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The current research article discusses the two-dimensional, laminar, steady, and
incompressible third-grade viscoelastic micropolar fluid flow along with thermal
radiation caused by an exponentially stretched sheet. The primary goal of this
extensive study is to improve thermal transportation. Thermophoresis and Brownian
motion are two key causes of nanoparticle migration in nanofluids, and their impacts
on the thermophysical properties of nanofluids are significant. Micropolar fluids are
investigated due to their micro-motions that are significant in convective thermal and
mass transport polymer formation, nanotechnology, and electronics. The consequences
of third-grade fluid parameters, thermophoresis and Brownian motion, induced magnetic
field, micro-polarity, and micro-inertia density on the stream of an electrically conductive
fluid are analyzed. A homogeneous magnetic field is supplied perpendicularly to the
surface, and the liquid is believed to be electrically conducting. As the flow has a significant
magnetic Reynolds number, the contribution of the evoked magnetic field is properly
accounted in the governing equations. A mathematical model in the form of partial
differential equations (PDEs) is built under certain assumptions. By invoking the
suitable similarity transformation, the non-linear PDEs are modified into dimensionless
coupled ordinary differential equations (ODEs). The MATLAB numerical technique bvp4c is
employed to settle the subsequent ODEs together with the boundary constraints. The
consequences of numerous physical parameters on the non-dimensional concentration,
temperature, micropolar, velocity, and induced magnetic field profiles are portrayed in
graphs. It is found that the concentration boundary layer, thermal boundary layer, and
micropolar boundary layer thickness decelerate with the increment in the micro-polarity of
the fluid.
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1 INTRODUCTION

Magnetohydrodynamics (MHD) is a branch of fluid mechanics
that studies the movement of an electrically conductive liquid in
the existence of the magnetic field. Alfven [1] was the first who
found that the movement of conducting fluid between magnetic
field lines generates potential differences, that, in turn induces the
flow of electric currents. The magnetic fields coupled with these
electric currents alter the magnetic force that generates them.
Alternatively, the fluid stream modifies the system’s
electromagnetic structure. The propagation of electric current
through a magnetic field, on the other hand, is coupled with a
body force, known as the Lorentz force, which affects fluid
motion. Scientists and researchers in the field of fluid
dynamics have identified its use in metal dispersion, mining,
fusion reactors, targeted drug delivery, MHD-based laser beam
scanning, construction of MHD pumps, MHD generators, and
MHD flow meters. Andersson [2] probed the MHD stream of a
viscoelastic liquid past over an expanding sheet and showed that
external magnetic field affects the flow similar as viscoelasticity.
Hayat and Abbas [3] investigated the radiation impacts on the
MHD stream of a viscoelastic liquid across a permeable surface.
Nadeem and Hussain [4] explored the shrinking solutions in the
existence of MHD stream of a viscous liquid toward a non-linear
contracting surface. The effects of an exponentially stretched
surface on MHD boundary layer stream and heat transmission
characteristics in a permeable medium have been investigated by
Ahmad et al. [5]. Hayat et al. [6] discussed the MHD boundary
layer stream of a viscous fluid due to non-linear extending
cylinder with thermal slip stratification and radiation. Sohail
et al. [7] probed the boundary layer stream of the steady
MHD Carreau liquid with bioconvection across the heated
disk. They determined that the intensity of the magnetic field
reduces fluid’s particle velocity, although mass transfer and fluid
temperature increase with increasing magnetic field values. Riaz
et al. [8] probed the MHD and entropy formation modeling of
nanoliquid with three-dimensional (3-D) peristaltic cylindrical
confinement. Employing molecular dynamical modeling,
AbdulHussein et al. [9] investigated the boiling mechanism of
several fluids in micro-channels in the existence of an exterior
electromagnetic field.

The study of fluid flow across an expanding sheet is crucial for a
variety of applications including, extrusion, glass blowing, cord
depiction, copper spiraling, strengthening and tinning of copper
wires, glass blowing, warm progressing, thermal conductivity of
heat sinks, and melts of high molecular weight polymers. Hussain
et al. [10] explored the influences on the boundary layer stream of a
micropolar liquid flowing on the stretched surface. Abbas et al. [11]
inspected the micropolar fluid flow behavior across the stretched
sheet due to a variety of significant applications. Awan et al. have
investigated different types of flows over the stretching surface and
porous media, with various physical implications [12, 13]. Nadeem
and Khan [14] studied the rotating Maxwell nanofluid flow between
linear and exponential expanding sheets. Riaz et al. [15] exposed the
bioconvection mechanism in the stream of magnetically polarized
Williamson nanoparticles along with activating energy and heat
source/sink.

Many scientists from all over the world are eager to learn more
about non-Newtonian fluid flow. The reason for such a
motivation in the study of these fluids is as a result of their
use in industries and technologies including suspension
fabrication, detergent and paint production, skincare creams,
polymer production, spinning of metal etc. The non-
Newtonian fluids in comparison to the Newtonian fluids are
rheological in structure having non-linear correlation between
shearing stress and velocity gradient. Non-Newtonian liquids are
classified into three kinds depending upon their characteristics:
rate type, differential type, and integral type fluids. The
differential type liquid models have found to be well known
among them. The second-grade fluid is the most basic subclass of
these viscoelastic models, capturing typical stress variations but
not anticipating shear thinning/thickening processes. In contrast,
the third-grade liquid model can predict both ordinary stress and
shear thinning/expanding processes. Abbasbandy et al. [16]
investigated the both exact and series approaches for third-
grade fluid by using thin film. Hayat et al. [17] probed the
rotating stream of third-grade liquid among two permeable
sheets by applying MHD effects. Hayat et al. [18] probed the
MHD nanofluid stream of second-grade fluid caused by a non-
linear stretched surface. In the vicinity of nanoparticles, the non-
transient motions of a third-grade fluid driven by a pressure sort
die are investigated by Mahanthesh and Joseph [19]. The
characteristics of an applied magnetism and entropy formation
on Jeffrey nanoliquid in between an annulus region of two small
non-concentric pipes was disclosed by Riaz et al. [20]. Mondal
et al. [21] discussed nanoliquid stream across a permeable vertical
plate along with interior heat production and non-linear thermal
radiations. Sangeetha and De [22] analyzed the bioconvection in
nanoliquid stream with viscous losses and Ohmic heating. Riaz
et al. [23] presented a comparative analysis of entropy assessment
on a (3-D) wavy stream of Eyring–Powell nanoliquid.

