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The resilience of an air transport network represents its ability to adapt and stay

operational at the required level of safety and efficiency during the impact of

various disturbances. These disturbances, which can compromise the resilience

of a given air transport network, include inclement weather conditions, human-

intended interruptions (such as terrorist attacks, air traffic controller strikes, or

pilots strikes), or unexpected mechanical failures (such as aircraft component

breakdown or runway system failures). The mitigating actions such as delaying,

canceling, and rerouting affected flights aim at maintaining both the network’s

resilience and safety at the acceptable level under given conditions. It is of great

significance to understand and quantify resilience in the complex socio-

technical air transport network, which has attracted extensive attentions. In

this study, statistical analysis of China air traffic data is applied to investigate the

emergence of resilience in the air transport network. The Granger causality test

is adopted to evaluate the causality relationship between different elements of a

complex system. We construct the hourly delay propagation networks and

analyze the resilience of the air transport system through the evolution of delay

propagation networks. The useful measurement metric of resilience is

proposed, and evolution patterns of generation and recovery of flight delays

are also investigated. In addition, the relationship between initial delay,

scheduled flights, and resilience loss is studied to reveal further

understanding of resilience in the air transport system.
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1 Introduction

In recent years, with the rapid development of aerospace technology and economy,

the civil aviation transportation has made considerable progress across the world [1]. The

China air transport system, which is fast-growing and plays an increasingly important role

in the world, has attracted extensive attentions due to its distinctive characteristics and

challenges. Due to a sharp increase in the air traffic flow and a limited availability of civil

airspace resources, the China air transport system has reached the limits of airspace

capacity, which results in serious flight delay problems. Flight delays have a negative

impact on passengers, airlines, and air traffic managements. Passengers are experiencing

significant delays and are dissatisfied with the airlines [2]. The airlines also suffer from the

aircraft resource waste. Based on the recent report on flight delays by the Civil Aviation
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Administration of China (CAAC), flight delays result in

economic loss, security hazards, and environmental pollution

by decreasing operation safety and efficiency.

A primary flight delay results from various disturbances,

including inclement weather conditions, human-intended

interruptions (such as terrorist attacks, air traffic controller

strikes, or pilot strikes) or unexpected mechanical failures

(such as aircraft component breakdown or runway system

failures). A considerable effort has been made to investigate

the sources of primary delays. However, the primary delays

can be transferred and amplified by consequent operations

across the system, the so-called delay propagation, through

connected resources, such as aircraft, passengers, and flight

crew members [3–5].

The concept of resilience is defined as “its ability to recoil or

spring back into shape after bending, stretching, or being

compressed,” according to the Oxford Dictionary. The

definition of resilience has been investigated in many

disciplines ranging from ecology and engineering to

economics. The definition of engineering resilience proposed

by Holling [6] and Hollnagel et al. [7] is described as the time

required for a system to return to an equilibrium or steady state

following a perturbation. Specific to an air transport system,

which is composed of networked airports and ruled by pre-

established schedules, the resilience represents its ability to adapt

and stay operational at the required level of safety and efficiency

during the impact of various disturbances. The delay propagation

due to the impact of various disturbances is commonly

considered. The mitigating actions such as delaying, canceling,

and rerouting affected flights aim at maintaining both the

network’s resilience and safety at the acceptable level under

given conditions.

Accordingly, the delay propagation and recovery process in

the air transport system have attracted considerable attention

recently. Pyrgiotis et al. [8] improved the traditional approximate

network delays (AND) model, which was originally proposed by

Malone [9] in the case of three airport networks, and found that

delay propagation usually mitigates daily airport-scheduled

flights and pushes more flights into late evening hours

through investigating the case of delay propagation in

34 United States airports. Fleurquin et al. [10] studied the

performance of the United States air transportation system in

terms of delays and proposed a data-driven model to reproduce

the observed delay propagation patterns. It is found that

passenger and crew connectivity as the most relevant internal

factor plays a significant role in delay spreading. In terms of

resilience, Janic [11] developed a methodology for quantifying

the resilience, friability, and costs of an air transport network

affected by a large-scale disruptive event. Also, this methodology

was applied to the case study of the United States air transport

network whose north–east coast airports were affected by

Hurricane Sandy in October 2012. Belkoura et al. [12]

presented an algorithm to detect delay-generating events

based on the comparison of planned and real trajectories.

