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High-throughput deep tissue imaging and chemical tissue clearing protocols have brought
out great promotion in biological research. However, due to uneven transparency
introduced by tissue anisotropy in imperfectly cleared tissues, fluorescence imaging
based on direct chemical tissue clearing still encounters great challenges, such as
image blurring, low contrast, artifacts and so on. Here we reported a three-
dimensional virtual optical clearing method based on unsupervised cycle-consistent
generative adversarial network, termed 3D-VoCycleGAN, to digitally improve image
quality and tissue transparency of biological samples. We demonstrated the good
image deblurring and denoising capability of our method on imperfectly cleared mouse
brain and kidney tissues. With 3D-VoCycleGAN prediction, the signal-to-background ratio
(SBR) of images in imperfectly cleared brain tissue areas also showed above 40%
improvement. Compared to other deconvolution methods, our method could evidently
eliminate the tissue opaqueness and restore the image quality of the larger 3D images
deep inside the imperfect cleared biological tissues with higher efficiency. And after virtually
cleared, the transparency and clearing depth of mouse kidney tissues were increased by
up to 30%. To our knowledge, it is the first interdisciplinary application of the CycleGAN
deep learning model in the 3D fluorescence imaging and tissue clearing fields, promoting
the development of high-throughput volumetric fluorescence imaging and deep learning
techniques.
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INTRODUCTION

Fluorescence microscopy has been playing an increasingly indispensable role in depiction of
biological microstructures and functions. Up to now, confocal microscopy is still the most
extensive and successful commercial fluorescence imaging system [1]. Nevertheless, the tissue
anisotropy, the signal attenuation or absorption, the optical aberration of imaging system will all
cause severe image blurring and degradation in the practical imaging process, limiting the further
development of biological research at micro-scale [2]. On the one hand, the low fluorescence image
quality greatly decreases the resolving power and further analysis accuracy of imaging systems for
microstructural information. On the other hand, the reduction of fluorescence signal deep inside
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biological tissues will influence the imaging depth and imaging
speed of thick tissues, restricting the experimental research
efficiency for large-scale biological tissues. So far, many
researchers have made great efforts to improve the imaging
efficiency and image quality from different aspects, including
physical, chemical, and digital ways [3–5].

To acquire detailed 3D information physically, a series of
advanced optical imaging techniques have been developed for
deep tissue imaging in recent years, such as two-photon
excitation microscopy (TPEM) [6], fluorescence micro-optical
sectioning tomography (fMOST) [7], and light-sheet fluorescence
microscopy (LSFM) [8]. Compared with the confocal
microscopy, the two-photon absorption effect provides lower
background signal level, phototoxicity and photobleaching for
biological imaging. Besides, longer wavelength of laser used in
TPEF could realize larger penetration depth for fluorescence
excitation and detection, improving the 3D imaging capability
of fluorescence microscopy. fMOST broke the 3D imaging
limitations for brainwide mapping neurite level by using a
continuous tissue sectioning microtome and synchronous
wide-field detection. And the synchronous tissue sectioning
and imaging idea could be also introduced into various
conventional imaging systems for high-speed 3D imaging and
reconstruction, including serial two-photon tomography [9],
automatic serial sectioning polarization sensitive optical
coherence tomography [10] and so on. Further, as a rapid,
high-resolution imaging technique, LSFM has played an
important part in large-scale mesoscopic biological research
due to its large field of view and good optical sectioning
capability. Especially for millimeter-level biological tissue
imaging, LSFM has shown unprecedented imaging speed and
throughput, which is at least dozens of times higher than some
conventional fluorescence microscopies [11].

Although these microscopic imaging systems have made
significant progress in depicting biological microstructures and
functions, it is not sufficient for us to improve the image quality
and imaging depth only by physical means. It is because the
strong scattering and attenuation effect introduced by the
biological tissue anisotropy will directly cause severe image
degradation and noise, which could not easily be overcome or
bypassed by upgrading the optical system. Hence, the chemical
tissue clearing techniques were proposed to improve the tissue
homogeneity and ensure refractive matching between tissues and
surrounding buffers. Especially as a powerful combination with
LSFM imaging techniques, various tissue clearing protocols have
been developed and modified for larger imaging depth and better
imaging quality in 3D tissue imaging [12–14]. For example,
CUBIC-series allows whole-brain even whole-body clearing
and enables single-cell-resolution visualization and
quantification of nucleus and neural activities in centimeter-
scale brains [15]. And the previously unknown details and
anatomical connections such as non-dividing stem cells near
perisinusoidal areas under the fluorescence microscope could also
be revealed by using DISCO-series protocols [16]. Besides, an
ultrafast optical clearing method (FOCM) was also proposed to
clarify 300-um-thick mouse tissue slices in 2 min with low
morphological deformation, fluorescent toxicity and easy