Micropolar fluids have a microstructure and are coupled to
fluids with a non-symmetrical stress tensor. Because of the liquid
particles’ localized composition and micro-motions, micropolar
liquids display particular microscopic features. They characterize
fluids composed of stiff, arbitrarily oriented, or cylindrical
particles dispersed in a viscous material, where fluid’s particle
distortion is neglected. Eringen [24] was the first to investigate the
hypothesis of micropolar fluids. In this hypothesis, the
continuum is defined as the set of systematic particles that
have not only momentum but also a sub-structure. In other
words, each material volume element is made up of micro volume
components that can translate and twist independently of each
other. Gorla et al. [25] scrutinized the impacts of buoyancy on
driven convection in an axially symmetric stagnation stream of
micropolar fluids across a vertically placed cylinder. Rehman and
Sattar [26] explained the MHD convective stream of a micropolar
liquid over the consistently moving permeable sheet. The
temperature boundary layer stream caused by a linearly
stretched surface submerged in a constant density micropolar
liquid together with radiation effects is probed by [27]. Gaffar
et al. [28] examined the free convective boundary layer stream of
viscoelastic third-grademicropolar liquid passing over a vertically
positioned isothermal cone. Ali et al. [29] revealed the
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significance of MHD on the micropolar nanoliquid stream across
an expanding surface along with radiation and heat stratification
influences. Jiang et al. [30] conducted the numerical assessment
of the passive usage of phase-change elements and the active
usage of nanoliquid inside a rectangular channel.

To the extent of the writer’s insights, no research has been
conducted to investigate the magnetohydrodynamics (MHD),
and heat transmission effects of a viscous, micropolar, and third-
grade fluid passed across an exponentially stretched sheet. The
current research is presented to analyze the consequences of
third-grade fluid parameters, thermophoresis and Brownian
motion, induced magnetic field, micro-polarity, and micro-
inertia density on the stream of an electrically conductive
fluid. The primary purpose of this extensive study is to
improve thermal transportation subject to the existence of
micro-rotations of tiny nanoparticles. The mathematical model
is built under considered flow assumptions and Buongiorno
model. The similarity transformation is a technique that is
commonly used for solving various flow problems, in which
the system of partial differential equations (PDEs) is modified
into ordinary differential equations (ODEs) to solve them
analytically or numerically. The current model is simplified by
applying similarity transformation. The resultant ODEs are
numerically tackled in MATLAB using the bvp4c algorithm,
and the numerical tables are constructed to ensure the validity
of results. The obtained findings have significant engineering and
technological applications.

2 MATHEMATICAL ANALYSIS AND FLOW
GEOMETRY

2.1 Constitutive Model for Third-Grade Fluid
For an incompressible fluid, the equations of motion and
continuity are as follows:

∇.V � 0, (1)
divT � −J × B + ρ

DV
Dt

− ρb. (2)

Here, ρ, V, T, b, J, and B are density of the fluid, velocity
vector, Cauchy stress tensor, body force, electric current, and
external magnetic field, respectively. Following Rajagopal and
Fosdick [31], the third-grade fluid’s stress tensor is as follows:

T + pI � S, (3)
S � μB1 + α̂1B2 + α̂2B

2
1 + β̂1B3, (4)

+β̂2(B1B2 + B2B1) + β̂3B1 trcB2
1( ).

Here, p, I, T, and S are the pressure, identity tensor, Cauchy stress
tensor, and the extra stress tensor, respectively. Furthermore,
α̂k(k � 1, 2), β̂j(j � 1, 2, 3) are metallic constants and Bi(i = 1, 2,
3) is the kinematic tensor defines as:

B1 � L( )T + L,

Bn � DBn−1
Dt

+ Bn−1L + L( )TBn−1, n � 2, 3

where, L � ∇V.

Here, D
Dt represents the substantial derivative, and it is stated as:

D()
Dt

≡ V.∇() + z()
zt

.

In the case of third-grade fluid, the material moduli satisfy
Clausius–Duhem inequality stated as:

β̂1 � β̂2 � 0, α̂1 ≥ 0, μ≥ 0, β̂3 ≥ 0, (5)
| α̂2 + α̂1 | ≤

�����
24μβ̂3

√
. (6)

So, the stress tensor takes the following form.

T � μB1 + α̂1B2 + α̂2B
2
1 + β̂3B1 trcB2

1( ). (7)

2.2 Constitutive Model for Micropolar Fluid
The field equations for the micropolar fluid following Papautsky
et al. [32] are stated as follows:

∇. ρV( ) + zρ

zt
� 0, (8)

λp + κ + 2μ( )∇ ∇.V( ) + κ ∇× G( ) − κ + μ( )∇×∇× V + ρf

� ρV′ + ∇p, (9)
�α + γp + �β( )∇ ∇.G( ) + κ ∇× V( ) − −2κG − γp∇×∇× G

� −ρl + ρjG′. (10)
Eqs. 8–10, respectively, denote conservation of mass, linear

momentum, and angular momentum. Furthermore, ρ represents
the micropolar fluid density, G is the (gyration) micro-rotation
vector, V depicts velocity vector, j represents micro-inertia, p is
the pressure, l denotes body couple per unit mass vector , λp
reflects Eringen second-degree viscosity parameter, f depicts the
body strength per unit mass vector, κ represents coefficient of
vortex viscosity, μ denotes dynamic viscosity, and �α, γp, and �β
denote the swirl gradient viscosity coefficient. Also, (′) denotes
the time derivative. For �α � κ � �β � γp � 0 and in the absence of l
and f, the micro-rotation vector G approaches zero, and Eq. 9 is
simplified to the Navier–Stokes equations. For κ = 0, the gyration
vector G and velocity vector V become detached, and the micro-
movements have no influence on the entire motion of the fluid.

