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In this study, we apply the parametric Nikiforov-Uvarov method to obtain the bound state
solution of Schrödinger wave equation in the presence of Kratzer plus generalized Morse
potential (KPGM). The energy eigen equation and the corresponding normalised wave
function were obtained in closed form. The resulting energy eigen equation was used to
study partition function and other thermodynamic properties such as vibrational mean
energy, vibrational specific heat capacity, vibrational mean free energy and vibrational
entropy for the proposed potential as applied to lithium hydride diatomic molecule. The
thermodynamic plots obtained were in excellent agreement to work of existing literatures.
The wave function and probability density plots for the diatomic molecules were obtained
through a well designed and implemented maple programme.
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1 INTRODUCTION

The exact solutions of Schrödinger wave equation is one of the essential part in quantum mechanics,
this is because Schrödinger wave equation is used to describe non-relativistic spinless particles and
also has many applications in atomic, nuclear and high energy Physics [1–9]. This has prompted
many researchers over the years to search for the solution of Schrödinger wave equation with
different potentials [10–15]. However, different methods have been used to obtain approximate
solution of Schrödinger wave equation, they include Nikiforov-Uvarov method (NU) [16–22],
Supersymmetry quantum mechanics (SUSY) [23–28], Asymtotic Iteration method (AIM) [29, 30],
Factorization method [31, 32], Exact and proper quantization method [33–36]. In solving the wave
equation, the results obtained for various potential models are vastly applied [4, 31, 37, 38, 38, 39,
39–41]. A lot of researchers have studied bound state solutions of Schrödinger wave equation as
applicable to different field of physical and chemical sciences including molecular spectroscopy and
quauntum information. Ahmadov et al. [42] studied bound state solution to the Schrodinger
equation at finite temperature with the sum of Cornell and Inversely quadratic potential with
developed approximation to the centrifugal term using Nikiforov-Uvarov method. Their energy
eigenvalues were applied to study charmonium and bottomiummasses at finite and zero temperature
in which their theoretical results were in total agreement with the experimental results. Ahmadov
et al. [43] also studied finite temperature dependent Schrodinger equation with the sum of Cornell,
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Inversely quadratic and harmonic type potential. They obtained
analytical expression for the energy eigenvalues and applied it to
study heavy quarkonia and messon masses at different
temperatures. Considering the application of bound state
solutions of Schrödinger equation to quantum information;
Shi et al. [44] evaluated Shannon information entropies in
position and monentum spaces for an infinite spherical
potential well where their result satisfies Beckner, Bialynicki-
Birula and Mycieslki (BBM) inequality. Okon et al. [45] studied
Fisher and Shannon information entropies for a noncentral
Inversely quadratic plus exponential Mie-Type potential using
parametric Nikiforov-Uvarov method where the evaluated Fisher
and Shannon Information entropies for position and
momemtum spaces.

The thermodynamic properties of a particular system is
studied by finding the partition function which is a function
of temperature. Other thermodynamic properties such as
entropy, specific heat capacity, mean free energy and others
are easily obtained using the partition function, which is
widely applied in molecular physics and statistical physics
[46–48].

In this research article, we solve the bound state solution of
Schrödinger wave equation with Kratzer plus generalized Morse
potential using the parametric Nikiforov-Uvarov method. We
also extend our work to study the thermodynamic properties of
the system as applied to lithium hydride (LIH) molecules.
Hydride compound are most oftenly used as a portable
sources of hydrogen gas [49]. Hydrides compound are used
for advance fuel cells and battery applications. meanwhile,
hydrogen can be stored as compressed hydrogen, liquid
hydrogen as well as chemical storage [50]. Lithium hydride
has high density hydrogen storage and serve as a precausor
for building complex hydrides for industrial usage [51].
Lithium hydride is hetero diatomic molecule with applications
in molecular spectroscopy. Evaluating the thermodynamic
properties of this molecule will further reveals its statistical
behaviour as well as its intrinsic properties. The Kratzer
potential is a potential model that is used to described the
internuclear vibration of diatomic molecules [52]. Kratzer
potential is importance in the description of molecular
structures and interraction existing between diatomic
molecules and at the same time played a vital role in quantum
chemistry [53] Kratzer potential is a limiting case of exponential
type potentials [54]. Because of the Coulomb and the inverse
square term present in Kratzer potential model, Kratzer potential
can therefore be used to described molecules with short and long
intermolecular distance. A lot of research work has been carried
out using Kratzer potential within relativistic and nonrelativistic
quantum mechanics. Such work can be find in Refs. [55–57].
Kratzer potential model is only characterised with dissociation
energy De and equilibrium bond length re without the potential
screening parameter α which characterises the strength of the
potential. Morse potential has proved to be one of the most
successful in explaining rotational and vibrational structure of
diatomic molecules. As the internuclear distance gets larger, the
potential vanishes to zero. Meanwhile, the combination of
Kratzer and generalised Morse potential will provide a

