportional to

the area/length of the interface between two subsystems. This is referred to as the area law

in a three-dimensional or perimeter law in a two-dimensional system. Heuristically, this

could be understood from the fact that an energy gap gives rise to a finite correlation

length which defines the scale on which particles inside the subsystem are correlated with

the environment. In gapless critical systems, such as quantum Hall edges or critical spin

systems which could be described by the conformal field theory (CFT), it is known that the

EE has a logarithmic dependence on the boundary length, and the prefactor is related to

the central charge of its underlying CFT [2–5].
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After the discovery of topological quantum systems, such as

the fractional quantumHall effects [6, 7], it is known that there is

an extra correction of the bulk EE which depends on the

quantum dimension of the collective excitation in the bulk. It

is referred to as the topological EE γ [8, 9], an important quantity

to characterize the nontrivial topology of the long-range

entangled quantum many-body states. Moreover, Li and

Haldane [10] found that the eigenvalue spectra of the reduced

density matrix, named the entanglement spectrum, provides

more information about the topology since it could be treated

as virtual edge excitation spectra at the bipartite boundary. The

mechanism of the bulk-edge correspondence [11, 12] could tell

us many of the bulk properties. On the other hand, the quantum

Hall edge excitation is usually a chiral gapless mode which could

be described by (1 + 1)d chiral CFT. Once the cutting line is along

the realistic quantum Hall edge with length lA, a logarithmic type

of α-Rényi EE Sedge ≃ c+�c
12 (1 + 1

α)loglA [13] with central charge c is

expected. For the chiral edge mode, the anti-holomorphic part is
�c � 0 and thus Sedge ≃ c

12 (1 + 1
α)loglA.

Up to now, the behavior of the EE mentioned previously is

under the assumption that the bi-partition has a smooth boundary,

such as a circle or an infinite straight line. Once the boundary has a

sharp corner, regardless of whether the system is gapped or not, it

was found that the corner on the boundary has an important

contribution in the EE which was previously explored [14–27] in

two-dimensional quantum critical systems and CFT. Recently, it

was extended to the gapped topological system such as the integer

quantum Hall states [13, 28, 29]. The corner angle dependence of

the EE is found to be universal [30]. Therefore, the complete

formula of the EE is

S � aA + bzA + γ + Sedge + S θ( ) +O 1/L( ), (1)
in which we include the volume, area, topological, edge, and

corner contributions in the first five terms.

In this work, as an example of unification, we consider the

quantumHall state in disk geometry with an open boundary. The

fan-shaped bipartite EE with different radius simultaneously

gives the contributions from the area law, critical edge mode,

and the non-smooth corner. For the integer quantum Hall state,

we observed that the corner contribution has similar behavior to

the charge cumulation at the cone tip if we put the electrons in a

cone-shaped geometry. Moreover, the logarithmic behavior and

the central charge are obtained, and the results are immune from

the edge reconstruction which conserves the chirality. The robust

behavior of the geometric entanglement at the corner could be an

explanation of the recent observation that a universal the angle

dependence of the particle number fluctuations in a non-smooth

bi-partition.

The rest of the article is organized as follows. In Section 2,

we revisit the correlation matrix and EE with real space cut in

disk geometry. The exact prefactor of the area law is found for

α − Rényi entropy with α = 1, 2, 3. In Section 3, the corner

contribution is obtained after subtracting the law part by a fan-

shaped cut in the bulk. A cone-shaped quantum Hall state

reveals the charge cumulation at the cone tip which has

similarity to the EE. In Section 4, we consider the fan-

shaped bi-partition including the quantum Hall edge. The

logarithmic edge contribution could be obtained after

subtracting both the area law and corner contribution. The

central charge is found robust to any edge

reconstructed pattern. Section 5 gives the conclusions and

discussions.

2 Entanglement entropy and area law

For a two-dimensional electron gas in a strong

perpendicular magnetic field, the typical length scale is the

FIGURE 1
(A) Smooth circular cut with radius RA in a finite disk. (B) Prefactor of the area law for α-Rényi entropies. The well-developed plateau appears
when RA is larger than 1.0lB and smaller than the radius of the system.
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magnetic length lB � ����
Z/eB

√
which we set to one in the following.

The single electron wave function in the symmetric gauge is

ϕn,m � c†n,m|0〉
� −1( )n

������������
n!