2.3 Problem Formulation
In this section, the steady, laminar, two-dimensional, and
incompressible third-grade viscoelastic micropolar fluid stream
along with thermal radiation caused by an exponentially stretched
surface is reported. The x-axis is marked parallel to the sheet, while the
y-axis is directed orthogonal to the sheet. The uniform magnetic field
is supplied to the surface in a normal direction, and thefluid is believed
to be electrically conductive. The sheet and the third-grademicropolar
liquid are both originally maintained at the identical temperature. The
temperature is elevated to Tf, and Tf > T∞ where T∞ is the ambient
temperature, which remains constant as (see Figure 1). The
concentration at the sheet is taken as Cf, while the ambient
concentration is C∞ (Cf > C∞). This is supposed that the flow’s
magnetic Reynolds number is not low in magnitude, and thus the
produced magnetic field is not negligible. The evoked magnetic field
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H2 is also assumed to be supplied along the x-axis. The parallel
componentH1 of the inducedmagnetic field tends toHe(x) in the free
stream flow, and the slope of themagnetic field approaches zero along
y-axis.

Using Eq. 7 in Eq. of motion (Eq. 2) along with the boundary
layer estimations [33–36] in case of third-grade fluid, notably,

inside the boundary layer zp
zx,

z2u
zx ,

zu
zx, and u are O(1), v and y are

O(δ), α̂jρ (j � 1, 2) and ] be O(δ2), and β̂k
ρ (k � 1, 2, 3) being O(δ4),

and the components of O(δ) are ignored (δ is boundary layer
width). The equations for conservation of mass, magnetic field,
and momentum are given as Eqs. 11–12. Equations 13–14 rise
from the conservation of energy and concentration. Eq. 15 rises
from micropolar boundary layer approximation by Papautsky
et al. [32], and Eq. 16 resulted from the conservation of induced
magnetic field. Hence, the mathematical model overseeing the
considered flow problem is as follows:

zv

zy
+ zu

zx
� 0,

zH1

zx
+ zH2

zy
� 0, (11)

v
zu

zy
+ u

zu

zx
� α̂1

ρ

zu

zx

z2u

zy2
+ 3

zu

zy

z2v

zy2
+ v

z3u

zy3
+ u

z3u

zxzy2
( )

+ 2
α̂2

ρ

zu

zy

z2v

zy2
(12)

+6β̂3
ρ

z2u

zy2

zu

zy
( )2

+ k

ρ

zN

zy
+ k + μ( )

ρ

z2u

zy2
− σB2

0

ρ
u,

v
zT

zy
+ u

zT

zx
� 1
ρCp

z

zy

zT

zy
k T( )[ ] + k + μ

ρCp
( ) zu

zy
( )2

− 1
ρCp

zqr
zy

(13)
+τp DB

zC

zy

zT

zy
+ zT

zy
( )2

DT

T∞
[ ]

v
zC

zy
+ u

zC

zx
� DB

z2 C

zy2
+ DT

T∞

z2T

zy2
, (14)

v
zN

zy
+ u

zN

zx
� γp

ρj

z2 N

zy2
− k

jρ

zu

zy
+ 2N( ), (15)

v
zH1

zy
+ u

zH1

zx
� H2

zu

zy
+H1

zu

zx
+ ηo

z2H1

zy2
. (16)

The concerned boundary conditions are as follows:

N � −m zu

zy
, u � Uw x( ) � U0exp x/l( ), T � k

zT

zy
( ) + Tf,

H2 � 0, DB
zC

zy
+ DT

T∞

zT

zy
� 0, v � 0,

zH1

zy
� 0, for y → 0, (17)

C → C∞, H1 → He x( ) T → T∞, N → 0, u → 0,

zu

zy
→ 0 for y → ∞ . (18)

Here, u, v are the velocity coefficients in x and y directions, ρ
depicts the liquid’s density , k denotes the vertex viscosity, μ

represents dynamic viscosity, N denotes the micropolar fluid’s
angular velocity, T represents the temperature, U0 depicts the
reference velocity, C depicts the concentration, B0 denotes the
uniform magnetic field, η0 denotes the magnetic diffusivity, σ
denotes the electrical conductance, Cp represents specific heat, and
τ* reveals the quotient of the latent heat of the nanoparticles to the
latent heat of the base liquid. Furthermore, DB reflects the coefficient
of Brownian motion, DT denotes the coefficient of thermophoresis
diffusion, and the micro-inertial density is depicted by j. The viscosity
of the spin gradient γ* is given as follows:

γp � j μ + k

2
( ) � μj 1 + K

2
( ), and j � 2lμ

ρU0
exp −x/l( ), (19)

where K � k
μ is the micropolar parameter. Temperature-based

thermal conductivity is defined as follows:

k T( ) � 1 + ϵ T∞ − T

T∞ − Tf
( )k. (20)

The Rosseland radiative heat flow (qr) along y-axis is defined as:

qr � −4σp
3kp

zT4

zy
, and T4 ≈ 4T3

∞T − 3T4
∞. (21)

Here, Stefan–Boltzman constant and average absorption
coefficient are expressed by σp and kp, respectively.

zqr
zy

� −16T3
∞σ

p

3kp
z2T

zy2
. (22)

To simplify the analysis, the following appropriate similarity
transformations are implemented.