Through studying the historical data of European airspace,

during 2011, it revealed the mechanisms governing the

generation and recovery of delays while airborne.

Despite the advances in understanding the flight delay

propagation and recovery process [13–16], few studies have

investigated the resilience of the air transport system through

studying the evolution of the delay propagation network

considering the causality relationship of delay time-series. The

well-known Granger causality (GC) test [17,18] is an effective

method for determining the causality relation between the

dynamics of two airports, such as the delay time series. The

GC test has extensively been applied in various fields, including

biology, ecology, social sciences, economics, and physics, to

evaluate the causality relationship between different elements

of a complex system. The air transport system is also a classic

large-scale complex socio-technical system. Du et al. [19] applied

the GC test to reveal delay causality relations between airports

and studied the delay propagation through the topological and

temporal analysis of the delay causality network. Zanin et al. [20]

proposed modeling the process of delay propagation by using

complex networks. Also, the delay propagation is detected by the

GC test. Cook et al. [21] investigated new perspectives for air

transport performance. Delay propagation is characterized under

the scenarios using inter-alia and GC test techniques. Although

great efforts have been made to the analysis of the air transport

network with the GC test, the mechanisms of delay propagation

and recovery are not fully understood. It can be studied from a

complex network point of view, where airports are modeled as

nodes and a link between two airports will denote direct delay

propagation. It means that the flights delaying at one airport can

partly explain the delay observed at a second airport. Then, the

evolution of the delay propagation network captures a full image

of the resilience of the air transport system. Here, statistical

analysis of China air traffic data is applied to investigate the

emergence of resilience in the air transport network. The useful

measurement metric of resilience is proposed, and evolution

patterns of generation and recovery of flight delays are also

investigated.

The remainder of this article is organized as follows: Section 2

presents the detailed methodology applied, including a review of

the Granger causality (Section 2.1) and the resilience metrics

(Section 2.2). Section 3 reports the results obtained through a

case study of the China air transport system. Finally, Section 4

summarizes our major conclusions.

2 Methodology

2.1 Granger causality

The Granger causality test is proposed and developed by the

Economics Nobel Prize winner Clive Granger. It is a statistical
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hypothesis test based on an intuitive concept to quantify the

interaction between two time series. The effect can be better

predicted using the historical information related to both the

cause and the effect than when just using the effect alone. The

Granger causality test of delay time series in airports is described

in the following section.

2.1.1 Delay time series pre-processing
The on-schedule performance dynamics of each airport can

be evaluated by the delay time series. For airport i, the delay

time series can be constructed by splitting 1 h into 12 time

intervals. Therefore, we can construct hourly delay propagation

networks and analyze the resilience of the air transport system

through the evolution of delay propagation networks. The

average delay of airport i is defined as the proportion of the

total delay of departure flights to the total number of scheduled

departure flights at airport i in 5 min. According to the

regulations of the FAA, the departure delay time is the

actual takeoff time minus the scheduled time of closing

vessel hatches and scheduled airport taxi time. The

scheduled airport taxi time is 15 min in general. With this

method, we can construct the hourly delay time series for each

airport.