2π2m m + n( )!

√
Lm
n

|z|2
2

( )zme−|z|2/4, (2)

where n, m are the Landau level and the angular momentum

index, respectively. In the lowest Landau level with n = 0, the

mth orbit is a Gaussian wave package in the radial direction

which has the most probable radius at rm � ���
2m

√
. For a

bipartite system, von Neumann entropy is defined as S1
(ρA) = −TrρA ln ρA once we have the reduced density

matrix ρA for the subsystem. More generally, the α-Rényi

entropies [29] are defined as Sα(ρA) � 1
1−α ln(TrραA) which

reduce to the von Neumann entropy in the limit α → 1.

Their scaling behaviors with increasing the size of the

subsystem A have yielded plentiful interesting results for

both gapped and critical systems. Generally, the

universality of the entanglement appears when the system

length scale, such as the boundary length, is much larger than

lB. Therefore, one usually allows a strong finite size effect for

small system sizes. For a many-body system, diagonalizing

the ρA is usually limited to small systems because of the

exponential explosion of its dimension as increasing the

system size. Fortunately, for a non-interacting fermionic

system which has Slater determinants as its eigenstates, it

is known [4, 31] that this could be simplified to calculate the

eigenvalues of the single particle correlation matrix Cij �
Tr(ρAc†i cj), where ci is the single particle operator. Its

dimension is the number of orbitals which linearly grow as

the system size increases. Furthermore, the correlation matrix

is naturally diagonal in case the bipartite cutting conserves

the symmetry of its parent wave function, i.e., the circular

cutting on a disc or latitude cut on a sphere. In this case, the

two types of entropy are defined by its diagonal terms, or its

eigenvalues {λm} as follows:

S1 � ∑
m

−λm logλm − 1 − λm( )log 1 − λm( )[ ], (3)

Sα � 1
1 − α

∑
m

log λαm + 1 − λm( )α[ ]. (4)

For a circular bipartite finite disk as shown in Figure 1A, the

electron operator for the mth orbital in the lowest Landau level

(n = 0), which could be written as [32–34]

cm � αmAm + βmBm, (5)

FIGURE 2
The non-smooth cutting schematic diagram of a bipartite finite disk and the subtraction rule is applied to extract pure angle contribution.

FIGURE 3
θ-Dependence of the corner contribution in Rényi entropy
for 171 electrons. After fitting the data by Sα(θ) = uα [1 + (π − θ)
cot(θ)], we find that u1 = −0.0861 (±0.0009), u2 = −0.0613
(±0.0007) and u3 = −0.0531 (±0.0006) which are consistent
with the conjecture Sα(θ) � (1 + 1

α)f(θ).
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where Am and Bm are the electron operators in subsystem A and

its environment B, respectively. α2m and β2m are the probabilities in

the two subsystems. For a circular cut with radius RA, they are

α2m � ∫RA

0

∫2π
0

|ϕ0,m r, θ( )|2d2r � 1 −
Γ 1 +m,

R2
A
2( )

Γ 1 +m( ) (6)

and β2m � 1 − α2m. For the ] = 1 IQH state which does not have

topological term γ, if RA is much smaller than that of the

whole disk, namely, the cut edge is far away from the physical

edge at R � ����
2Ne

√
, the EE contains only the area law term in

Eq. 1 as Sα � bαlA +O(1/lA), where lA = 2πRA is the perimeter

of the boundary. In Figure 1B, we plot the bα = Sα/lA as

increasing theRA for a systemwithNe = 171 electrons. The prefactor

bα, shown as constant values in a large range for RA > 1 and

RA <
�����
2Norb

√
≃ 18.5, demonstrates a perfect linear behavior of Sα

for a smooth cut in the bulk. The prefactor for S1 is b1≃ 0.203, which

is exactly the same as that from a similar study in cylinder geometry

where an analytical formula was given as b1 �∫ dμ
2πH[12 Erfc(μ)] ≃ 0.20329081 in which the integral function is

H(x) = −x log(x) − (1 − x) log (1 − x) [35]. We found that the

prefactors of the S2 and S3 are b2 = 0.158 and b3 = 0.142, respectively.