ψ x, y( ) � �����
2]lU0

√
f η( )exp x

2l
( ),

ψ1 x, y( ) � H0

���
]
U0

√
g η( ) exp x

2l
( ),

ϕ η( ) � C − C∞

Cf − C∞
,

N η( ) � U0

���
U0

2]l

√
exp

3x
2l

( )h η( ), θ η( ) � T − T∞

Tf − T∞
,

η � y

���
U0

2]l

√
exp

x

2l
( ). (23)

Here, ψ and ψ1 are stream functions and can be represented as:

u � zψ

zy
� U0f′ η( ) exp x/l( ),

v � −zψ
zx

� −
����
]U0

2l

√
f + ηf′( ) exp x/2l( ),

H1 � zψ1

zy
� H0��

2l
√ exp x/l( ) g′ η( ),

H2 � −zψ1

zx
� −H0

�����
]

4l2U0

√
exp x/2l( ) g + ηg′( ). (24)

where η denotes the dimensionless variable, and f′(η), θ(η), ϕ(η),
h(η), and g(η) are the dimensionless velocity curve, temperature
curve, concentration curve, micropolar curve, and induced
magnetic field curve, respectively. Implying Eqs. 23, 24, the
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continuity equation and magnetic flux equation holds true, and
the Eqs. 12–16 are modified into the non-dimensional ODEs as
stated:

1 +K( )f‴ + 3βf‴ f″( )2 + Kh′ + ff″
+α1 −2ηf″f‴ − ff iv( ) − 9 f″( )2 + 6f′f‴[ ] − 2 f′( )2
−2Mf′ − α2 ηf″f‴ + 3 f″( )2[ ] � 0, (25)

1
Pr

θ″ + ϵθθ″ + ϵ θ′( )2[ ] + fθ′ + Ec 1 +K( ) f″( )2
+4
3
Rdθ″ +Nt θ′( )2 +Nbθ′ϕ′ � 0, (26)

ϕ″ + Nt

Nb
θ″ + Lefϕ′ � 0, (27)

1 + K

2
( )h″ + fh′ − 3hf′ − 2KB f″ + 2h( ) � 0, (28)

g‴ + Prm fg″ − gf″( ) � 0. (29)
The associated non-dimensional boundary constraints are

given as:

Nb ϕ′ 0( ) +Nt θ′ 0( ) � 0, g″ 0( ) � 0, f 0( ) � 0,
h 0( ) � −mf″ 0( ), h ∞( ) � 0, ϕ ∞( ) � 0,

θ 0( ) � δ θ′ 0( ) + 1, θ ∞( ) � 0, f′ ∞( ) � 0,
f′ 0( ) � 1, f″ ∞( ) � 0, g′ ∞( ) � 1, g 0( ) � 0. (30)

The non-dimensional parameters are defined as:

α1 � α̂1U0

2ρ]l
exp x/l( ), α2 � α̂2U0

ρ]l
exp x/l( ),

β � β3U
3
0

ρ]2l
exp 3x/l( ), Pr � μCp

k
,

Ec � U2
0 exp 2x/l( )

Cp Tf − T∞( ) , Rd � 4σpT3
∞

μCpk
p ,

Nt � DT Tf − T∞( )τp
]T∞

, Nb � DBτ
p

]
Cf − C∞( ),

Le � ]
DB

, B � ]l
U0j

exp −x/l( ), Prm � ]
η0
,

δ � k

���
U0

2]l

√
exp x/2l( ) M � σB2

0l

ρU0
exp −x/l( ), K � k

μ
.

Here, α1, α2 are the non-dimensional viscoelastic coefficients,
β is the third-grade fluid constant, M depicts the magnetic
parameter, δ denotes the thermal slip parameter , Ec
represents the Eckert no, Rd is the radiation constant, Nt
represents the thermophoresis constant, K denotes the
micropolar fluid coefficient, Pr stands for Prandtl number, Nb
indicates the Brownian diffusivity coefficient, Le denotes the
Lewis no, B is the micro-inertia density coefficient, and Prm
denotes the magnetic Prandtl number. Physical variables of
interest, such as local couple stress (Ms), Sherwood number
(Shx), Nusselt number (Nux), and skin friction coefficient (Cfx)
are defined as follows:

Shx � xjw

DB Cf − C∞( ), Cfx � τw
1
2 ρU

2
w

,

Nux � xqw

k Tf − T∞( ), Ms � γp

U2
wρl

zN

zy
( )∣∣∣∣∣∣∣∣

y�0
, (31)

where

jw � −DB
zC

zy
( )∣∣∣∣∣∣∣∣

y�0
, qw � − 16T3

∞σ
p

3kp
+ k( )zT

zy

∣∣∣∣∣∣∣∣y�0,
τw � μ + k( ) zu

zy
+ α̂1 v

z2u

zy2
+ 2

zu

zy

zu

zx
+ u

z2u

zyzx
( ) + 2β3

zu

zy
( )3

+ kN[ ]
y�0

.

Utilizing the similarity transformation (Eq. 22), the
aforementioned expressions in non-dimensional aspects are
stated as follows:

1�
2

√ Rex( )1/2 Cfx � 1 + K( )f″ 0( ) +Kh 0( ) + β f″ 0( )[ ]3
+ α1 −f 0( )f‴ 0( ) + 7f′ 0( )f″ 0( )[ ], (32)�

2
√
X

Rex( )−1/2Nux � − 1 + 4
3
Rd( )θ′ 0( ), (33)�

2
√
X

Rex( )−1/2Shx � −ϕ′ 0( ), (34)

RexMs � 1 + K

2
( )h′ 0( ), (35)

where X = x/l and Rex � lUw(x)
] is the local Reynolds number.

