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Traditional methods to identify the important nodes are suitable for single

networks. However, many real-world networks are coupled together, which

can be modeled by multi-layer networks. Therefore, traditional identification

methodsmay not be suitable formulti-layer networks. In this paper, we propose

a new method to identify the important nodes in multi-layer logistic network.

Considering the dynamic of the network, a new routing strategy based on the

greedy algorithm and iterative method is proposed. The traditional

betweenness centrality and closeness centrality are modified according to

the new routing strategy to show the traffic condition and topology

characteristics of each node. Then the new identification method is

proposed based on the modified betweenness and closeness. The new

method is compared with some traditional ones, and the simulation results

show its advantages.
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Introduction

With the development of transportation infrastructure, traffic congestion is

ubiquitous around the world, which can cause huge economic losses and even

increasing the accidents [1–3]. Therefore, it is of great significance to enhance the

performance of logistic networks. It is found that, to destroy a complex system, only need

to attack a few key nodes [4, 5]. So, it is meaningful to identify the important nodes in the

logistic network and reduce the impact of traffic congestion.

Network science provides an efficient way for understanding complex networks

[6–12], so it also provides good methods to identify important nodes in complex networks

[13–25]. In the early years, the identification methods are generally from single structure

characteristic, such as the degree centrality, betweenness centrality, closeness centrality

and so on [13–15]. In recent years, scholars have tried to compare traditional methods and

combine several structural characteristics to improve the identification accuracy. Lordan

et al. [16] proposed a new strategy based on the Bonacich power centrality to detect the

critical nodes in the air transport network. Yang et al. [17] proposed a new weighted

composite index based on weighted degree and betweenness to identify the important

nodes in the subway network. Liu et al. [18] believed that nodes in a network can be
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different from many aspects, and introduced the conception of

voting proportion to help identify the importance of its

neighbors. In addition, some studies also used deep learning

to identify important nodes [22, 23].

It should be noted that, all these studies consider single

networks. Instead, many real-world networks are coupled with

each other, which can be modeled by multi-layer networks.

Logistic networks are typical multi-layer networks, in which

different modes of transportation work simultaneously. Traffic

load can use either mode, or even transfer from one mode to

another during the transportation process. Then, the traditional

methods to identify the important nodes, proposed in single

networks, may not be suitable for multi-layer logistic networks.

To solve this problem, this paper builds a double-layer logistic

network composed of an aviation network and a railway network.

With the consideration of traffic congestion and multi-layer

features, a new routing strategy is design to guide the traffic.

Then, based on the network model and traffic routing, a new

method to identify the important nodes in such a network is

proposed. This identification method combines the local

characteristic such as the traffic load on the node and the global

characteristic such as the costs from this node to all other nodes.

Models

Network model

The logistic network is usually composed of multiple modes of

transportation. In this paper we consider a double-layer logistic

network, as shown in Figure 1. The upper layer is an aviation

network, in which nodes represent airports and edges denote air

flight routes. The lower layer is a railway network, in which nodes

represent railway station and edges denote railways. Both the

aviation network and railway network are spatial networks, in

which each node has a position. The aviation node and railway

node in the same city have the same position. The coupling edges

between two layers show the way to transfer from one

transportation mode to another. The transfer can be done

between railway station and airport in the same city.

Considering that flights in the aviation network tend to be

concentrated in a few airports in a heterogeneous manner [26,

27], the BA scale-free network model [28] is used to build the

upper aviation layer. The main characteristic of the BA network

is that it starts from the connected network with n0 nodes. A new

node is added in each time step and is connected with n existing

nodes. Besides, the newly added node is more possible to connect

with those nodes with higher degrees. The probability of the

newly added node connecting to an existing node i is as follows

∏
i
� ki∑jkj

(1)

where ki is the degree of node i. The BA model does not take the

distance between two nodes into consideration. Therefore, the

long-range edges are allowed. This fact agrees with the real

aviation network. It should be noted that the BA scale-free

network is not a spatial network. The positions of nodes in

this layer will be determined after building the railway network.