Their analytical results could also be obtained by the corresponding

integrate function Hα(x) � 1
1−α log(xα + (1 − x)α), which gives

b2 = 0.15843 and b3 = 0.14213. Moreover, the Sα=2,3/lA saturates

faster than S1/lA at small RA, means the α-Rényi entropy suffers

weaker finite size effects than the von Neumann entropy. As a

FIGURE 4
Single particle density for the state which has eigenvalue with the smallest |λ − 1

2|. We choose RA = 10lB, which is in bulk of a finite disk (with the
physical edge R � ����

342
√

lB). We compare two cases with θ = π/3 and θ = 2π/3 and use the same color bar in two cases.

FIGURE 5
A cone can be obtained from fan-shaped geometry after gluing two edges together.
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conclusion in this section, we demonstrate that the area law

prefactor bα for IQH is the same for different geometries and

could be calculated analytically. This will be applied in the

following to subtract the area law term in the non-smooth cut.

3 Corner contribution

In this section, we consider a non-smooth partition as shown

in Figure 2. The subsystem A is a fan-shaped region with a corner

angle θ at the center of the disk. Supposing the arc-shaped

boundary is far away from the physical edge of the disk, then

the EE is still in the area law region. The non-smooth cutting

gives one corner of θ-degree at the center and two corners of
π
2-angle at the intersections with the arc. Therefore, the EE in this

case is

Sα � bαlA + Sα θ( ) + 2Sα
π

2
( ) +O 1/lA( ) (7)

with the boundary length lA = 2RA + θRA. In order to screen out

the pure angle contribution Sα(θ), we subtract the value at θ = π

with the same RA. In this case, we have Sα(π) = 0 and lA = 2RA +

πRA. Therefore, the residual entropy is ΔSα = bα(θ − π)RA + Sα(θ)

in which the first term could be exactly obtained from the

previous section supposing the area law and corner

contributions are independent of each other.

In Figure 3, we plot the Sα(θ) = ΔSα − bα(θ − π)RA as a

function of the angle θ. A recent work in Ref. 13 discussed a

similar bipartition by calculating the Rényi entropy via the

cumulants of the particle number in subsystem Sα =∑msα(m)κ2m, where κm are the even cumulants of the

particle number distribution in region A. In particular, κ =

κ2 is the variance of the number of particles in region A which

was obtained analytically for the IQH case, namely,

κ(θ) �
��
Ne

√
π3/2 + 1

2π2 ln(
���
Ne

√
sin(θ2)) − 1+(π−θ) cot θ

4π2 . The third term

is the corner contribution in the second cumulant. We

assume the final Sα obeys the same θ-dependence although

the prefactor could be non-analytical. We fit the Sα(θ) [36, 37]

with the function Sα(θ) = uα[1 + (π − θ) cot(θ)] and find that

u1 = −0.0861 (±0.0009), u2 = −0.0613 (±0.0007) and

u3 = −0.0531 (±0.0006). In [28], the corner contribution

was recently calculated in cylinder geometry. While θ → 0,

it was found that the divergence of the S1(θ) behaves as

S1(θ) = −0.0886 (±0.0004)/θ where the coefficient is

consistent with our result of u1 for the bulk corner. It is

interesting to know that a refined fit formula was also

proposed [29] which gives accuracy fits at both asymptotic

limits, namely, Sα(θ) ≃ β1
(π−θ)2
θ(2π−θ) − β2[1 + (π − θ) cot θ] which

has an extra θ-dependent term. In our fitting process, the

asymptotic behavior in the limit of θ→ 0 gives Sα ≃ uαπ/θ. The

coefficient uαπ ≃ 0.2705 is qualitatively consistent with the

result of 0.276 in [29]. The accuracy in this work could be

lower due to missing the correction term and possibly mixing

different types of EE on a finite disk.

To look more clearly into the corner contribution of the EE,

we treat the correlation matrix as entanglement Hamiltonian.

The eigenstate which has the most important contribution in the

EE is the one that has an eigenvalue near 1/2. In Figure 4, we plot

the single particle density for the state which has an eigenvalue

with the smallest |λ − 1
2|. It is interesting to see that for this state,

the density mainly concentrates near the boundary of subsystem

A, and the sharp corner has a higher density than the smooth

edge. We compare two cases with θ = π/3 and θ = 2π/3. It is

obvious that the acute angle corner has a much higher density

FIGURE 6
Radial density of the IQH state for 50 electrons with βs. β = 1
corresponds to the original disk geometry which has density ρ(r) �
1

2πl2B
in the bulk. The two inserted plots are the 2D density profiles for

different θs.