macroscopic description of the molecular interaction existing
between diatomic molecules and incorporate all the experimental
spectroscopic parameters needed for complete discription of
molecular interaction. The Kratzer plus generalized Morse
potential takes the form

V r( ) � −2De
re
r
− r2e
2r2

( ) +D 1 − beαr

1 − eαr
( )2

, (1)

where De is dissociation energy, re is the equilibrium bond
length, r represent the interatomic distance, α is the screening
parameter. This article is organised as follows: Section 1 is the
introduction of the article, The Parametric Nikiforov-Uvarov
method and the non-relativistic solution is presented in
section 2, Thermodynamic properties is expressed
in section 3, while the numerical solution is shown in
section 4. The article is concluded in section 5.

2 THE PARAMETRIC NIKIFOROV-UVAROV
METHOD

In the parametric NUmethod, the second order linear differential
equation is reduced to a generalised equation of hyper-geometric
type which provides exact solutions interms of special orthogonal
functions and the corresponding energy eigenvalues of the form.
With the appropriate coordinate transformation S = S(x) the
equation can be written as [17, 58–63].

ψ″ s( ) + ~τ s( )
σ s( )ψ′ s( ) + ~σ s( )

σ2 s( )ψ s( ) � 0 (2)

where ~τ(s) is the polynomial of degree one, σ(s) and ~σ(s) are
polynomials of at most degree two. Then the parametric NU
differential equation is in the form [45].

ψ″ s( ) + c1 − c2s( )
s 1 − c3s( )ψ′ s( ) + 1

s2 1 − c3s( )2 −Ω1s
2 + Ω2s − Ω3[ ]ψ s( )

� 0

(3)
The parametric constants are obtained as follows

c1 � c2 � c3 � 1; c4 � 1
2

1 − c1( ); c5 � 1
2

c2 − c3( ); c6 � c25 + ϵ1

c7 � 2c4c5 −Ω2; c8 � c24 +Ω3; c9 � c3c7 + c23c8 + c6

c10 � c1 + 2c4 + 2
��
c8

√
; c11 � c2 − 2c5 + 2

��
c9

√ + c3
��
c8

√( )
c12 � c4 + ��

c8
√

; c13 � c5 − ��
c9

√ + c3
��
c8

√( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(4)
The eigen energy equation is given as

c2n − 2n + 1( )c5 2n + 1( ) ��
c9

√ + c3
��
c8

√( ) + n n − 1( )c3 + c72c3c8 + 2
����
c8c9

√ � 0

(5)
The corresponding total wave function is then given as

Ψ s( ) � Nnls
c12 1 − c3s( )−c12−c11

c3 P
c10−1, c11

c3
−c10−1( )

n 1 − 2c3s( ) (6)
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2.1 Non-Relativistic Solution With KPGMP
The Schrödinger wave equation for an arbitrary external potential
V(r) in spherical coordinate is written as [4].

d2ψnℓ r( )
dr2

+ 2μ

Z2 E − V r( ) − Z2
ℓ ℓ + 1( )
2Zr2

[ ]ψnℓ � 0 (7)

where E is the exact bound state energy eigenvalues, Rnℓ(r) is the
eigenfunction, μ � m1m2

m1+m2
being the reduced mass, (Z = μ = 1). n

denotes the principal quantum number (n and ℓ are known as the
vibration-rotation quantum numbers), r is the internuclear
separation.

