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Homogeneous–heterogeneous chemical reactions for second-grade nanofluid

and gyrotactic microorganisms in a rotating system with the effects of magnetic

fields and thermal radiation are examined. The boundary layer equations of the

problem in a non-dimensional form are evaluated by a strong technique, namely,

the homotopy analysismethod (HAM). The rates of flow, heat, mass, and gyrotactic

microorganism motion are obtained for the augmentations in the pertinent

parameters. The graphical pictures of the results are described by the physical

significance. The Hall current effect decreases the azimuthal velocity, the axial

velocity increases with the injection of mass, the Biot number leads to enhanced

heat transfer and gyrotactic microorganisms, the concentration diffusion rate

decreases with the Peclet number, and the concentration of the chemical

reaction reduces with the Schmidt number. Excellent agreement of the present

work is found with the previously published work. The present study has

applications in the hydromagnetic lubrication, semiconductor crystal growth

control, austrophysical plasmas, magnetic storage disks, computer storage

devices, care and maintenance of turbine engines, aeronautical, mechanical,

and architectural engineering, metallurgy, polymer industry, hydromagnetic

flows in porous media, and food processing and preservation processes.
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1 Introduction

Bioconvection has applications in medical sciences [1].

Bioconvection is the macroscopic motion of fluid generated

due to density gradients and collective upward swimming of

motile microorganisms in the presence of light or chemical

attraction and gravity. This is due to the result of the self-

propulsion of motile microorganisms. Bioconvection has a

special role in the creation of energy and mechanical

capability. It is dependent on the species of microorganisms

that affects the direction of cell swimming. Due to the motion of

microorganisms in each direction, the thickness of fluid increases

which has vast applications in biology and biotechnology.

Bioconvection causes the structures in microorganisms and

has a wide range of applications in nuclear and medical

engineering, fuel cell technology, bioreactors, and biodiesel

fuels, etc. Shah et al. [2] scrutinized the bioconvection water-

based nanofluid flow-containing carbon nanotubes through a

vertical cone, in addition to microorganisms, entropy generation,

Joule heating, heat generation/absorption, and chemical reaction.

Waqas et al. [3] investigated the MHD flow of Burgers nanofluid

with motile microorganisms, thermal radiation, and activation

energy by using the bvp4c program to show the impact on

medications for the treatment of arterial diseases. Waqas et al.

[4] evaluated the second-order slip effects, activation energy, and

Cattaneo–Christov heat and mass flux model with the melting

phenomenon on the bioconvection flow of viscoelastic nanofluid.

Farooq et al. [5] analyzed the three-dimensional bioconvectional

flow of viscoelastic nanofluids past an elongated surface with

motile microorganisms, thermal radiation, and solutal boundary

conditions. Waqas et al. [6] disclosed the effects of Brownian

motion, thermophoresis, thermal radiation, and Arrhenius

activation energy on the bioconvection flow of Burgers

nanofluid. Dawar et al. [7] presented the magnetized and

non-magnetized Casson fluid flows with gyrotactic

microorganisms past a stretching cylinder using the homotopy

analysis method. Waqas et al. [8] performed a study on

bioconvection Darcy–Forchheimer flow of MHD viscous fluid

with thermal radiation, heat source, and Arrhenius activation

energy past a rotating disk of variable thickness. Dawar et al. [9]

attempted to solve the problem of two-dimensional electrically

conducting MHD fluid with thermal radiation, Arrhenius

activation energy, and binary chemical reaction. Khan et al.

[10] analyzed the bioconvection flow of Oldroyd-B nanofluid

in a porous medium with heat transfer. Some other studies

regarding bioconvection can be seen in references [11–15].

Viscoelastic fluids are related to non-Newtonian fluids,

which show viscous and elastic characteristics in the light of

deformation. Second-grade fluid is a type of viscoelastic fluid

[16]. Khan et al. [17] analyzed the second-grade fluid with

temperature-dependent thermal conductivity and viscosity.