operation [17]. Nevertheless, in spite of the great clearing
effect on tissues of rodent animals, these clearing protocols
have not perfectly resolved the compactness and refractoriness
of brain tissues, especially the white matter. So far, as the most
important partner of high-throughput imaging systems (e.g.,
LSFM), the development of chemical tissue clearing techniques
is still booming for expanding the 3D tissue imaging depth and
image quality.

Except for improvements of imaging systems and tissue
preparation techniques, another popular approach is image
deconvolution. An image restoration process, namely
deconvolution, is established for enhancing the tissue details
and image quality by typically modeling the image acquisition
and degradation process as the summation of image noise and
convolution between sample and systematic point spread
function [18]. Many classic deconvolution methods, such as
Richardson-Lucy deconvolution and Huygens deconvolution
have shown great image enhancement performance for
different requirements, including resolution improvement,
image deblurring and noise suppression [19, 20]. However,
inevitably, tissue anisotropy and scattering generally lead to
deficiency of some 3D information, getting in the way of
accurate acquiring or estimation of systematic point spread
function, which is very important for the deconvolution
process. Particularly, the fast large-scale tissue imaging process
is generally accompanied by unforeseeable uncertainty of point
spread function distortion and image degradation. As a kind of
emerging state-of-the-art technique, deep learning has gradually
shown powerful efficiency and wide feasibility, especially in image
super-resolution, image restoration and aberration correction
[21–23]. However, almost current deep learning-based image
processing methods need a large number of exquisitely
prepared paired datasets. Due to the hardware and
experimental limitation, it is difficult even impossible to
acquire enough high-quality ground-truth in paired datasets
for some deep learning models, such as convolutional neural
networks and U-Net [24–26]. In recent years, a series of
unsupervised deep learning models are proposed to realize
feature transformation between two types of data with
unpaired datasets [27–29]. For example, CycleGAN model has
been widely applied in two-dimensional (2D) medical image
processing, which realized good efficiency comparable to
supervised deep learning models [30–32]. Nevertheless,
CycleGAN was mainly used in non-fluorescent imaging and
2D image processing. The wide application and successful
verification in 3D high-throughput fluorescence microscopy
has hardly ever been reported before.

Here we report a three-dimensional virtual optical clearing
method based on cycle-consistent generative adversarial network,
termed 3D-VoCycleGAN, to improve the transparency of
imperfect cleared biological tissues and image quality of LSFM
images. First of all, we selected the blurred 3D image volumes and
clear 3D image volumes from the raw 3D image data with varying
transparency and contrast as datasets for further network
training. Then we built a CycleGAN deep learning model with
two 3D ResUNet-based generators and two 3D PatchGAN-based
discriminators to realize fast prediction and transformation from
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blurred image volumes to clear image volumes. By testing the
method on the 3D image data acquired from a custom-built
LSFM system, we verified evident improvements with
homogeneous digital tissue clearing and good image contrast
on imperfect cleared mouse brain tissues and mouse kidney
tissues. Besides, compared to other deconvolution methods,
our virtual clearing method showed good image restoration
and transparency enhancement effect with evident speed
advantage, especially for 3D images deep inside biological
tissues. To our knowledge, it is the first time that CycleGAN
model has been used for enhancing the clearing effect of chemical
tissue clearing, and restoring the 3D blurred LSFM images. Our
virtual optical clearing method could effectively remedy the
insufficiency of chemical tissue clearing and deep tissue
imaging techniques, illustrating promising potential in future
3D histology and volumetric fluorescence imaging.