Usually, only nearby railway nodes are connected by direct

edges, and remote stations are connected through a series of

nodes in between. Therefore, the modified version of random

geometric graph [29, 30] is used to build the lower railway

network. In this model, the longest connection distance R is

defined so that two nodes with a distance longer than R cannot be

connected by a direct edge. Eq. 2 is the formula for the distance

between two nodes

dij �
������������������
xi − xj( )2 + yi − yj( )2√

(2)

where (xi, yi) and (xj, yj) represent the geographical positions of

node i and node j. On the other hand, to reflet the real case in

railway network, the maximum number of edges for each node is

defined, which makes sure that each node cannot have too much

connections.

In the real case, it is not difficult to find that cities with

airports are often equipped with railway stations, but the

opposite may not be true. So, In the construction of the

double-layer network, the railway network is constructed first,

and the numbers of nodes isN1. Then selectN2 nodes with largest

degrees to build the aviation network. Besides, this paper focuses

on the transportation process between cities, so the positions of

the railway node and the airport node in the same city are

assumed to be identical. In other words, the geographical

positions of nodes in the double-layer network are all based

on the city. In this way, the positions of nodes in the aviation

network can be determined.

FIGURE 1
The multi-layer logistic network.
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Basic routing model

In the logistic networks, the cost is the key issue to determine

the route. The transportation cost which is composed of time cost

and economic cost is defined as the edge weight in the network, as

shown in the following equations

wt
ij � 1 −m( )pTt

ij +mpEt
ij (3)

wl
ij � 1 −m( )pTl

ij +mpEl
ij (4)

where m ∈ [0, 1] gives the proportion of economic cost in the

total cost. Tt
ij (Tl

ij) and Et
ij (El

ij) represent the time cost and

economic cost for transporting one unit goods through the edge

(i, j) in the upper aviation network (lower railway network),

respectively. They can be computed as

Tt
ij �

dij

Vt
, Tl

ij �
dij

Vl
, Et

ij � dijpP
t, El

ij � dijpP
l (5)

where dij is the length of the edge (i, j), Vt (Vl) is the traffic speed

for the upper aviation network (lower railway network), and Pt

(Pl) is the price for transporting unit goods to go unit distance.

After getting the cost for each edge, we can define the cost for

paths between nodes i and j as the sum of cost of edges along the

path. Then the path with the lowest cost is chosen to transport

goods, and its cost is denoted by wi→j* .

Cascading effect

In logistic networks, goods are transported from sources to

destinations.Without loss of generality, we assign the same volume

of transportation task for each pair of cities. In this way, there is

load on each edge. On the other hand, each edge has a capacity,

which limits the free-flow load on this edge. If its load is greater

than its capacity, then congestion happens and the travel on this

edge will cost extra time delay. To show this effect on the route

planning, we define the congestion cost as the extra time cost when

the load on an edge exceeds its capacity. It is defined as

△Tij � Lij − Cij( )pTij Lij >Cij

0 Lij ≤Cij
{ (6)

where Lij is the load of edge (i, j), and Cij is the capacity of

this edge.

Set the capacity of an edge to be the initial load of this edge, which

means all edges work in the full load status and there is no congestion

cost initially. Then, if a node (a city in the logistic network, including

the airport and the railway station in this city) is removed due to

failure or attack, then some paths which used to pass the removed

node will be re-allocated. The re-allocation of traffic may increase the

load of some edges, making them congested, and then introducing

extra time cost for t he traffic passing these edges. In order to save

transportation costs and obtain maximum benefits, the

transportation route needs to be re-planned. We can find that

this re-planning will degrade the transportation performance and

increase the transportation cost on average. There will be a cascading

effect during the above process. This cascading effect is different from

the Motter-Lai model [31] where the cascade of node failures takes

place due to overloading. In ourmodel, the overloading will cause the

increase of transportation cost rather than node failures.

In the above process, the selection of initially removed node

is very important. Different initially removed node affects the

final transportation cost. In this paper, we define the important

node as the one so that removing this node will cause the highest

increase of transportation cost.