Also, on substituting Eq. 1 into Eq. 6, the radial part of the
Schrödinger equation for the KPGM is given as

d2ψnℓ r( )
dr2

+ 2μ

Z2 E + −2De
re
r
− r2e
2r2

( ) +D 1 − beαr

1 − eαr
( )2( ) − Z2

ℓ ℓ + 1( )
2 μr2

[ ]ψnℓ r( )

� 0.

(8)
The Green-Aldrich approximation is given as [64].

1
r2

� 4α2e−2αr

1 − e−αr( )2 ,
1
r
� 2αe−αr

1 − e−αr
. (9)

On Substituting the transformation s = eαr and applying the
Green-Aldrich approximation into Eq. 7 yields

FIGURE 1 | (A) Wavefunction plot for fixed l = 0 for LiH molecule. (B) Probabilty density plot for fixed l = 0 for LiH molecule.

FIGURE 2 | (A) Wavefunction plot for fixed l = 1 for LiH molecule. (B) Probabilty density plot for fixed l = 1 for LiH molecule.
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FIGURE 3 | (A) Wavefunction plot for fixed l = 2 for LiH molecule. (B) Probabilty density plot for fixed l = 2 for LiH molecule.

FIGURE 4 | (A) Wavefunction plot for fixed l = 3 for LiH molecule. (B) Probabilty density plot for fixed l = 3 for LiH molecule.

FIGURE 5 | (A) Variation of Partition Function With Respect to β (B) Variation of Partition Function With Respect to λ.
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d2ψ s( )
dr2

+ 1 − s( )
s 1 − s( )

dψ s( )
dr

+ 1

s2 1 − 2( )2
− ξ2 − A − B − C − F − G − 4λ( )s2
+ 2ξ2 + A + 2C + F( )s − −ξ2 − C( )⎡⎣ ⎤⎦ψ s( )

� 0 (10)
where

−ξ2 � 2μE

α2Z2 , A � 8 μDere
αZ2

, B � 8 μDer2e
α2Z2 ,

C � 2μD

α2Z2
, F

4μDb

α2Z2 , G � 2μDb2

α2Z2 . (11)

Comparing Eq. 9with the standard parametric NU differential
equation of (2), the parameters are obtained as follows:

Ω1 � ξ2 − A − B − C − F − G − 4λ,Ω2 � 2ξ2 + A + 2C + F, Ω3 � ξ2 − C

c1 � c2 � c3 � 1, c4 � 0, c5 � −1
2
, c6 � 1

4
+ ξ + A + B + C + F + G + 4λ,

c7 � −2ξ2 − A − 2C − F, c8 � ξ2 , c9 � 1
4
+ B + G + 4λ, c10 � 1 + 2

������
ξ2 + C
√

c11 � 2 + 2

�������������������
1
4
+ B + G + C + 4λ + ξ2

√( ), c12 � ������
ξ2 + C
√

,

c13 � −1
2
−

�������������������
1
4
+ B + G + C + 4λ + ξ2

√( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12)

By substituting the appropriate parameters of Eq. 11 into
equations (?) and equation (?), then simplify gives the
respective wave function and energy eigenvalue equation for
the KPGMP as

ψnℓ � Nnℓs
γ 1 − s( )δP 2γ,2δ−1[ ]

n 1 − 2s( ), s � eαr (13)
and

Enℓ � −α
2Z2

2μ

n2 + n + 1
2( ) + 2n + 1( )η − 8μDere

αZ2
− 8μDb

α2Z2

2n + 1( ) + 2η
⎡⎣ ⎤⎦2 − 2μDb2

α2Z2

(14)
where

γ �
����������
2μD

α2Z2 −
2μE

α2Z2

√
, δ � 1

2
+
��������������������������
1
4
+ 8μDer

2
e

α2Z2
+ 2μDb2

α2Z2
+ 4ℓ ℓ + 1( )

√
,

η �
��������������������������
1
4
+ 8μDer

2
e

α2Z2 + 2μDb2

α2Z2 + 4ℓ ℓ + 1( )
√

(15)
The normalization constant in Eq. 12 can be obtain using the

normalization condition [1, 4].