Adeniyan et al. [18] studied the flow and heat transfer

features of an incompressible second-grade fluid past a

stretched porous vertical slender with viscous dissipation and

convection heat at the wall with the surroundings in conjunction

with far-field conditions. Adigun et al. [19] discussed the MHD

stagnation point flow of a viscoelastic nanofluid past an inclined

stretching cylinder with modified Darcy’s law and an Arrhenius

activation energy effect. Concentrating on the other non-

Newtonian fluids, Usman et al. [20] investigated the Oldroyd-

B nanoliquid film with the spraying phenomena, heat transfer,

nanoparticle concentration, and gyrotactic microorganisms.

Yusuf et al. [21] examined the entropy generation in a steady,

gravity-driven thin film flow of a micropolar fluid by

implementing the differential transformation method. Hussain

and Xu [22] performed the numerical analysis of the

incompressible, time-dependent electrically conducting

squeezing flow of micropolar nanofluid in rotating disks by

using the Buongiorno nanofluid model and gyrotactic

microorganisms. Hussain et al. [23] presented the convective

heat transfer of MHD mixed convection flow past a stretching

wedge with ohmic heating and thermal radiation by using the

bvp4c method in MATLAB software. Shah et al. [24] examined

the slip flow of upper-convected Maxwell nanofluid, taking into

account the inclined stretching sheet, magnetic field, and porous

medium. The non-Newtonian behaviors and other

characteristics of fluids can be seen in references [25–31].

Nanofluids have important engineering and industrial

applications due to their better heat transfer characteristics.

Nanofluids are used in solar collectors, for heating and for

cooling purposes like ventilation, air conditioning, and

refrigeration. Choi [32] observed that nanofluids have a

significant enhancement in thermal conductivity compared

to ordinary base fluids. Khan et al. [33] presented the model

of bioconvective cross diffusion flow of magnetized viscous

nanofluid over the cone, wedge, and plate under convective

boundary conditions and Cattaneo–Christov heat and mass

flux with activation energy and thermal radiation. Dawar et al.

[34] studied the convective flow of Williamson nanofluid over

the cone and wedge under variable non-isosolutal and non-

isothermal conditions by showing that flow is higher on the

cone than the wedge. Cae et al. [35] reported forced, free, and

mixed convection in the colloidal mixture of water with

platelet alumina, spherical carbon nanotubes, and cylindrical

graphene. Alrabaiah et al. [36] addressed the silver–magnesium

oxide hybrid nanofluid flow inside the conical space between

the disk and cone with gyrotactic microorganisms using the

parametric continuation method. Nazir et al. [37] investigated

the Carreau–Yasuda-based hybrid nanofluid past a porous

rotating cone with Hall and ion slip forces, generalized

Ohm’s law, heat generation, Joule heating, and viscous

dissipation. Shahid et al. [38] used the Chebyshev spectral

collocation method to solve the MHD nanofluid flow

containing gyrotactic microorganisms through a porous

sheet. The nanofluids and other studies can be seen in

references [39–56].
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Revolving surfaces in fluid dynamics are the transcendent

research areas. Hafeez et al. [57] studied the upper convected

Oldroyd-B fluid with homogeneous–heterogeneous chemical

reactions using the BVP Midrich scheme. Acharya et al. [58]

investigated the hybrid nanofluid flow over a spinning disk with

Hall current and thermal radiation. Ariel [59] considered the time-

independent laminar flow of a second-grade fluid past a revolving

disk in which the viscoelasticity of the fluid causes a boundary value

problem. Acharya [60] enlightened the hydrothermal characteristics

of chemically reactive nanofluid past an inclined rotating porous disk

in which he showed that the normalized thickness parameter

enhances the radial velocity and nanoparticle concentration.

Naqvi et al. [61] analyzed the Reiner-Rivlin fluid over a rotating

disk under various slip conditions in which they performed the

calculations for surface heat transfer and wall skin friction through a

wide range of parameters. Khan et al. [62] studied the hybrid

nanofluid flow through a porous medium with gyrotactic

microorganisms, double diffusion, chemical reaction, Joule

heating, and multiple slip boundary conditions. Beg et al. [63]

focused on the time-independent MHD flow past a spinning

porous disk with slip conditions, injection, thermal radiation, and

variable thermophysical properties using the network simulation

method.