Greedy route planning model

Here we propose a greedy route planningmethod to get the final

routes after the initial removal of the important node. Assume one

unit of goods are transported between each pair of cities. The

method divides the transportation goods into M shares, and the

route of each share is planned separately. The greater the value ofM,

the better the route planning effect. The route planning of the first

share R1 is based on the network with empty load after the initial

removal of the important node. The route for the second share R2 is

planned based on the basis of the previous planning. To do that, the

cost for each edge, including the extra time cost for using this edge, is

calculated, and the route with the lowest cost is chosen for the

transportation of share R2 of goods. This process repeats until the

route for the share RM is planned. In the above process, each share of

goods find its best route with the lowest cost based on the current

traffic status. However, different share of goods, even with the same

source and destination, may have different route.

Figure 2 shows the greedy route planning process under

different m values. In this figure, after a node is attacked and

removed, the transportation route is re-planned according to the

greedy route planning method proposed above. It can be seen

that when i = 1, that is, when the first share R1 is planned, there is

no overload edge in the network. And the number of overload

edge after the share Ri is planned increases with i gradually.

Identification of important nodes

Traditional identification methods

In order to verify the effect of important node identification

method proposed in this paper, several traditional important

node identification methods are introduced here, including

degree centrality (DC) [13], betweenness centrality (BC) [14],

closeness centrality (CC) [15] and residual closeness centrality

(RCC) [32]. Their calculation formulas are shown as follows

DC i( ) � ∑
j

aij (7)
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BC i( ) � ∑
i≠s,i≠t,s≠t

gi
st( )

gst
(8)

CC i( ) � ∑N
j�1

1
dij

(9)

RCC i( ) � ∑
j

∑
k≠j

1

2djk −i( ) (10)

In Eq. 7, aij is the element in the adjacency matrix; if there is a

connection between nodes i and j, aij=1, otherwise, aij=0. In Eq. 8,

gst represents the number of shortest paths from node s to t, and

gi
st represents the number of these shortest paths through node i.

In Eq. 9, dij represents the shortest distance between nodes i and j.

In Eq. 10 djk(−i) represents the shortest distance between nodes j

and k after node i is deleted.

Proposed identification method

In the traditional identification methods, BC evaluates the

load of node when the shortest path routing is adopted. However,

in the logistic network, the cost, rather than only the path length,

is the key for path planning. Therefore, we propose a modified

version of BC, called route centrality RC, to show the load of node

in the logistic network.

RC i( ) � ∑
s≠t

ui
s→t

us→t
(11)

where us→t is the load transported from node s to node t, and uis→t

is the such load which goes through node i. If a node with a larger

value of RC is removed, then a larger volume of load have to be

re-allocated, which may have greater effect on the transportation.

Since the logistic networks are spatial networks, the position of

cities plays an important role. In the traditional identification

methods, CC gives a good measure how “central” a node is located

in the network. However, CC counts the number of links along the

shortest path to other nodes, which does not show the idea of path

planning process in logistic networks. Here we propose a modified

version of CC called spending centrality (SC) as

SC i( ) � ∑N
j�1

wp
i→j (12)

It considers that the lower the cost of transporting goods to other

nodes, the more important and central the node is in the network.

Specifically, when the goods can not be transported from node i to

node j, i.e., there is no path from i to j, then the cost wi→j* � 0.

Finally, the identification method RSC in this paper is

proposed based on the above two modified methods RC and

SC, as shown in the following equation.

FIGURE 2
Change of the number of overload edges when the Ri share of goods is planned by using the greedy route planning model.(A) the value ofm is
0.1; (B) the value of m is 0.5; (C) the value of m is 0.9.
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RSC i( ) � RC i( )
max RC( ) −

SC i( )
max SC( ) (13)

The basic idea is that the more frequently a node is used in

the initial transport route, and the lower the cost of transporting

goods from it to other nodes, the more important the node is.

Network performance index

For the logistic network, the failure of a city’s railway

station and airport does not lead to the failure of others. So,

for the transportation model in this paper, the failure of

FIGURE 3
The cost for increasing a share of goods in the route planning process, after the removal of the most important node identified by different
identification methods. m = 0.5. Each point is the average of 10 runs.