3 NUMERICAL PROCEDURE

Due to the extreme non-linearity, the coupled ODEs Eqs.
25–29 along with the boundary constraints (Eq. 30) are
unable to solve analytically. To address non-linear
boundary value problems, different numerical techniques
are applied in MATLAB. The bvp4c approach is a useful
technique to solve such problems numerically. The
underlying partial differential equations (PDEs) are
transfigured into ODEs utilizing the similarity analysis.
The resulting system of ODEs is resolved numerically
employing the built-in bvp4c technique in MATLAB. The
solution strategy is described as follows:

f η( ) � y 1( ); f′ η( ) � y 2( ); f″ η( ) � y 3( );
f‴ η( ) � y 4( ); f iv( ) η( ) � yy1; θ η( ) � y 5( );
θ′ η( ) � y 6( ); θ″ η( ) � yy2; ϕ η( ) � y 7( );
ϕ′ η( ) � y 8( ); ϕ″ η( ) � yy3; h η( ) � y 9( );

h′ η( ) � y 10( ); h″ η( ) � yy4; g η( ) � y 11( );
g′ η( ) � y 12( ); g″ η( ) � y 13( ); g‴ η( ) � yy5.

Utilizing the aforementioned notations, the coupled
ODEs are transformed into the following first-order
ODEs:

yy1 � α1py 1( )( )−1p 1 +K( )py 4( ) − 2py 2( )py 2( )(
+y 3( )py 1( ) − 2pMpy 2( ) + 3pβpy 3( )py 3( )py 4( ) +Kpy 10( )

− 9pα1 + 3pα2( )py 3( )py 3( )
− α2 + 2pα1( )py 4( )pxpy 3( ) + 6pα1py 4( )py 2( )); , (36)
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yy2 � −3pPr( )p 3 + 3pϵpy 5( ) + 4pPrpRd( )−1p y 1( )py 6( )(
+ 1 + K( )py 3( )pEcpy 3( )+y 6( )pNtpy 6( ) +Nbpy 6( )p,
y 8( ) + ϵ

Pr
py 6( )py 6( )); (37)

yy3 � −Lepy 1( )py 8( ) − Nt

Nb
( )pyy2, (38)

yy4 � 2p 2 +K( )−1p 2pKpBp 2py 9( ) + y 3( )( )(
+3py 2( )py 9( ) − y 1( )py 10( )), (39)

yy5 � Prmp −y 1( )py 13( ) + y 11( )py 3( )( ). (40)
The concerned boundary constraints in MATLAB script are

stated as:

y0 1( ); y0 2( ) − 1; y0 5( ) − δpy0 6( ) − 1; y0 9( )
+mpy0 3( ); yinf 5( ); yinf 2( );Nbpy0 8( )
+Ntpy0 6( ); yinf 9( ); yinf 7( ); y0 11( ); y0 13( ); yinf 12( )
− 1; yinf 3( ).

(41)
The MATLAB code is processed to get the numerical

solutions. In order to determine the validity of numerical
technique, we have analyzed our outcomes for limiting cases
with already existing research work. The outcomes are reported to
be in excellent concordance as shown in Tables 1, 2. It is also
probed that for β = α2 = 0, the mathematical model reduces to the
second-grade fluid model, and for β = α1 = α2 = 0, we get the
equations of motion for the classical viscous liquid.

4 COMPUTATIONAL RESULTS

In this article, themicropolar, third-grade, nanofluid flow past across
an exponentially expanding surface is considered. The mathematical
model is built by analyzing fluid flow assumptions. The system
of dimensionless ODEs (Eqs. 25–29) are solved numerically,
utilizing the bvp4c strategy in MATLAB in addition to the
boundary constraints (Eq. 30), and the impacts of numerous

physical variables are explored. The significance of these
coefficients on the temperature curve θ(η), micro-rotation curve
h(η), velocity curve f′(η), produced magnetic field profile g(η), and
concentration profile ϕ(η) is highlighted via tables and figures.

4.1 Velocity Profile f9(η)
Figure 2 depicts the tendency of velocity distribution with the
rising values of material constant α1. It is clear that velocity and
momentum boundary layer thickness increases for the higher
values of viscoelastic constant α1. Physically, the viscosity of the
liquid is inversely proportional to the material constant α1
because of that when the stress is applied, it reduces the strain
and strengthens the elastic effects between the adjacent layers,
and hence the velocity profile enhances. Figure 3 denotes the
impact of second material constant α2 on the velocity profile. The
velocity curve is the decreasing function for larger values of α2.
This parameter causes shear thickening of the fluid and an
increase in resistance that reduces the boundary layer flow,
and originates a decrement in the size of the momentum
boundary layer width. Figure 4 exhibits the ascending
behavior of velocity with the augmentation of the third-grade
fluid coefficient β. This coefficient is inversely proportionate to
the square of the liquid viscosity. Alternatively, higher β readings
indicate superior third-grade material characteristics (higher
liquid elasticity) and smaller fluid viscosity. This causes the
boundary layer stream to accelerate, resulting in higher f′(η)
values. As this value is raised, the fluid needs less stress to flow,
encouraging flow acceleration. In Figure 5, the influence of the
magnetic field coefficient on velocity profile is examined. It is
analyzed that the velocity curve declines monotonically with the
augmented values of M ,and the velocity diminishes far away
from the sheet. This process assists in controlling the size of the
boundary layer. This is because of the fact that the existence of
magnetism in an electrically conductive liquid generates a force
known as the Lorentz force that operates opposite to the flow
direction and forces velocity profile to decline. The velocity
diminishes as the retardation to the flow enhances. In
Figure 6 the influence of micropolar fluid parameter on the
structure of velocity distribution is noticed. The increase in vortex
viscosity strongly accelerates the fluid flow. The results show that
the momentum transfer layer-by-layer is significantly affected by
the rise in viscosity caused by the micro-rotation of the molecules.
The micro-elements rotate more strongly, which helps to
accelerate the liquid motion in the boundary layer. As a result,
linear momentum diffusion is enhanced by micro-polarity, which
explains why suspension fluids have thinner boundary layers than
regular fluids.

TABLE 1 | Comparative results of − f″(0) for diverse values of M, setting all other parameters zero.