Chemical reactions have important applications in chemical

and food processing, polymer and ceramics, hydrometallurgical

industry, crops damage due to freezing, groves of fruit trees,

atmospheric flows, air, and water pollution, and flows in desert

cooler and moisture. In most cases, chemical reactions involve

homogeneous–heterogeneous reactions, whose examples are

combustion, catalysis, and biochemical systems. Numerous

researchers are working on investigations into flow behaviors

due to chemical reactions. Chaudhary and Merkin [64] analyzed

a simple model for homogeneous–heterogeneous reactions in

stagnation-point boundary-layer flow in which the homogeneous

reaction is assumed to be given by isothermal cubic autocatalator

kinetics and the heterogeneous reaction by first-order kinetics.

They considered the possible steady states of this system in detail

in the case when the diffusion coefficients of both the reactant

and autocatalyst are equal. Sajid et al. [65] examined the MHD

Blasius flow with homogeneous–heterogeneous chemical

reactions and thermal radiation using the shooting method for

the computational work. Sravanthi et al. [66] considered the

homogeneous–heterogeneous chemical reactions in nanofluid in

a porous medium with variable magnetic field and non-linear

thermal radiation, in which the non-linear thermal radiation has

a high impact on heat transfer compared to that of linear thermal

radiation. Alzahrani et al. [67] investigated the Oldroyd-B nanofluid

past a porous boundary with homogeneous–heterogeneous chemical

reactions, thermosolutalMarangoni convection, and heat source/sink

in a revised model for thermal conductivity and dynamic viscosity.

Khan et al. [68] investigated stagnation point time-dependent

Oldroyd-B fluid flow with homogeneous–heterogeneous chemical

reactions, thermal and solutal transportation, variable heat source/

sink, Joule heating, and thermal radiation. Sunthrayuthet al. [69]

focused on the study of second-grade nanofluid through a stretching

cylinder with homogeneous–heterogeneous chemical reactions.

Due to the inspiration of the aforementioned published

articles, the present study objective is to examine the

homogeneous–heterogeneous chemical reactions and

gyrotactic microorganism motion in a rotating porous system

for MHD second-grade nanofluid with Hall current effect,

thermal radiation, and mixed convection and convective

conditions. The homotopy analysis method [70] is used to

evaluate the non-dimensional problem.

2 Methods

2.1 Basic equations

An incompressible three-dimensional second-grade nanofluid

flow with heat transfer, homogeneous–heterogeneous chemical

reactions, and bioconvection due to motile gyrotactic

microorganisms in the presence of Hall current effect and thermal

radiation is considered. The porous disk flow in the upper plane z ≥
0 has the uniform angular velocity, stretching rate, constant

temperature, and motile gyrotactic microorganism concentration

as Ω, c1, Tw, and Nw, while at the free stream, the temperature

andmotile gyrotactic microorganism concentration are T∞ andN∞,

respectively. The disk surface is porous and bears the velocity

w0. w0 > 0 shows the injection and w0 < 0 shows the suction

of the mass. The convective heat transfer conditions are used.

A simple model is considered for the interaction between a

homogeneous reaction and a heterogeneous reaction

FIGURE 1
Physical configuration of the problem.
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involving two chemical species, A and B [64]. A magnetic field

is applied in the z-direction (please see Figure 1). The given

problem has the governing equations as in [8, 57, 64].
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The boundary conditions are used as

u � rc1, v � rΩ, w � w0, −k zT
zz

� hf Tf − T( ), DA
za

zz

� ksa, DB
zb

zz
� −ksa, N � Nw at z � 0, (8)

u → 0, v → 0, w → 0, T → T∞, a → a0,
b → b0, N → N∞, as z → ∞, (9)

where u(r, ϑ, z), v(r, ϑ, z), and w(r, ϑ, z) are the velocity

components, p is the pressure, and m is the Hall parameter

[64]. α1 is the material parameter, γav is the average volume of

microorganisms, β is the coefficient of volumetric volume

expansion of a second-grade nanofluid, g1 is the acceleration

due to gravity, and kf is the thermal diffusivity of the nanofluid. ρf,

μf, σf, and (cp)f are the density, effective dynamic viscosity,

electrical conductivity, and heat capacitance of the nanofluid,

respectively. hf is the convective heat transfer coefficient, ]f =
μf
ρf
is

the kinematic viscosity, v
~
= [ b1Wce

Δa
] zazz is the average swimming

velocity vector of the oxytactic microorganisms in which b1 is the

chemotaxis constant, Wce is the maximum cell swimming speed

[8], and Dn is the diffusivity of microorganisms. a is the

concentration of chemical species A, b is the concentration of

chemical species B, and DA and DB are the diffusion coefficients.