FIGURE 4
The cost for increasing a share of goods in the route planning process, after the removal of the least important node identified by different
identification methods. m = 0.5. Each point is the average of 10 runs.
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network nodes will only cause the redistribution of load in

the network, resulting in congestion. Therefore, the

traditional network performance indexes, such as the

relative size of the largest connected component [31] and

network efficiency [33], are not suitable for the study in this

paper.

FIGURE 5
The change of total transportation cost after the removal of themost important node. Here Δcost is the difference between the total costs after
and before the removal of the most important node. Each point is the average of 10 runs.

FIGURE 6
The change of total transportation cost after the removal of the least important node. Here Δcost is the difference between the total costs after
and before the removal of the least important node. Each point is the average of 10 runs.
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After the initial failure, the congestion will lead to the

increase of transportation cost. The failure of the most

important node makes the cost increase the most, and the

failure of the most unimportant node makes the cost increase

the least. Therefore, the change of cost is a good measure of

performance in our model. Use costbefore and costafter to denote

the total cost for transporting one unit of goods between each

pair of nodes in the network before and after the initial failure,

respectively. The performance index is the difference between

them, defined as

Δcost � costafter − costbefore
costbefore

(14)

Simulations

Network parameters setting

In this paper, we consider the logistic system of 500 cities.

One railway station is allocated in a city, but only 200 cities out

of 500 have airport. Therefore, a multi-layer logistic network

with 200 nodes in the upper aviation network and 500 nodes

in the lower railway network is constructed. The upper

network is a BA network with an average degree of 10. The

edges in this network are highly concentrated, that is, a small

number of nodes have most of the links in the network. And

the nodes of the aviation network are coupled with the nodes

of the lower railway network according to the degree. The

lower railway network is a modified random geometric graph,

and whether there is an edge between nodes depends on the

distance, and its average degree is approximately 10. Referring

to the speed and transportation prices between flight and

trains in real life, the time cost of the upper aviation network

in the unit distance is set to be 1/3 of that of the lower railway

network, and the economic cost is 5 times of that in the railway

network.

Simulation results

Figure 3 shows how the transportation cost for increasing

each share of goods in the planning route process changes

when the most important node is removed as the initial

attack. To make the comparison fair, the cost is

normalized by

costi � pi( )
p1( ) (15)

where pi represents the transportation cost for increasing

share Ri of goods into the nework. We can find that all the

curves in the figure are increasing, indicating the congestion

status becomes more and more severe in the greedy route

planning process. Among different important node

identification methods, our proposed RSC makes the

biggest trouble as removing the most important node based

on this method results in the highest cost for the

transportation in the rest network.

On the contrary, Figure 4 shows the transport cost for each

share of goods in the route planning process when the least

important node is removed as the initial attack. All the curves

in Figure 4 are horizontal, which is very different from

Figure 3. This is because the effect of the least important

node is so weak that its removal does not cause any

congestion. Therefore, the cost does not change for each

share of goods. Among all the curves, our proposed

method RSC achieves the lowest cost, indicating that it

finds the least important node effectively.

More interestingly, the above conclusion holds when the

proportion of economic cost m changes. Figure 5 shows the

change of total cost after the most important node is

removed. Here the change of total cost is define as the

difference between the total costs after and before the

removal of the most important node. It can be seen that

under different m, RC and RSC curves are higher than other

curves, that is, RC and RSC have better ability to identify

important node than other methods. So, for the first

evaluation perspective, RC and RSC identification methods

are clearly better. Figure 6 shows the change of the total cost

after the least important node is removed. In the figure, SC

and RSC curves are lower than other curves, indicating that

these two methods can efficiently identify the least important

nodes in the network. Combining the above two aspects

together, the proposed RSC method outperforms in

finding both the most important node and the least

important node.

Conclusion

Identification of the important node in networks is a key

issue to analyze the performance of networks. Previous

identification methods are mainly designed for single

network, and their performance may be doubtable in multi-

layer networks. In this paper, a new identification method is

proposed for a two-layer logistic network. In this scenario, the

removal of the most important node can increase the cost of

transportation the most. Our proposed method considers the

load on the node and the cost for the route from this node to

other nodes. The simulation results indicate that our method

can find both the most important node and least important

node effectively.
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