M − f99(0)

Chaudhary et al. [37] Hayat et al. [38] Elbashbeshy [39] Present Outcomes

0.0 1.2821 1.2818 1.28181 1.28181
0.04 1.3135 – – 1.3133
0.25 1.4642 – – 1.4664

TABLE 2 | Comparative outcomes of − θ′(0) for diverse values of Pr, setting all
other parameters zero.

Pr − θ9(0)

Ali et al. [40] Kumari and Nath [41] Present Outcomes

0.7 0.4552 0.4560 0.45444
2.0 0.9108 0.9117 0.91135
7.0 1.8944 1.8977 1.89542
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4.2 Temperature Profile θ(η)
Figure 7 explains that temperature in the boundary layer
increases with progressing micropolar coefficient, that is,
higher K values. The regime is greatly heated, and the size of
the temperature boundary layer enhances. The vortex’s enhanced
viscosity promotes thermal diffusion and serves as a rotator. This
boosts up the capacity of thermal diffusion within the fluid’s
regime from the micro to the macro level and rapidly carries heat
from the sheet boundary into the liquid body with greater
intensity. Figure 8 depicts the relationship between the
temperature profile and the Prandtl number Pr. The fraction
of the momentum diffusion coefficient to heat diffusion
coefficient is called the Prandtl number. This is examined that
the temperature curve declines with increasing the Prandtl
number. The higher values of Prandtl number affect the
thermal diffusion. Prandtl number is inversely proportionate

to the thermal diffusion; hence, higher Pr values indicate
lower thermal diffusion, leading in lower temperature and a
weaker temperature boundary layer. When the Prandtl
number increases, rate of thermal conductivity gets lower.
Consequently, heat is dissipated more quickly, and hence, the
temperature boundary layer width and temperature of the liquid
both diminish. As a result, the Prandtl number is employed to
enhance the cooling tendency of fluids. The temperature-
dependent thermal conductivity parameter’s effect over the
temperature curve is explored in Figure 9. This is evident that
the temperature curve is increasing with the augmentation of ϵ.
The consequence of various Eckert number values over the
temperature curve is explored in Figure 10. Ec is known as
the quotient of the kinetic energy and enthalpy of heat transfer.
As the Eckert number (Ec) increases, the liquid’s temperature
rises. The fluctuation in the thermal curve θ(η) is examined in

FIGURE 1 | Geometry of the flow.

FIGURE 2 | Effect of α1 on the velocity curve. FIGURE 3 | Effect of α2 on the velocity curve.
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FIGURE 4 | Effect of β on the velocity curve.

FIGURE 5 | Effect of M on the velocity curve.

FIGURE 6 | Effect of K on the velocity curve.

FIGURE 7 | Impact of K on the θ(η) curve.

FIGURE 8 | Impact of Pr on the θ(η) curve.

FIGURE 9 | Impact of ϵ on the θ(η) curve.
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Figure 11 in respect to distinct amounts of the radiation
parameter Rd. It is identified that a higher thermal
radiation constant is related to a greater temperature and a
wider temperature boundary layer. As the temperature field
grows, the enhanced radiation transfers a significant amount
of heat to the fluid. Physically, the involved radiation
produces more heat which raises the fluid’s temperature.
The influence of thermophoresis coefficient over the
thermal distribution is probed in Figure 12.
Thermophoresis is a phenomenon that occurs in mixture of
sub-micron sized particles, in which the different particles
respond differently to the force of a thermal gradient. The
particle’s velocity is known as the thermophoretic velocity,
and the stress exerted on the dispersed particles because of the
temperature difference is known as the thermophoretic force.
The thermophoretic force increases as the value of Nt grows,
causing the temperature to increase.

FIGURE 10 | Impact of Ec on the θ(η) curve.

FIGURE 11 | Impact of Rd on the θ(η) curve.

FIGURE 12 | Impact of Nt on the θ(η) curve.

FIGURE 13 | Effect of Nb on the ϕ(η) profile.

FIGURE 14 | Effect of Nt on the ϕ(η) profile.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9646539

Awan et al. Third-Grade Micropolar Fluid Flow

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


4.3 Concentration Profile ϕ(η)
The influence of Brownian diffusivity and thermophoresis
coefficients over the concentration distribution ϕ(η) is
portrayed in Figures 13, 14. According to these graphs,
nanofluid constants have opposite impacts on
concentration distributions. Particularly, as the
thermophoresis constant rises, the width of the
concentration boundary layer enhances; nevertheless, as the
Brownian motion constant increases, the ϕ(η) values decrease.
The thermophoresis constant amplifies the thermophoretic
force, resulting in the transfer of nanoparticles from warm to
cool locations and an increment in nanoparticle volume.
Thermophoresis has numerous uses, including radioactive
particle deposition in nuclear reactors, silicon thin film
deposition, and aerosol technologies. Furthermore, the
progressing amount of the Brownian motion coefficient
reduces the micro-mixing of nanoparticles into the fluid’s
zone, which diminishes the boundary layer thickness of
concentration distribution.

The behavior of ϕ(η) for the numerous values of Lewis number
(Le) is examined in Figure 15. The Lewis number is stated as the
rate of heat-to-mass diffusion coefficient. It is utilized to express
the flow of liquid, in which heat and momentum transfer occur
simultaneously. The concentration distribution becomes steeper
when Lewis number is increased. The higher values of ‘Le’ imply
the lesser values of mass diffusivity ‘DB,’ which causes a weaker
penetration depth for the concentration boundary layer. In
Figure 16, the concentration curve for the various amounts of
the micropolar coefficient is explored. However, when K
increases, the micro-rotation velocity ϕ(η) drops down within
a shorter range in the concentration boundary layer.

4.4 Micropolar Profile h(η)
Figures 17, 18 are portrayed for the different values of micro-
inertia density coefficient B and micropolar coefficient K. This is
clear that the micropolar (angular) speed of the sub-micron sized
particles decreases with the increase in the micro-polarity of the
fluid. Similarly, the micro-inertia density coefficient B serves as a

FIGURE 15 | Effect of Le on the ϕ(η) profile.