FIGURE 7
Accumulation of density at the tip for IQH state ρ(0). The data
are perfectly fitted by f(θ) = 2π/θ − 1.
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than that of the obtuse angle corner. The behavior of the EE

density accumulation at the sharp corner is qualitatively the same

as the phenomena of the tip charge accumulation in

electromagnetism.

Now we consider a realistic system with a corner. We

suppose that the particles live in a fan-shaped geometry and

glue it to a cone as shown in Figure 5. The quantum Hall state on

a cone has been realized experimentally in synthetic Landau

levels for photons [38, 39]. In this case, the Landau wave

functions [40–43] come to be

ϕn,m β, z( ) � N n,mL
βm
n

|z|2
2

( )zβme−|z|2/4,

where N n,m � (−1)n
�����������

βn!
2π2βmΓ(βm+n+1)

√
. The angle of the system θ =

2π/β could be continuously tuned by varying the parameter β. In

this geometry, the wave function of the IQH state is

|Ψ〉 � ∏
i<j

zβi − zβj( )exp −∑
i

|zi|2/4⎛⎝ ⎞⎠. (8)

In Figure 6, we plot the radial density of the IQH state for

different βs. β = 1 corresponds to the original disk geometry

which has density ρ(r) � 1
2πl2B

at the center. While increasing β

or decreasing the θ-angle of the system, the density at the

corner tip increases dramatically. From the inserted two-

dimensional density profiles, it is obvious that the density

at the corner tip cumulates gradually and finally separates

from the bulk. The occupation number for each orbital is

exactly nm = 1 for ] = 1 IQH. It is easy to analytically calculate

the density at the center ρ(0) = ∑mnm|ϕ0,m (β, 0)|2 which is

shown in Figure 7. After subtracting the background density

with ] = 1, the data are perfectly fitted by f(θ) = 2π/θ − 1 which

is the same as that of the EE while θ→ 0. Moreover, because of

the Pauli exclusive principle of the fermions, the occupation

number on each orbital is at most equal to one. Therefore, for

other quantumHall states, such as the fractional quantumHall

states which have ] < 1 at β = 1, the θ → 0 behavior should be

universal once the particle number on the 0th orbital

reaches one.

Therefore, we obtain the exact corner contribution of the EE

via the fan-shaped bi-partition in the bulk. We found the 1/θ

divergence of the corner contribution near θ → 0 which has

similarity to the charge density cumulation at the tip once we put

the system on a cone. The similarity between the EE and the local

charge density or its fluctuation has been studied in several

systems, either the classical or quantum many-body systems

[30, 44].

FIGURE 8
The same cutting scheme as Figure 2 has the subsystem A containing the physical boundary. A similar subtraction rule is applied to extract the
corner and edge contribution.

FIGURE 9
θ-Dependence of corner-edge contribution for Rényi
entropy. The data are fitted by pα ln sin θ

2 + qα[1 + (π − θ) cot θ], and
the results are p1 = 0.166 (±0.006), q1 = −0.087 (±0.001), p2 =
0.126 (±0.001), q2 = −0.061 (±0.0002), p3 = 0.113 (±0.0007),
and q3 = −0.053 (±0.0001).
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4 Edge contribution and its
universality

If we extend the region A in the radial direction to infinity, its

arc-shape boundary is the physical edge of the system. As shown

in Figure 8, now the EE between A and B contains the area law

contribution from the radial boundary, a θ-angle contribution at

the center, two π
2-angle contributions at the intersections, and the

edge contribution on the boundary, namely,

Sα � bαlA + Sα θ( ) + 2Sα π/2( ) + Sedge +O 1/lA( ). (9)

Similar to the previous section, after subtracting the EE at θ =

π, the area law term and Sα(π/2) are eliminated. Now the residual

EE contains the corner and edge contributions. ΔS = Sα(θ) +

Sedge(θ) − Sedge(π). The CFT predicts [13, 45, 46] that the EE of the

chiral edge is equal to Sedge(θ) � c
12 (1 + 1

α) ln[2RA sin(θ/2)],
where 2RA sin (θ/2) is the chordal distance and the central

charge c = 1. Therefore, we expect

ΔSα � Sα θ( ) + c

12
1 + 1

α
( )ln sin θ

2
, (10)

which is independent of theRA. Here, we suppose the previous results

of the corner keep invariant as S(θ) = uα[1 + (π − θ) cot θ] and fit the

data of ΔS by function pα ln sin θ
2 + qα[1 + (π − θ) cot θ] with

parameters qα and pα. The results are shown in Figure 9. The

result qα ≃ uα is expected which shows again that the corner and

edge terms are independent. The fitting results p1 = 0.166, p2 = 0.126,

and p3 = 0.113 are consistent with the formula pα � 1
12 (1 + 1

α), and
thus c = 1 is verified.