In order to decrease the non-stationarity of delay time series,

which may result in a biased evaluation of the Granger causality

metric, the Z-score detrend procedure and delay time series

difference are applied. The detrend procedure is calculated as

follows:

D′ h, t( ) � D h, t( ) − 〈D ., t( )〉
σ D ., t( )( ) , (1)

where D′(h, t) represents the detrend delay for hour h and

time t; D(h, t) is the original average delay; and 〈D(., t)〉 and

σ(D(., t)) are the average and standard deviations of the delay

time series, respectively. Then, an augmented Dickey–Fuller test

(ADF) [22] is applied to verify whether the delay time series is

stationary. The delay time series difference procedure is applied

until the time series is stationary. The time series difference is

presented as follows:

D′ h, t( ) � D h, t + 1( ) −D h, t( ). (2)

2.1.2 Causality test
The Granger causality (GC) will help understand the

existence and direction of the influence between two airports

based on the delay time series. In our study of delay propagation

in the air transport system, an airport B “Granger-causes”

another airport A if the utilization of historical data of the

delay time series of B contributes to the prediction of the

delay time series of A. This would indicate that there is direct

delay propagation from airport B to A.

In mathematical terms, suppose that the stationary time

series in airport A and B are A and B, respectively. Then, B

Granger-causes A if,

σ2 A | U( )< σ2 A | U − B( )( ), (3)

where σ2(A|U) represents the error in forecasting the time

series A based on the historical information of entire Universe U.

Also, σ2(A|(U − B)) represents the error when the information of

time series B is removed. Specifically, the Granger causality test

uses an unrestricted regression equation to obtain the residual

sum of squares RSSUR and a restricted regression equation to

obtain the residual sum of squares RSSR. The equations are

presented as follows:

A T( ) � ∑
pij

m�1
amA T −m( ) + ∑

pij

m�1
bmB T −m( ) + e T( ), (4)

A T( ) � ∑
pij

m�1
amA T −m( ) + e T( ), (5)

where e(T) is the error term and am and bm are coefficients. pij
represents the time lag. The null hypothesis that B does not

Granger-cause A is defined as

b1 � b2 � / � bpij � 0. (6)

An F-test is then conducted to assess the statistical

significance of this null hypothesis.

F � RSSR − RSSUR( )/pij

RSSUR/ w − pij( ) , (7)

where w is the sample size of each time series. When the p-

value is less than the chosen significance level 5% by default, the

null hypothesis is rejected.

2.2 Resilience

2.2.1 Definition
System resilience has been investigated in various traffic

systems, including highways, railways, freight transportation,

and aviation networks. Also, different quantifying methods

have been proposed to evaluate and measure the resilience of

complex transportation systems [23–26]. In the previous study,

Chang and Shinozuka [27] introduced a classic resilience

measurement that relates expected losses in future disasters

to a community seismic performance objective. The well-

known resilience triangle is defined to quantify the

earthquake resilience as the change in system performance

over time. The calculation of resilience loss (RL) is presented

as follows:

RL � ∫t1

t0

1 − Q t( )[ ]dt, (8)
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whereQ(t)presents the servicequalityof the community,which

starts to decrease at t0 and returns to its normal state at t1. The

resilienceduration time is t1minus t0.According to thisdefinitionof

earthquakes, the concept can be widely applied to various complex

social and technical systems suffering different disturbances.

In this study, the resilience of an air transport network is

defined as its ability to withstand and stay operational at the

required level of delay propagation during the impact of

disturbances. With the Granger causality test, we can construct

the hourly delay propagation networks and analyze the resilience

of the air transport system through the evolution of delay

propagation networks. Q(t) in this study, which quantifying the

seriousness of delay propagation, can be the metrics developed in

network science, which is described in the following section.

2.2.2 Network science metrics
Over the past decades, network science has significantly

advanced our understanding of real complex systems since the

beginning of the last century, ranging from physics, chemistry,

and economy to human social science. Based on different

topological metrics developed in network science, we can

characterize some specific structural properties of the delay

propagation network related to seriousness. In this study, the

following network science metrics which are relevant to delay

propagation are considered.

1) Link density [28] is calculated as the proportion of existing

links with respect to the total number of potential links:

ld � ∑i,jaij

N N − 1( ) �
l

N N − 1( ), (9)

where N and l denote the number of nodes and links in the

network, respectively. The higher the ld, the denser is the

network: delays are easily propagated through it. Also, the

delay propagation is more serious.