FIGURE 16 | Effect of K on the ϕ(η) profile.

FIGURE 17 | Effect of K on the h(η) profile.

FIGURE 18 | Effect of B on the h(η) profile.
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restricting force for the micro-rotation profile h(η). So, for the
progressing amounts of B, the micropolar boundary layer width
declines. This is possible because micropolar fluids provide a high
barrier to fluid motion.

4.5 Induced Magnetic Field Profile h(η)
The influence of magnetic Prandtl number Prm over induced
magnetic field curve g(η) is exhibited in Figure 19 , where a rise in
Prm leads to an improvement in the produced magnetic field
distribution. This is because the magnetic diffusivity over the
boundary layer’s surface decreased while the fluid viscous
dispersion rate enhanced. Magnetic Prandtl no.(Prm) is a non-

dimensional quantity in Magnetohydrodynamics that estimates
the ratio of momentum diffusion coefficient (]) to magnetic
diffusion coefficient (η).

4.6 Numerical Results
The influence of all the non-dimensional coefficients used in the
considered article on the skin friction parameter (Re1/2x Cfx), Nusselt
number. (Re−1/2x Nux), Sherwood number. (Re−1/2x Shx), and
coupled wall stress (Rex Ms) are presented in Tables 3, 4. Table 3
probes the significance of involved coefficients on the skin friction.
The values of the coefficients other than used in Table 3 are taken to
be fixed Pr = 0.7, ϵ= 0.3, Ec= 0.1,K= 0.2,Rd= 0.3,Nt= 0.3,Nb= 1.0,
andLe= 1.0. By increasing the value ofmaterial parametersα1 and α2,
the skin friction coefficient reduces. It is because of the reason that the
viscosity near the surface of sheet is enhanced with the progression in
material constant, which causes the decline in Re1/2x Cfx values. As
the rise in shear thickening coefficient β, improves the boundary layer
thickness that give rise to the skin friction coefficient. The increase in
micropolar parameter K, give rise to the value of Re1/2x Cfx, but the
opposite behavior is seen for couple stress Rex Ms. A reduction is
caused by a rise in the magnetic field constant M in both Re1/2x Cfx

and Rex Ms values. By increasing the micro-inertia density B, the
values of Re1/2x Cfx get enhanced but reverse behavior is seen for
couple stress Rex Ms.

FIGURE 19 | Influence of Prm on induced magnetic velocity.

TABLE 3 | Numerical findings of Rex Ms and Re1/2
x Cfx for various values of

parameters

α1 α2 β K M B Re1/2
x Cfx Rex Ms

0.1 0.5 0.5 0.2 0.3 0.5 −3.4124 −1.0340
0.5 - - - - - −4.3662 −1.0259
0.9 - - - - - −5.2882 −1.0159
1.3 - - - - - −6.1750 −0.9713
- 0.5 - - - - −3.4124 −1.0340
- 0.6 - - - - −3.5829 −1.0622
- 0.7 - - - - −3.7621 −1.0906
- 0.8 - - - - −3.9502 −1.1192
- - 0.1 - - - −3.5014 −1.3232
- - 0.4 - - - −3.4218 −1.0772
- - 0.7 - - - −3.4030 −0.9690
- - 1.0 - - - −3.4010 −0.9016
- - - 0.2 - - −3.4124 −1.0340
- - - 0.25 - - −3.4118 −1.0399
- - - 0.3 - - −3.4114 −1.0458
- - - 0.35 - - −3.4112 −1.0515
- - - - 0.0 - −2.8827 −0.9525
- - - - 0.2 - −3.2485 −1.0102
- - - - 0.4 - −3.5670 −1.0553
- - - - 0.6 - −3.8543 −1.0924
- - - - - 0.5 −3.4129 −1.0340
- - - - - 1.0 −3.4118 −1.0362
- - - - - 1.5 −3.4112 1.0370
- - - - - 2.0 −3.4108 −1.0372

TABLE 4 | Numerical findings of Shx (Rex)−0.5 and Nux (Rex)−0.5 for diverse
values of parameters.

Pr  Ec K Rd Nt Nb Le Re−1/2
x Nux Re−1/2

x Shx

0.7 0.3 0.1 0.2 0.3 0.3 1.0 1.0 0.2862 −0.0613
1.1 - - - - - - - 0.3503 −0.0751
1.5 - - - - - - - 0.3948 −0.0846
1.9 - - - - - - - 0.4271 −0.0915
- 0.3 - - - - - - 0.2862 −0.0613
- 0.4 - - - - - - 0.2762 −0.0592
- 0.5 - - - - - - 0.2668 −0.0572
- 0.6 - - - - - - 0.2581 −0.0553
- - 0.1 - - - - - 0.2862 −0.0613
- - 0.3 - - - - - 0.2101 −0.0450
- - 0.5 - - - - - 0.1350 −0.0289
- - 0.7 - - - - - 0.0608 −0.0130
- - - 0.1 - - - - 0.2862 −0.0613
- - - 0.7 - - - - 0.2862 −0.0613
- - - 1.3 - - - - 0.2865 −0.0614
- - - 1.9 - - - - 0.2871 −0.0615
- - - - 0.3 - - - 0.2862 −0.0613
- - - - 0.6 - - - 0.3357 −0.0560
- - - - 0.9 - - - 0.3808 −0.0519
- - - - 1.2 - - - 0.4233 −0.0488
- - - - - 0.3 - - 0.2862 −0.0613
- - - - - 0.5 - - 0.2807 −0.1003
- - - - - 0.7 - - 0.2753 −0.1376
- - - - - 0.9 - - 0.2699 −0.1735
- - - - - - 0.9 - 0.2862 −0.0681
- - - - - - 1.1 - 0.2862 −0.0558
- - - - - - 1.3 - 0.2862 −0.0472
- - - - - - 1.5 - 0.2862 −0.0409
- - - - - - - 1.0 0.2862 −0.0613
- - - - - - - 1.1 0.2859 −0.0613
- - - - - - - 1.2 0.2856 −0.0612
- - - - - - - 1.3 0.2854 −0.0612
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Table 4 depicts the influence of different parameters on the
Nusselt number and Sherwood number. The other parameters
are taken to be fixed β = 0.5, α1 = 0.1, B = 0.5, α2 = 0.5, K = 0.2,
and M = 0.3. The increment in the values of Prandtl number
causes a decline in the thermal diffusivity, and hence resists
the rise in the heat transmission rate at the boundary. Boosting
the Prandtl number raises the average Nusselt number at the
heated surface, while a reverse effect is examined for the
Re−1/2x Shx. As ϵ is enhanced, the Nusslet number decreases
while the Sherwood number increases. The increase in the
value of Ec causes the Nusselt number to decrease while the
Sherwood number increases. The boosting values of
micropolar parameter K enhances the Nusselt number but
declines the Sherwood number. Higher values of the Rd
parameter improve convective heat and matter
transmission, which ultimately increases the average Nusselt
and Sherwood numbers values.