METHODS

The Main Framework of Virtual Optical
Clearing
The tissue spatial anisotropy and imperfect tissue clearing effect
generally leads to heterogeneous image contrast or image
blurring, limiting further image biological structure
identification and analysis. We proposed a CycleGAN-based
approach to restore image quality with various tissue
transparency and contrast in 3D LSFM imaging. The main
framework of our virtual optical clearing method is shown in
Figure 1A. According to different types of tissue properties and
clearing effect, we selected several representative 3D image
volumes with specific structural information from the raw
LSFM data to generate datasets for network training. In the
tissues, 3D volumes with high image contrast, low noise and

FIGURE 1 | Framework of virtual optical clearing method and 3D-VoCycleGAN architecture. (A) The framework and workflow of our virtual optical clearing method.
The 3D-VoCycleGAN consists of two generators and two discriminations (B) The network structure of generators. 3D ResUNet was used to build the two generators in
our network (C) The network structure of discriminators. 3D PatchGAN was used to build the two discriminators in our network.
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good transparency were regarded as well-cleared tissue areas.
And the cropped 3D image data from the well-cleared tissue areas
was performed 3D deconvolution to further suppress background
signal out of focus and improve image contrast for generating the
target domain image data. At the same time, 3D image volumes
with severe blurring and background noise in imperfectly cleared
area was selected as the source domain image data. It is noticed
that unlike the supervised deep learning-based methods, we need
not realize accurate data pre-alignment between the two domains
in our method. Hence, various types of biological samples could
be used to build datasets for our experiments, including mouse
brain tissues and kidney tissues acquired by using our custom-
built LSFM system.

In the specific network training process, we defined the source
domain and the target domain as domain X and domain Y,
respectively. Taking the GPU memory requirements of network
training into account, 200 groups of unpaired 3D image volumes
with 256 × 256×16 pixel3 size were randomly cropped from the
domain X and domain Y to generate the training datasets. In
order to improve the training efficiency and avoid overfitting,
image volumes with insufficient foreground were automatically
discarded before training [33]. And these image volumes were
normalized and then fed into the network for training. To ensure
higher generalization capability of our network, during each
training process, we performed data augmentation on the
input image volumes by introducing a series of random
changes, such as flipping, rotation, and so on. As the loss
function iteratively minimized, the non-transparent 3D tissue
image identified and learned the clearer structural features from
the cleared 3D tissue image. After the deep learning network was
well optimized, the original large LSFM image data with varying
spatial transparency and contrast was sent to the network for
implementing fast image prediction and image quality
restoration.

3D-VoCycleGAN Architecture
In our 3D-VoCycleGAN, we built the two generators by using
ResUNet, which has been proved to have great biological feature
extraction capability [34]. The ResUNet used in our generators is
a kind of encoder-decoder cascade structure, which is composed
of four downsampling blocks and upsampling blocks (Figure
1B). In the encoder path, each downsampling block contained a
max pooling and two convolution layers, each layer of which
comprised 3 × 3×3 kernel followed by a batch-normalization
layer and a ReLU activation function. And the encoder encoded
the input image stack into multiple feature representations at
different levels throughmax pooling. Then the decoder consisting
of four upsampling blocks symmetrical to the encoder was used to
decode data information back to the original dimension. Each
upsampling block consisted of trilinear interpolation, skip
connection, and convolution layers. The skip connection
concatenated the high-level features and spatial information
between encoder and decoder, thus retaining more details and
capturing finer information. Finally, we established a residual
connection between the input and the output of the decoder to
avoid the gradient vanishing problem and improve the
performance of the network [35].

For building the discriminators, we modified the five-layer
conventional structure of PatchGAN [31] into a 3D form
(Figure 1C). In the PatchGAN, conventional operation with
a stride of 2 and padding of 1 was used in the first three
conventional layers, each layer of which was followed by an
instance normalization layer, and a LeakyReLU activation
function. And the channel numbers were doubled as the
image resolution was halved in the first three conventional
each time. And the channel numbers of the five
convolutional layers were 64, 128, 256, 512 and 1,
respectively. Considering that the size of the input stack was
256 × 256×16, we set the kernel size of the last two convolution
layers to 3 × 3×3, making the size of the output patch 32 × 32×2.
Finally, the last convolutional layer reduced the channel
numbers of the feature map to 1, and a sigmoid activation
function was used to normalize the output value into [0, 1].

Our 3D-VoCycleGAN was implemented based on the Pytorch
deep learning framework. The learning rate of the Adam
optimizer was set to 0.0002 in the first 100 epochs and
linearly decayed to 0 in the next 100 epochs. The batch size
was set to 1. The overall training and prediction processes based
on our method were implemented in a Dell 7,920 workstation
equipped with RTX 3090 GPU (24 GB memory).