The rates of homogeneous and heterogeneous chemical reactions

are denoted by kc and ks, respectively. The radiation heat flux is

expressed by qr for which the relation is given by

qr � − 16σpT∞3

3ke

zT

zz
( ), (10)

where the Stefan–Boltzmann constant is σ* and the mean

absorption coefficient is ke.

The following transformations are used [57]:

u � rΩf ζ( ), v � rΩg ζ( ), w � Ω]f( )1
2h ζ( ),

θ ζ( ) � T − T∞
Tw − T∞

, ϕ ζ( ) � a

a0
, ϕ1 ζ( ) � b

a0
,

χ ζ( ) � N −N∞
Nw −N∞

, ζ � Ω
]f

[ ]1
2

z. (11)

Substituting the values from Eq. 11 in Eqs 1–9, the following nine

Eqs 12–20 are obtained

2f + h′ � 0, (12)
f′′ − f2 + g2 − f′h + β1 hf′′′ + 2ff′′ − f′2 − g′2( )

− M f′ −mg( )
1 +m2

− Grθ � 0,
(13)

g′′ − g′h − 2fg + β1 g′′h + 2fg′′( ) − M mf′ + g( )
1 +m2

� 0, (14)
1 + Rd

Pr
θ′′ − hθ′ + 2

Ec

Re
h′( )2 + 2f2[ ] + MEc

1 +m2
f2 + g2( )

+Ec f′( )2 + g′( )2[ ] � 0, (15)
χ′′ − Lbhχ′ − Pe χ′ϕ′ + ϕ′′ γ1 + χ( )( ) � 0, (16)

1
Sc
ϕ′′ − hϕ′ − k1ϕϕ

2
1 � 0, (17)

δ

Sc
ϕ′′1 − hϕ1′ + k1ϕϕ

2
1 � 0, (18)

f � s1, g � 1, h � hw, θ′ � −Bi 1 − θ( ), ϕ′ � k2ϕ,

δϕ1′ � −k2ϕ, χ � 1 at ζ � 0, (19)
f → 0, g → 0, h → 0, θ → 0, ϕ → 1,

χ → 0, as ζ → ∞, (20)

where (‘) represents the differentiability through ζ. β1 =
α1Ω
μf

is the

dimensionless measure of non-Newtonian second-grade

nanofluid parameter, M � σfB2
0

ρfΩ
is the magnetic field

parameter, Gr � g1β(Tw−T∞)
]fΩ3

is the modified Grashof number,

Rd � 16σ*T∞3

3kekf
is the thermal radiation parameter, Pr � ]f

kf
is the

Prandtl number, Ec � r2Ω2

cP(Tw−T∞) is the Eckert number, Re � r2Ω
]f

is

the local rotational Reynolds number, Lb � ]f
Dn

is the

bioconvection Lewis number, Pe � bWce
Dn

is the Peclet number,

and γ1 =
N∞

Nw−N∞ is the microorganism concentration difference

parameter. Sc � ]f
DA

is the Schmidt number, k1 � kca20
Ω is the

homogeneous chemical reaction rate, k2 � ks
DA

[ ]f
Ω ]12 is the

heterogeneous chemical reaction rate, s1 � c1
Ω is the stretching

parameter, hw � w0

[ ]fΩ ]12 is the suction/injection parameter, Bi �
hf
kf
[ ]f
Ω ]12 is the Biot number, and δ = DB