The higher values of thermophoresis coefficient Nt causes a
decline in both the NuxRe−1/2x and ShxRe−1/2x values. The
increment in the Nb values results in the enhancement of
Sherwood number because the mass transfer rate from higher
to lower concentration area get increased. The growth in the
values of Lewis number Le improves the thermal diffusion and
declines the mass conductivity. Thus, the values of NuxRe−1/2x
decrease and that of ShxRe−1/2x increase.

5 CONCLUSION

The third-grade micropolar fluid flowing over an
exponentially stretched sheet is probed in this research
article. The underlying PDEs are transfigured into a system
of ODEs using the appropriate similarity analysis, and the
subsequent ODEs are settled in MATLAB using the bvp4c
technique. The graphical explanation for the velocity curve
f′(η), concentration curve ϕ(η), micropolar curve h(η),
temperature curve θ(η), and induced magnetic field curve
g(η) is portrayed via graphs. The key points under the
aforementioned study are:

• Nanofluid constants have reverse effects over the
concentration distribution. Concentration distribution
ϕ(η) continues to increase for the greater values of Nt. It
is due to the fact that the thermophoretic force increases
causing an increase in concentration. On the other hand, an
opposing trend is seen for Nb.

• Fluid’s velocity enhances with increasing the viscoelastic
parameter α1, micropolar parameter K, and third-grade

fluid coefficient β. The reverse trend is analyzed for
magnetic field parameter M and α2.

• The thermal boundary layer width declines with the
increment in the micropolar coefficient K and Prandtl
number Pr. But the temperature gradient show ascending
behavior for higher values of ϵ, radiation parameter Rd,
Eckert number Ec, and thermophoresis constant Nt.

• The micropolar distribution h(η) tends to decline with
increasing micropolar parameter K and micro-rotation
constant B. With increasing the magnetic Prandtl number
Prm, the induced magnetic field’s velocity remains going up.

• The skin friction coefficient remains diminishing for the
larger values of α1, α2, and M, while, reverse behavior is
observed for β, K, and B values.

• Couple stress coefficient continues to decline with rising the
parameters α2,K,M, and B. The ascending trend is noted for
the higher values of α1 and β.

• Nusselt number continuous to increase with boosting the
parameters Pr , K, and Rd, while, the decreasing trend is
examined for the parameters ϵ, Ec, Nt, and Le.

• Sherwood number depreciates for higher values of Pr , K,
and Nt, and grows up for the higher values of ϵ, Ec, Rd, Nb,
and Le.
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NOMENCLATURE

v Velocity in y-direction (m/s)

u Velocity in x-direction (m/s)

Cp Specific heat (J/kg.K)

C∞ Ambient concentration (kg/m3)

T∞ Ambient temperature (K)

Rd Radiation parameter (–)

k Vortex viscosity (Pa.s)

qr Radiative heat flux (W/m2)

p Pressure (N/m2)

Re Reynolds number (–)

T Temperature (K)

N Angular velocity (1/s)

Nt Thermophoresis diffusion parameter (–)

Ec Eckert number (–)

Prm Magnetic Prandtl number (–)

Cfx Skin friction coefficient (–)

Greek Symbols
τ* Ratio of latent heat capacities (–)

σ* Stepan–Boltzmann constant (W/m2.K4)

μ Viscosity (kgm−1s−1)

θ(η) Dimensionless temperature (–)

ηo Magnetic diffusivity (m2/s)

ρ Density (kg.m−3)

η Dimensionless variable

j Micro-inertia density (m2)

α1, α2, β Dimensionless fluid parameters (–)

(x, y) Cartesian coordinates (m)

Tf Temperature at wall (K)

C Fluid’s concentration (kg/m3)

Uo Reference velocity (m/s)

B Micro-inertia density coefficient (–)

DB Brownian diffusivity coefficient (m2/s)

DT Thermophoresis diffusivity coefficient (m2/s)

Bo Applied magnetic field (kg/s2.A)

Pr Prandtl number (–)

Le Lewis number (–)

K micro-polarity parameter (–)

Nb Brownian diffusion parameter (–)

M Magnetic parameter

H1, H2 Induced magnetism components (A/m)

Cf Concentration at sheet (kg/m3)

Nux Heat transfer coefficient (–)

f(η) Non-dimensional velocity (–)

ϕ(η) Non-dimensional concentration curve (–)

δ Thermal slip parameter (–)

g(η) Dimensionless induced field (–)

k* Average absorption coefficient (1/m)

h(η) Dimensionless micro-rotation curve (–)

γ* Fluid’s spin gradient viscosity (kg.m/s)

σ Electrical conductance (A2.s3/kg.m3)

Ψ(x, y) Stream function (m/s)
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