Loss Function
The deep learning model of 3D-VoCycleGAN contained two
generators GXY (from domain X to Y), GYX (from domain Y to
X) and two discriminators DX, DY. The two generators GXY,
GYX aimed to realize transformation from 3D image volumes
of domain X to 3D image volumes of domain Y and inverse
image transformation from domain Y to domain X,
respectively. In each domain, an image volume could be the
output of the generator or come from the original training
data. Hence, two discriminators were used to judge which
situation the image volumes belong to. In a word, the goal of
the generator was synthesizing images and fooling the
discriminator, while the discriminator tried to accurately
winnow truth from falsehood. The standard GAN loss [36]
was given as follows:

lGAN(GXY) � Ey~pdata(y)[logDY(y)] + Ex~pdata(x)
[log (1 −DY(GXY(x)) ,] (1)

lGAN(GYX) � Ex~pdata(x)[logDX(x)] + Ey~pdata(y)
[log (1 −DX(GYX(y)) ,] (2)

where x denotes the blurred stack in domain X, y denotes
the clear stack in domain Y. Ex~pdata (x), Ey~pdata (y) were the
expectation operators. However, standard GAN loss usually
suffers from mode collapse and vanishing gradients, which
severely degrades network performance and stability. Here we
used LS-GAN loss [37] as objective function:

lGAN(GXY) � 1
2
Ex~pdata(x)[(DY(GXY(x)) − 1)2], (3)

lGAN(DY) � 1
2
Ey~pdata(y)[(DY(y) − 1)2] + 1

2
Ex~pdata(x)

[(DY(GXY(x)))2],
(4)
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lGAN(GYX) � 1
2
Ey~pdata(y)[(DX(GYX(y)) − 1)2], (5)

lGAN(DX) � 1
2
Ex~pdata(x)[(DX(x) − 1)2] + 1

2
Ey~pdata(y)

[(DX(GYX(y)))2],
(6)

The original cycle consistency loss calculated the L1 loss
between the original image and reconstructed image. We
incorporated a 3D multi-scale structural similarity index metric
(MS-SSIM) to construct a detail preserving transformation [38].
The cycle consistency loss was defined as follows:

lcycle (GXY, GYX) � Ex~pdata (x)[‖GYX(GXY(x)) − x‖1]
+Ey~pdata (y)[

����GXY(GYX(y)) − y
����1] + η · lMS-SSIM, (7)

lMS-SSIM(GXY, GYX) � 1 −MS-SSIM(x, GYX(GXY(x))) + 1

−MS-SSIM(y, GXY(GYX(y))), (8)
where η represents the weight factor for the lMS−SSIM term. And it
was set to 0.2 in all experiments. An additional identity loss was
used to constrain the generator to build an identity mapping
when well-cleared volumes of the target domain were provided.

lidentity(GXY, GYX) � Ex~pdata (x)[‖GYX(x) − x‖1]
+ Ey~pdata (y)[

����GXY(y) − y
����1] , (9)

Saliency constraint has been proved to be effective for content
preservation on 2D microscopic images [39]. And we added it to
our 3D-VoCycleGAN for maintaining fine structures and
information. By appropriately setting the threshold value, we
could separate the foreground with detailed structure from the 3D
samples. Therefore, the two generators focused on the essential
structures of foreground at the early training stage and avoided
appearance of artifacts in background with the aid of saliency
constraint. The saliency constraint loss can be written as:

lsaliency(GXY, GYX) � Ex~pdata (x)[
����Tα(x) − Tβ(GXY(x))

����1]
+Ey~pdata (y)[

����Tβ(y) − Tα(GYX(y))
����1],

(10)

where Tα(x) � sigmoid[100(x − α)] and Tβ(x) �
sigmoid[100(x − β)] are binary functions parameterized by
threshold α and β.

The total loss for generators could be expressed by:

LGenerator � lGAN(GXY) + lGAN(GYX) + λ · lidentity(GXY, GYX)
+ρ · lsaliency(GXY, GYX) + μ · lcycle (GXY, GYX), (11)

where the parameters λ, μ, ρ denotes the weight factor for the identity
loss, saliency constraint loss and cycle loss, respectively. We assigned
λ � 5, μ � 10, respectively. And we set ρ � 10 × e−0.1×n, where n
denotes training epoch number, making the network pay more
attention to the transformation of important details and ignoring
the interference from the background at the early stage of training.