2) A degree [28] of an airport denotes the number of delay

propagation links with it. The airport has two types of in-

degree and out-degree links, representing the number of

airports affected by or affecting by this airport,

respectively. It is defined as follows:

kini � ∑
N

j�1
aji, kouti � ∑

N

j�1
aij. (10)

3) Reciprocity [29] of an airport reflects the bidirectional nature

of delay propagation links between airport pairs. The

reciprocity means that airport i affects airport j, whereas

airport j also affects airport i. It is defined as,

R � ∑N
i≠j aij − �a( ) aji − �a( )
∑N

i≠j aij − �a( )2 . (11)

The parameter R is used to measure the overall symmetry of a

directed network.

4) Efficiency [30] of a network represents how easily delays can

spread between two airports, that is, howmany intermediated

airports one has to go through in order to reach the

destination. The efficiency is defined by considering the

inverse of the harmonic mean of the distances between

pairs of nodes,

E � 1
N N − 1( ) ∑i≠j

1
dij

, (12)

where dij denotes the distance between nodes i and j.

5) The largest connected component [31] is generally

introduced to reflect the seriousness of delay propagation.

The largest connected component is a group in which

airports are connected by existed propagation links. It

also has two different definitions with a strong connected

component in a directed network and a weak connected

component in an undirected network. The metrics can be

defined as follows:

G � NLCC

N
, (13)

where N is the total number of airports and NLCC denotes the

number of airports in the largest connected component.

3 Case study of China air transport
systems

3.1 Data description

The dataset studied in this study was collected from the

VeryZhun website, comprising all flight information in March

2019 in China. The database contained 251, 183 domestic

scheduled flights connecting 160 airports. The average delay

of all flights during the investigation period is 23.06 min.

March 4 is the worst day of flight delay. The details of the

dataset are shown in Table 1.

TABLE 1 Available information for each flight.

Information for each flight

Flight company Actual departure time

Flight departure airport Actual arrival time

Flight arrival airport Flight state

Scheduled departure time Flight date

Scheduled arrival time
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3.2 Analysis of China air transport systems

3.2.1 The resilience of daily China air transport
systems

To perform a system-level analysis of resilience of China

air transport systems, we construct an hourly delay

propagation network using the Granger causality test for

March 4, which is the worst day of flight delay. For each

delay propagation network, 25, 600 (160*160) GC tests are

performed. Through the entire day, we can obtain a time-

ordered list of 24 delay propagation networks. Based on the

metrics described in Section 2.2, we can quantify the resilience

of air transport systems through the definition of resilience

loss. In this study, we calculate every day resilience loss in

March based on the largest strong connected component. The

resilience loss on March 4 is shown in Figure 1. The definition

of air transport system performance is 1 minus the proportion

of airports in the largest strongly connected component.

According to the definition, the resilience loss is 9.2 of

24 in total.

All these 24 time-ordered delay propagation networks can be

considereda temporalnetwork.Also, itsmacroscopicpropertiescan

beanalyzed throughtheaggregatedstaticnetwork,whichdisregards

thetime.Thelinksofaggregatednetworkaretheunionsetofalldelay

propagation networks, while the weight of the link is defined as the

frequency of occurrence. Investigating properties of this aggregate

network can have a system-level sight on the resilience of air

transport systems as mentioned previously. In this aggregated

network, the average degree is 75.10, which represents serious

delay propagation on March 4, and the maximum weight of the

FIGURE 1
Resilience loss on March 4.

FIGURE 2
Snapshots of the delay propagation network.
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propagation link is 7, which is from airport SJW toWUX, CGQ to

WUX, XNN to LJG, and KHH to INC.

3.2.2 Evolution patterns
In order to capture the full image of resilience

performance of air transport systems, it is necessary to

investigate how the delay propagation generates, amplifies,

and extinguishes throughout a day. Therefore, in this section,

the snapshot of four delay propagation networks is shown in

Figure 2. From the figure, we can find an obvious and

visualized evolution of the delay propagation network, from

densely connected in midday to sparsely connected at

midnight.