∫∞

0
|ψnℓ|2dr � ∫∞

0
|Nnℓs

γ 1 − s( )δP 2γ,2δ−1[ ]
n 1 − 2s( )|2ds � 1, (16)

the wavefunction is assumed to be in the bound at r ε (0, ∞) and
s = eαr ε (1, 0) Eq. 15 becomes

−N
2
nℓ

α
∫1

0
s2γ 1 − s( )2δP 2γ,2δ−1[ ]

n 1 − 2s( )|2ds
s
� 1. (17)

Let z = 1 − 2s thus, the limit of integration of Eq. 16 changes from
s ε(1, 0) to z ε(−1, 1). Then Eq. 16 reduces to

N2
nℓ

2α
∫1

−1
1 − z

2
( )2γ−1 1 + z

2
( )2δ P

2γ,2δ−1[ ]
n z( )[ ]2dz � 1. (18)

Applying the standard integral [1, 4].

∫1

−1
1 − w

2
( )x 1 + w

2
( )y P

x,y−1( )
n w( )[ ]2dw

� 2x+y+1Γ x + n + 1( )Γ y + n + 1( )
n!Γ x + y + n + 1( )Γ x + y + 2n + 1( ). (19)

Also, let z = w, x = 2γ − 1, y = 2δ. Then the normalization
constant can be obtained as

Nnℓ �
������������������������������
2α n!( )Γ 2γ + 2δ + n( )Γ 2γ + 2δ + 2n( )

2 2γ+2δ( )Γ 2γ + n( )Γ 2δ + n + 1( )

√
, (20)

therefore, the total normalized wave function is given as

ψ s( ) �
������������������������������
2α n!( )Γ 2γ + 2δ + n( )Γ 2γ + 2δ + 2n( )

2 2γ+2δ( )Γ 2γ + n( )Γ 2δ + n + 1( )

√
sγ 1 − s( )δP 2γ,2δ−1[ ]

n 1 − 2s( ).

(21)

3 THERMODYNAMIC PROPERTIES FOR
THE POTENTIAL MODEL

The thermodynamic properties for KPGM will be studied by first
obtaining the vibrational partition function defined as

Z β( ) �∑λ
n�0

e−βEn (22)

where λ is an upper bound of the vibrational quantum number
obtain from the numerical solution of dEn

dn � 0, β � 1
kT where K

and T are Boltzmann constant and absolute temperature
respectively. In the classical limit, the summation in 21 can be
replaced with the integral:

Z β( ) � ∫λ

0
e−βEndn (23)

The energy equation of Eq. 13 can be simplified to

Enl � Q1 − Q2 n + Δ( ) + Q3

n + Δ( )[ ]2 (24)

where

Q1 � −2μDb2

α2Z2
, Q2 � α2Z2

8μ
, Q3 � −μDer

2
e

2α2Z2
− μDb2

8α2Z2
− ℓ ℓ + 1( )

4
− 4μDe

α2Z2 ,

Δ � 1
2
+ 1
2

�������������������������
1 + 2μDer

2
e

α2Z2 + μDb2

2α2Z2
+ ℓ ℓ + 1( )

√
(25)

The energy Eq. 23 can then be express in the form

Enl � − Q2ρ
2 + Q2Q

2
3

ρ2
[ ] − 2Q2Q3 − Q1[ ], ρ � n + Δ (26)

Hence, the partition function Eq. 22 can be express in the
classical limit as
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FIGURE 6 | (A) Variation of Vibrational Mean Energy With Respect to β (B) Variation of Vibrational Mean Energy With Respect to λ.

FIGURE 7 | (A) Variation of Specific Heat Capacity With Respect to β (B) Variation of Specific Heat Capacity With Respect to λ.