Sample Preparation and 3D Image Data
Acquisition
The sample used in this study contained mouse brain and
mouse kidney tissues. For verifying the performance of our

method on tissue slices, we prepared Thy1-GFP mouse brains
and mouse kidney tissues, which were sectioned into 300-μm
and 200-μm thick slices, respectively. The mouse kidney tissue
slices were stained with DRAQ5 for labelling the cell nucleus
before cleared by FOCM reagents. The FOCM reagents were
prepared as 30% (wt/vol) urea (Vetec), 20% (wt/vol)
D-sorbitol (Vetec), and 5% (wt/vol) glycerol dissolved in
DMSO. When preparing the reagent, urea and D-sorbitol
were dissolved in DMSO and stirred at room temperature
overnight. After complete dissolution, glycerol was added and
stirred further. The reagents should be stored at room
temperature and shaken gently before using. Before
imaging experiments, the well-stained mouse brain and
kidney tissue slices were incubated in FOCM reagents for
several minutes.

For verifying the performance of our method on deep
tissues with millimeter-thickness, we prepared stereoscopic
mouse brain and kidney tissue blocks labelled with Alexa
Fluor 647 anti-mouse CD31 antibody (CD31-AF647,
BioLegend) by caudal vein injection. The Alexa Fluor
647 anti-mouse CD31 antibody (20 mg) was then diluted in
sterile saline (total volume of 150 ml). After the injection,
mice were placed in a warm cage for 30 min prior to perfusion.
Then mice were rapidly anesthetized with chloral hydrate
[5%, wt/vol, 0.1 ml/10 g, intraperitoneal (i.p.)] and
transcardially perfused with ice-cold 0.01 M phosphate
buffered saline (PBS, Coolaber) and paraformaldehyde
(PFA, 4% in PBS wt/vol, Saiguo Biotechnology Co., Ltd).
Mouse brains and kidneys were collected and incubated in
the same PFA solution at 4°C for 24–48 h for uniform fixation.
After fixation, mouse brains and kidneys were washed in
0.01 M PBS at room temperature (20–25°C) for 6–12 h. The
mouse brains and kidneys were clarified by the CUBIC-L/R+
protocol [xxx]. CUBIC-L [10 wt% of N-butyldiethanolamine
(Vetec) and 10 wt% of Triton X-100 (Sigma) in water] and
CUBIC-R+ [45 wt% of antipyrine (Vetec) and 30 wt% of
nicotinamide (Vetec) in water, buffered with 0.5% (v/w)
N-butyldiethanolamine (pH ~ 10)] was prepared for tissue
clearing. Mouse organs and tissues were incubated in CUBIC-
L for 7 d at 37°C with gentle shaking followed by PBS washing
at room temperature. After PBS clearing, the mouse brains
and kidneys was incubated and stored in CUBIC-R+ at room
temperature.

For generating 3D datasets and verifying the application of
our method, we acquired the experimental data of mouse
organs and tissues via a custom-built LSFM system. For
exciting fluorescence signal of mouse tissues labeled with
Thy1-GFP, DRAQ5, and CD31-AF647, two semiconductor
lasers (OBIS 488LS/637LX nm, Coherent) were aligned and
expanded by a pair of achromatic lenses with 30 and 250 mm
focal length, respectively. Like the classical selective plane
illumination microscopy, we used a cylindrical lens with
100 mm focal length and a low-NA objective (Olympus ×4/
NA 0.1/WD 18.5 mm) with long working distance to generate
a thin illumination sheet. And a mechanical slit (VA100 C/M,
Thorlabs) was set to 1 mm for controlling the thickness of the
illumination sheet. The fluorescence signal was collected by a
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tube lens (ITL200, Thorlabs), detection objective (Nikon ×4/
NA 0.2/WD 20 mm), a multi-channel emission filter (#87-247,
Edmund Optics) and a sCMOS camera (ORCA-Flash 4.0 V3,
Hamamatsu). And the biological samples were loaded on a 3D
motorized stage (KMT50SE/M-3D, Thorlabs) and performed
scanned imaging. In this system, we used the external trigger
mode with a synchronous signal to ensure high-frame image
acquisition. During the LSFM imaging process, each frame was
captured with a constant acquisition interval of 2 μm and total
exposure time of 10 ms. The corresponding camera acquisition
speed could be up to 100 fps. Due to the rapid imaging
advantage, the image acquisition process of a whole mouse
brain tissue slice could be finished in 4 min. All images were
transformed and stored as 16-bit Multi-TIFF format for post-
processing.