The delay propagation exhibits a cyclical fluctuation due

to the daily schedules. Across a day, the delay propagation

and dissipation rates are variable at different stages. Similar

to the spread of a disease, the process of delay propagation

can be divided into three stages: generation, amplification,

and extinguishment. These three stages are shown in Figure 3.

In the generation stage, due to a sharp growth in scheduled

flights, most busy airports generate the initial delays under

various disturbances, referred to as “morning rush” or “early

rush.” Also, in the amplification stage, through the

connection of resources, the delay propagation of airports

becomes severe, with the increasing scheduled flights. In

addition, accumulated through the early stage, the delay

propagation may reach the peak value of the whole day or

a steady state, while in the extinguishment stage, the delay

propagation decreases sharply with less scheduled flights. As

the itinerary accomplishment of an aircraft, the air transport

network will recover from delay propagation due to the

removal of the flight from the system.

FIGURE 3
Stages of delay propagation.

FIGURE 4
Evolution of delay propagation network metrics.
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In addition, the evolution of different network science

metrics is also investigated for a deep understanding of delay

propagation evolution, such as the link density, reciprocity, and

efficiency. In Figure 4, the evolution trend of link density and

efficiency is similar to the resilience performance, while the

reciprocity is different. The low reciprocity in generation and

extinguishment stages reveals that the single-direction

propagation plays a significant role.

3.2.3 Factors related to resilience
The resilience loss of air transport networks is influenced

by many factors, such as severe climates, air traffic control, and

malfunction of equipment. In this section, we investigate the

relationship between resilience loss and external factors

including initial delay of the day and scheduled flights. In

order to quantify the relation between different factors, the

Pearson correlation coefficient is calculated. It is defined as the

ratio between the covariance of two variables and the product

of their standard deviations. In Figure 5, the relationship

between the resilience loss and initial delay for different

days has been investigated. The initial delay is defined as the

total departure delay in the delay propagation generation stage

described in Section 3.2.2. From Figure 5, the Pearson

correlation coefficient between the resilience loss and initial

delay is 0.791 and shows a strong correlation visually.

Therefore, the initial delay has a significant impact on the

resilience of the air transport system. In addition, the

relationship between the scheduled flights and largest

strongly connected component is also studied in Figure 6.

The Pearson correlation coefficient between the scheduled

flights and largest strongly connected component is

0.883 and also presents a strong correlation. Therefore, we

can conclude that the flight schedule is the main factor that

influences flight delay propagation.

4 Conclusion

In this study, we adopt a well-known Granger causality test

to detect the causality relationship between different elements

of the air transport system. The resilience of an air transport

network is defined as its ability to withstand and stay

operational at the required level of delay propagation during

the impact of disturbances. With the Granger causality test, we

can construct the hourly delay propagation networks and

analyze the resilience of the air transport system through the

evolution of delay propagation networks. Also, based on

different topological metrics developed in network science,

we can characterize some specific structural properties of the

delay propagation network related to seriousness. In the case

study of the China air transport system, we first quantify the

resilience loss in a particular day. Through analyzing the

evolution patterns of metrics, the process of delay

propagation can be divided into three stages: generation,

amplification, and extinguishment. Finally, the strong

relationship between initial delay, scheduled flights, and

resilience loss is observed to reveal that initial delay and

scheduled flights have a significant impact on the resilience

of the air transport system.

The air transport system is a complex socio-technical

system composed of many components which may interact

with each other. Its behavior is intrinsically difficult to

model due to the dependencies, relationships, human

factors, and so on. The Granger causality test made it

possible to evaluate the causality relationship between

different airports. Apart from resilience, future research

on the analysis of the delay causality network can be carried

FIGURE 5
Relationship between the resilience loss and initial delay for
different days.

FIGURE 6
Relationship between scheduled flights and largest strongly
connected component.
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out to further reveal the complexity of the air transport

system.
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