FIGURE 8 | (A) Variation of Vibrational Entropy With Respect to β (B) Variation of Vibrational Entropy With Respect to λ.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9627176

Isonguyo et al. Eigensolutions and Thermodynamic Properties

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Z β( ) � eβ 2Q2Q3−Q1( ) ∫λ

0
e

Q2ρ2+
Q2Q

2
3

ρ2
( )

dρ (27)

Eq. 22 is integrated using MAPLE package. Hence, the integral
Eq. 22 which is the partition function is given as

Z β( ) � ζ1
4
�����−βQ2

√ 1 + erf λ
�����−βQ2

√ −
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ − e4
���
−βQ2

√ �����
−βQ2Q2

3

√

erfc λ
�����−βQ2

√ +
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

where

ζ1 �
��
π

√
exp −βQ1 + 2βQ2Q3 − 2

�����
−βQ2

√ �������
−βQ2Q

2
3

√( ) (29)

Using the partition function 27, other thermodynamic
properties are obtain as follows.

a) Vibrational mean energy:

U β( ) � −z lnZ β( )
zβ

�

�������
−βQ2Q

2
3

√ ��
π

√
ζ2 2βQ1 + 1( ) + ζ4( )

+ζ2
�������
−βQ2Q

2
3

√
− 4

��
π

√
βζ3Q2Q

2
3

�����
−βQ2

√
2
��
π

√
βζ2

�������
−βQ2Q

2
3

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
where

ζ2 � erfc λ
�����
−βQ2

√
−
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ + e4
����
−βQ2

√ �����
−βQ2Q2

3

√
erfc λ

�����
−βQ2

√
+
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ − 2

ζ3 � erfc λ
�����
−βQ2

√
−
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ − e4
����
−βQ2

√ �����
−βQ2Q2

3

√
erfc λ

�����
−βQ2

√
+
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ − 2

ζ4 � 4λ
�����
−βQ2

√
exp

βQ2 λ4 + Q2
3( )

λ2
+ 2

�����
−βQ2

√ �������
−βQ2Q

2
3

√( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (31)

b) Vibrational specific heat capacity:

C β( ) � kβ2
z2 lnZ β( )

zβ2
( )

�
kβ2 −πλζ22

�����−βQ2

√ �������
−βQ2Q

2
3

√
+ ζ8 − ζ9( )

2πβ2λζ22
�����−βQ2

√ �������
−βQ2Q

2
3

√ (32)

where

ζ5 � e
βQ2 λ4+Q2

3( )
λ2 4λ2

�����
−βQ2

√
+
�������
−βQ2Q

2
3

√( ) − 8
��
π

√
λe2

���
−βQ2

√ �����
−βQ2Q2

3

√

�����−βQ2

√ �������
−βQ2Q

2
3

√
erfc λ

�����−βQ2

√ +
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠
ζ6 �

�������
−βQ2Q

2
3

√
− 4λ2

�����
−βQ2

√( )exp βQ2 λ4 + Q2
3( )

λ2
+ 2

�����
−βQ2

√ �������
−βQ2Q

2
3

√( )
+16 ��

π
√

λ
�����−βQ2

√ �������
−βQ2Q

2
3

√
ζ7 � ζ5erfc λ

�����
−βQ2

√
−
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ + ζ6e
2
���
−βQ2

√ �����
−βQ2Q2

3

√

erfc λ
�����−βQ2

√ +
�������
−βQ2Q

2
3

√
λ

⎛⎜⎜⎝ ⎞⎟⎟⎠ − 2e
βQ2 λ4+Q2

3( )
λ2 4λ2

�����
−βQ2

√
+
�������
−βQ2Q

2
3

√( )
ζ8 � 4

��
π

√
β2Q2

2e
2
���
−βQ2

√ �����
−βQ2Q2

3

√
ζ7Q

2
3 − λ4ζ2

�������
−βQ2Q

2
3

√
e
βQ2 λ4+Q2

3( )
λ2( )

ζ9 � 2βλ2Q2

�������
−βQ2Q

2
3

√
exp

βQ2 λ4 + Q2
3( )

λ2
+ 2

�����
−βQ2

√ �������
−βQ2Q

2
3

√( )
4λ
�����−βQ2

√
exp

βQ2 λ4 + Q2
3( )

λ2
+ 2

�����
−βQ2

√ �������
−βQ2Q

2
3

√( ) − ��
π

√
ζ2( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(33)

(c) Vibrational entropy
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where

FIGURE 9 | (A) Variation of Vibrational Free Energy With Respect to β (B) Variation of Vibrational Free Energy With Respect to λ.
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(c) Vibrational free energy
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4 RESULTS AND DISCUSSION