To see how robust the edge contribution of EE is, we consider the

edge reconstruction [47–49] pattern as shown in Figure 10. The

system contains two unconnected parts. One is the IQH state at the

center with N1 electrons, the other is the reconstructed part with N3

electrons, and we assume that they form the same IQH state at ] = 1.

In themiddle, there areN2 unoccupied orbitals. In this case, although

there are three chiral edgemodes, the inner edge of the reconstructed

stripe has opposite chirality to that of the other two edges. Therefore,

the total chirality is not affected by the edge reconstruction.We follow

the same logic of subtracting the EE at θ = π as the unreconstructed

case. We fix the total number of orbitalsN =N1 +N2 +N3 = 171 and

consider several combinations of different {Ni}. The fitting

parameters are shown in Table 1. Here we only show the results

of S1, and the results for other Sαs could be expected. It shows that the

p1 and q1 are very robust and consistent with the previous

unreconstructed results.

5 Discussions and conclusions

As a conclusion, in the IQH state on a finite disk, we used

a simple unified bipartite method to explore the independent

FIGURE 10
Non-smooth cutting schematic diagram of a disk that occurs in edge reconstruction. The system contains two unconnected parts containing
N1 electrons in bulk andN3 electrons in the edge, respectively, and they are separated byN2 orbits. There are three chiral edge modes, and the inner
edge of the reconstructed stripe has opposite chirality to that of the other two edges. By the same subtraction rule, we extract pure angle
contribution and edge contribution.

TABLE 1 Corner and edge contribution for S1 of a finite disk in an edge
reconstructed pattern. We fix the total number of orbitalsN =N1 +
N2 + N3 = 171 and consider several combinations of different {Ni}. It
shows that the p1 and q1 are very robust and consistent with the
previous unreconstructed results.

N1 N2 N3 p1 q1

151 10 10 0.16394 ± 0.001172 −0.088024 ± 0.000206

131 20 20 0.16810 ± 0.001322 −0.087140 ± 0.000232

141 10 20 0.16494 ± 0.001169 −0.087827 ± 0.000205

71 50 50 0.16835 ± 0.001437 −0.087288 ± 0.000290

41 50 80 0.16441 ± 0.001914 −0.088775 ± 0.000444
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EE contributions from the area law, the sharp corner, and the

gapless chiral edge contributions. The coefficients of the area

law bα are found to be universal and analytically solvable.

With the exact area law term, we obtained the angle

dependence of the corner contribution. It has a fixed

prefactor, and the behaviors at θ → 0 are consistent with

the tip charge accumulation of a realistic IQH liquid on a

cone surface. It is similar to recent work of Ref. 30 in which

the θ dependence of particle number fluctuations at the

corner was found to be universal and has the same 1/θ

behavior while θ → 0. While the fan-shaped subsystem

contains the edge of the disk, the gapless chiral quantum

Hall edge contributes a logarithmic type of EE in which the

central charge c in its prefactor is as expected by its

underlying CFT. Moreover, we found the edge

reconstruction of the IQH does not change any of the

prefactors due to the conservation of the chirality.

Here we should note that the correlation matrix method is

only applicable to the non-interacting case, such as the IQH state.

For the interacting case, namely, the fractional quantum Hall

(FQH) states, the direct calculation of the reduced density matrix

with breaking the rotational symmetry on a disk is complicated

and limited to a small system size. However, as was expected

from the charge fluctuation calculations, we believe that our

bipartite method is also applicable, and the corner contribution

in the FQH states still obeys the same universality, especially in

the limit θ→ 0 where the charge densities at the tip are the same.

The FQH edge also contributes a logarithmic type of EE which

has a prefactor with its corresponding central charge.
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