RESULTS

Image Enhancement Performance of
3D-VoCycleGAN for Mouse Brain Slices
Due to spatial anisotropy and structural complexity of biological
tissues, chemical tissue clearing still could not realize perfect
tissue transparency and image contrast. As for a pre-cleared
tissue, the clearing extent and spatial image degradation is
random across the whole 3D volume. Here we first
demonstrated our 3D-VoCycleGAN on Thy1-GFP mouse
brain slices to digitally improve the optical clearing extent and
image quality. Although the whole image showed the distribution
of fluorescence signal in the brain slice, some details such as nerve
fiber were still blurred as shown in Figure 2A. By using our 3D-
VoCycleGAN, the image background was greatly suppressed.

FIGURE 2 | The image enhancement performance of 3D-VoCycleGAN. (A) The comparison results before and after using 3D-VoCyleGAN (B) The image quality
enhancement results with Richardson-Lucy deconvolution, sparse deconvolution, and 3D-VoCycleGAN method. The size of cropped image volume was limited by the
GPU memory requirements of Richardson-Lucy deconvolution and sparse deconvolution. (C) The quantitative evaluation of the image quality enhancement
performance. The plotting curves of two line profiles showed the signal level and SBR of nerve fiber in the brain slice (D) The time consumption of different image
processing methods for the image volume. RL: Richardson-Lucy deconvolution, Sparse: sparse deconvolution, 3D-VoC: 3D-VoCycleGAN.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9650956

Chen et al. Three-Dimensional Virtual Optical Clearing

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Besides, the blurred nerve fiber in the original image became
more distinguishable after enhancement. Further, we cropped a
region-of-interest (ROI) from the brain slice to compare the
virtual optical clearing efficiency and image enhancing
performance with other deconvolution methods. Here we
performed sparse deconvolution [40], Richardson-Lucy
deconvolution and 3D-VoCycleGAN on a 500 × 500×32 pixel3

image volume. According to the results in Figure 2B, three
methods all realized image quality improvement to different
extents. Then we plotted the profiles of two lines across the
nerve fiber to quantitatively evaluate their differences of
performance. Although Richardson-Lucy also enhanced the
image resolution to some extent, the image background noise
suppression capability was not as good as the other methods. Our
3D-VoCycleGAN and sparse deconvolution showed better image
contrast and SBR improvements, which were both increased by
above 40% (Figure 2C). It is worth noting that although sparse
deconvolution showed very powerful image quality enhancing
capability comparable to our 3D-VoCycleGAN, the processing
time consumption for the image volume with same size is larger
than our method (Figure 2D). It usually takes a considerable
amount of time to finish the image processing by using
Richardson-Lucy deconvolution. And sparse deconvolution
could shorten the processing time with the aid of GPU
acceleration. Nevertheless, due to GPU memory limitation,
sparse deconvolution could not realize image processing of
large 3D data in one time. Although sparse deconvolution
could process the 3D image data volume by volume after
splitting the large 3D image data into several image stacks, the
final stitched 3D image will show uneven brightness and
background since these sub-volumes exist sparsity differences.
As for this image volume, the processing time consumption of
3D-VoCycleGAN, sparse deconvolution, and Richardson-Lucy
deconvolution were 0.8, 48 and 45s, respectively. Thereinto, we
performed 50 iterations of the Richardson-Lucy deconvolution by
using the DeconvolutionLab2 plugin in ImageJ/Fiji. Then, with
3D-VoCycleGAN, image processing of the whole brain slice with
3,100 × 3,500×180 pixel3 volume could be finished in only 141s.
Hence, our 3D-VoCycleGAN could realize great image quality
enhancement with short time consumption, showing the great
image processing efficiency in brain slice imaging.