The thermodynamics properties of KPGM was studied, the
plots of the wavefunction and thermodynamics properties as a
function of the inverse temperature parameter β and λ for
Lithium hydride (LiH) diatomic molecule are shown in
Figures 1–4 and Figures 5–9 respectively. The
spectroscopic parameter for Lithium hydride is adopted
from Ref. [54]. Figure 1A is the wave function plot for
fixed l = 0 which begins with a commom origin and
proceed to a continous sinusoidal curve with various
maximum and minimum turning points for Lithium
hydride molecule. From the graph, it can be observed that
the peaks of the turning points increases with increase in the
principal quantum number (n), as such n = 0 has the lowest
peak. The probability density curve for fixed l = 0 is displayed
in Figure 1B. This plot follows normal distribution with
several maximum points which also increases with an
increase in the principal quantum number. The probability
density curve completely describe the localization of electrons
of LiH molecule, hence electron is more localized at n =
3 which has the highest maximum point. The same
description of Figure 1A is applicable to Figures 2A, 4A
while Figures 2B, 4B also have the same description as
Figure 1B. The wavefunction graph in Figure 3A has
maximum and minimum turning points at higher quantum
states except at the ground state (n = 0) where there is a
divergence in the curve. In Figure 3B, the probability density
plot is sinusoidal in nature which shows the localization of
electrons for higher quantum state while diverges at the
ground state.

Figures 5A,B show the variation of the vibrational partition
function. It is observed in Figure 5A that the partition function
Z(β) increases exponentially from the origin with increase in
the inverse temperature parameter (β) but the partition
function Z(λ) decreases with increase in λ as presented in
Figure 5B for LiH diatomic molecule. The mean vibrational
energy U(β) as displayed in Figure 6A increases monotonically
with increase in the values of β with slight maximum turning

points. The plot of U(λ) against λ has a hyperbolic nature.
From Figure 7A, The vibrational specific heat capacity C(β)
first decreases with an increase in inverse temperature
parameter to a minimum value and then increase
monotonically. However, the graph of vibrational specific
heat capacity (C(β)) as a function of β has various
minimum turn points that touch the horizontal axis. C(λ)
decreases exponentially with λ in Figure 7B. Plots of the
vibrational entropy with different values of β and λ is
shown in Figures 8A,B respectively. As seen in Figure 8A,
the vibrational entropy C(β) increases linearly with increasing
values of β while S(λ) decreases with increasing values of λ.
Plots of the mean free energy F(β) as a function of β increases
monotonically with an increase in β for various values of λ as
presented in Figure 9A. In Figure 9B, the vibrational free
energy exhibited an hyperborlic nature which increases with
an increase in λ. In order to prove the accuracy of work, the
thermodynamic plots for this present work as applied to
lithium hydride molecule are in excellent agreement to
work of Okorie et al. [65] using improved deformed
exponential type potential.

5 CONCLUSION

In this work, we have solved the Schrödinger wave equation in the
presence of Kratzer plus generalized Morse potential (KPGM)
using Parametric Nikiforov-Uvarov method. The energy
eigenvalues and the corresponding normalised wave function
were obtained and presented in a closed and compact form.
However, we studied the thermodynamics properties of KPGM
which are: vibrational partition (Z), vibrational mean energy(U),
specific heat capacity(C), vibrational entropy (s), and mean free
energy (F). Also, we have plotted the variation of these
thermodynamic functions as a function of inverse temperature
parameter(β) and upper bound vibrational quantum number (λ)
for Lithium hydride diatomic molecule. We analytically obtained
the normalised wave function expressed in terms of
hypergeometric function of Jacobi polynomial. The normalised
wave function and probability density plots for the Lithium
hydride molecule were obtained through a well designed
Maple programming. This research work has application in
molecular spectroscopy. Lithium hydride is heteronuclear
diatomic molecule which has high density hydrogen storage
and serve as a precausor for building complex hydrides. The
thermodynamic plots obtained are in excellent agreement to work
of an existing literature. Further research work can be carried out
with Kratzer plus generalised Morse potential using other
methods like the supersymmetric quantum mechanics
approach to investigate other properties like expectation values
as well as superstatistic formulation.
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