Information Restoration of Images Deep
Inside Kidney Tissue Slices
Tissue slice imaging with chemical optical clearing protocols are
widely used in biological research. Although many chemical
tissue clearing methods have promoted biological structure
and function research, tissue scattering and refractive index
mismatching between multiple media in the imaging system
usually influence the image quality and microstructure analysis
under the slice surface. Our 3D-VoCycleGAN could contribute to
the information restoration of images deep inside tissue slices. As
shown in Figure 3A, labelled cell nucleus of the mouse kidney
tissue slice showed the distribution of glomeruli. However, the
tissue transparency was not enough to distinguish the detailed
nucleus or glomeruli. Especially, due to the uneven thickness and

structural anisotropy in axial direction, the clearing reagents
could not perfectly make the kidney tissue slice transparent.
For example, although the kidney tissue slice could be optical
cleared by the clearing reagents, the images deep inside the tissue
slice were still blurred due to inevitable light scattering or
attenuation. The fluorescence signal was nearly overwhelmed
in the strong background signal except the area from the tissue
surface to 115-μm depth (Figure 3B). By using our 3D-
VoCycleGAN, the fluorescence signal in deep tissue could be
quickly recovered. The axial images in Figures 3B,C showed the
profile of glomeruli and tubules across about 150-μm depth,
which improved the clearing depth of mouse kidney tissues by up
to 30%. Besides, we could also compare the 2D images in different
depths. When the imaging depth was 100 μm, the original image
could show distinguished cell nucleus with faint noise. Our virtual
optical clearing method could improve the image contrast with
details maintained as shown in Figure 3D. When the imaging
depth was 140 μm, the morphology of cell nucleus and glomeruli
were severely blurred (Figure 3E). With 3D-VoCycleGAN, the
final image quality was evidently improved, where some
information of nucleus and glomeruli was recovered. Hence,
to some extent, we could realize structural information
restoration of imperfectly cleared tissue slices in deep depth by
virtual optical clearing technique.

Virtual Optical Clearing of Large-Scale 3D
Tissues
Except for tissue slice imaging, high-throughput imaging for
large-scale 3D tissues also plays an increasingly important part
in biological research, especially in digital organ mapping and
brain network reconstruction. Here we demonstrated the 3D
image enhancement capability for stereoscopic mouse tissue with
above 1 × 1 × 1 mm3 volume by using our virtual clearing
method. To further depict the glomeruli distribution or
morphology of kidney tissue, we imaged and reconstructed a
mouse kidney tissue block with a custom-bulit LSFM system. As
shown in Figure 4A, the original 3D image volume has evident
space-variant opaqueness and structure blurring. In particular,
the structural contours of glomeruli were gradually blurred as the
axial depth increases, which was marked by the white arrow in
Figure 4A. The connections between glomeruli and arteries were
also very important for supporting some kidney functions.
However, in the imperfectly cleared kidney tissue, a branch of
the kidney artery was also overwhelmed in the background noise
(yellow arrow in Figure 4A). By using our virtual optical clearing
method, the glomeruli and artery branch were all evidently
recovered and distinguished (Figure 4B). And the anisotropic
tissue transparency was eliminated after virtual optical clearing.
From the depth color-coded z-projections, we could see the whole
image contrast and fluorescence signal intensity in various depths
were enhanced (Figures 4C,D).

In order to quantify the virtual optical clearing effect, we
selected two 2D images from two different z-depths. As shown
in Figure 4E, the original 2D image had low image quality,
including strong noise, blurring, and structure missing (two
blue arrows). After virtual optical clearing, the details and
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contours of glomeruli were enhanced greatly, which might be
meaningful to the morphological analysis of kidney
microstructures. Although the original 2D image in
Figure 4F had lower noise and blurring extent than the
original image in Figure 4E because of shallow imaging
depth, the vascular walls of two artery branches were still
difficult to be distinguished directly (two green arrows). Our
virtual optical clearing successfully recovered the details of two
vascular walls. Further, we evaluated the fluorescence signal
intensity and noise level in the two depths by plotting four
lines. As shown in Figure 4G, images processed by our method
had more distinguishable details about glomeruli and artery,
especially the contour of glomeruli and vascular walls. Besides,
our method improved the SBR of images by above 25%.
Meanwhile, we tested our method on 3D images of brain
vessels, which showed complex structures and dense
distribution in the mouse brain. For deep brain tissue 3D
imaging, tissue anisotropy and imperfect tissue clearing will
introduce strong scattering and attenuation of fluorescence
signal, resulting in vessel blurring and artifacts as shown in
Figure 4H. According to the comparison results of depth
color-coded z-projections, we could see the definition and
sharpness of vessels were greatly improved in various
depths by using our virtual optical clearing method. As
shown in Figures 4I,J, the vessel artifacts were suppressed
after virtual clearing. Similar to the results of kidney tissue, the
original vessel contours existed severe blurring. Our virtual
optical clearing method could effectively restore the
information and improve the image quality, indicating its
powerful image enhancement capability in 3D fluorescence
imaging.

DISCUSSION

High-throughput 3D fluorescence imaging and tissue clearing
techniques are playing an increasingly important role in
biological research. However, due to the tissue anisotropy and
structural complexity, chemical tissue clearing techniques
sometimes could not imperfectly clear the whole tissue,
resulting in image quality degradation, such as image blurring,
background noise, artifacts and so on. A series of methods
including physical, chemical and digital ways have been
proposed to improve the fluorescence image quality in recent
years. Here, we presented an unsupervised deep learning-based
image processing method, called 3D-VoCycleGAN to realize
further virtual optical clearing of imperfectly cleared tissues.
By making full use of the tissue anisotropy and space-variant
clearing extent, we built a virtual optical clearing method to
enhance the clearing effect of chemical tissue clearing techniques.
In our virtual optical clearing, we established a CycleGAN
architecture which consists of two pairs of 3D image
generators and discriminators to realize the transformation
and evaluation from low-quality LSFM images to high-quality
LSFM images. Needless of accurate data pre-alignment between
the source domain and target domain, our method need not
accurate data pre-alignment between the source domain and
target domain, which greatly improves the image processing
efficiency. Compared with other image enhancement methods,
our method showed more powerful image enhancement effect
and faster processing speed.With the 3D-VoCycleGAN, we could
restore more detailed mouse tissue structural information with
high SBR and image contrast, such as distinguished nerve fibers,
somas, glomeruli, and vessels.

FIGURE 3 | The image information restoration effect in a mouse kidney tissue slice. (A) Fluorescence image of a mouse kidney slice labelled with cell nucleus (B,C)
The comparison of clearing extent between original and fluorescence image processed by 3D-VoCycleGAN. (D,E) The image improvements in different imaging depths.
The image of z = 100 μm was given in (D) and image of z = 140 μm was given in (E).
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Particularly, it is the first time that the CycleGAN deep
learning model has been used for enhancing the clearing
effect of chemical tissue clearing, and restoring the 3D
blurred LSFM images. Furthermore, except for LSFM, our
3D-VoCycleGAN could also be used to process 3D images

captured by other 3D fluorescence imaging systems such as
confocal, two-photon microscopy and so on. From the
aspect of deep learning network architecture, the 3D
operations such as 3D max pooling and 3D convolution
in our 3D-VoCycleGAN are not only limited to specific

FIGURE 4 | The virtual optical clearing effect for millimeter-thicknessmouse tissues. (A) 3D fluorescence image of imperfectly clearedmouse kidney tissue. The two
dashed boxes represents 2D sections from two imaging depths (B) 3D fluorescence image of virtually optically cleared mouse kidney tissue by using 3D-VoCycleGAN.
The white and yellow arrows represents the glomerulus and artery branch, respectively. (C,D) The depth color-coded image of image volume in (A) and (B), respectively.
(E) The comparison results between original image and virtually cleared image for shallow depth shown in (A). The magnifications of insets were ×2. (F) The
comparison results between original image and virtually cleared image for deep depth shown in (A). Themagnifications of insets were ×1.5. The blue and green arrows in
(E) and (F) represented the structure details of glomeruli and artery branch, respectively. (G) The quantitative evaluation of tissue structural details. The plotting curves of
four groups of line profiles represented the glomeruli and artery branch (H) The comparison results between original and virtually cleared mouse brain vessels by using
depth color-coded z-projections. (I) The original 2D image showing blurred brain vessels (J) The 2D image corresponding to image (I) after virtual optical clearing. The
blue and green arrows represented the brain vessel details. The magnifications of insets were ×3.
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fluorescence imaging systems. From the aspect of dataset
preparation, the sparse deconvolution method which we
used to pre-process the 3D cleared tissue images was
proposed to improve the image quality of structured
illumination microscopy and proved to be available in
various 3D fluorescence imaging systems such as
confocal, two-photon, expansion microscopy and so on
[40]. Hence, the whole image processing flow of our 3D-
VoCycleGAN could be transferred to various 3D
fluorescence imaging systems by using related datasets. In
summary, our study promoted the combination and
application of digital image processing, chemical tissue
clearing and 3D fluorescence imaging techniques,
showing the promising development of interdisciplinary
technology in future high-throughput 3D biomedical
imaging and biological research.
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