DA
is the ratio of diffusion

coefficients. In many applications, the diffusion coefficients

A and B of the chemical species can be comparable in size

which leads to the assumption that the diffusion coefficients
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DA and DB are equal. By the Chaudhary and Merkin [64]

study, assuming δ = 1 which provides the following

equation:

ϕ ζ( ) + ϕ1 ζ( ) � 1. (21)
So Eqs 17, 18 finally result in

1
Sc
ϕ′′ − hϕ′ − k1ϕ 1 − ϕ[ ]2 � 0, (22)

with the boundary conditions as

ϕ′ � k2ϕ at ζ � 0 and ϕ → 1 as ζ → ∞ . (23)
The physical quantities such as coefficient of skin friction CF,

local Nusselt number Nur, and local motile density number Nnr

are defined as

CF � τ|z�0
ρf rΩ( )2, (24)

where

τ �
�����������
τr( )2 + τϑ( )2

√
(25)

denotes the square root of the sum of shear stresses τr and τϑ
in a squaring form along radial and transverse directions.

Nur � −rq1
kf Tw − T∞( ), Nnr � −rq2

Dm Nw −N∞( ), (26)

where q1 and q2 are the heat and motile microorganism fluxes

at the surface of the rotating disk, respectively, and are

defined as

q1 � −kfTz|z�0, q2 � DmNz|z�0. (27)

Using the information from Eq. 11, Eq. 24 proceeds to

CF � Re
−1
2
r f′ 0( )( )2 + g′ 0( )( )2[ ], (28)

where Rer = r2Ω
]f

is the Reynolds number. Similarly by applying

values from Eq. 11 in Eq. 26, it is obtained that

Nur � −Re0.5r θ′ 0( ), Nnr � −Re0.5r χ′ 0( ). (29)

3 Computational framework

Following the homotopy analysis method (HAM) [70], the

initial approximations and auxiliary linear operators are

f0 ζ( ) � s1 exp −ζ( ), g0 ζ( ) � exp −ζ( ),
h0 ζ( ) � hw exp −ζ( ), θ0 ζ( ) � Bi

1 + Bi
exp −ζ( ),

χ0 ζ( ) � exp −ζ( ), ϕ0 ζ( ) � exp −ζ( ), (30)

Lh � h′, Lf � f′′ − f, Lg � g′′ − g′, Lθ � θ′′ − θ,

Lχ � χ′′ − χ, Lϕ � ϕ′′ − ϕ. (31)
The following properties are satisfied with the linear

operators:

Lh C1[ ] � 0, Lf C2 exp ζ( ) + C3 exp −ζ( )[ ] � 0,

Lg C4 exp ζ( ) + C5 exp −ζ( )[ ] � 0,

Lθ C6 exp ζ( ) + C7 exp −ζ( )[ ] � 0,

Lχ C8 exp ζ( ) + C9 exp −ζ( )[ ] � 0,

Lϕ C10 exp ζ( ) + C11 exp −ζ( )[ ] � 0,

(32)

where Ci(i = 1–11) are the arbitrary constants.

3.1 Zeroth order deformation problems

The zeroth order form of the present problem is

1 − q( )Lh h ζ , q( ) − h0 ζ( )[ ] � q-hℵh f ζ , q( ), h ζ , q( )[ ], (33)

1 − q( )Lf f ζ , q( ) − f0 ζ( )[ ] � q-fℵf f ζ , q( ), g ζ , q( ),[
h ζ , q( ), θ ζ , q( )], (34)

1 − q( )Lg g ζ , q( ) − g0 ζ( )[ ] � q-gℵg f ζ , q( ), g ζ , q( ), h ζ , q( )[ ],
(35)

1 − q( )Lθ θ ζ , q( ) − θ0 ζ( )[ ] � q-θℵθ f ζ , q( ), g ζ , q( ),[
h ζ , q( ), θ ζ , q( )], (36)

1 − q( )Lχ χ ζ , q( ) − χ0 ζ( )[ ] � q-χℵχ h ζ , q( ), χ ζ , q( ), ϕ ζ , q( )[ ],
(37)

1 − q( )Lϕ ϕ ζ , q( ) − ϕ0 ζ( )[ ] � q-ϕℵϕ h ζ , q( ), ϕ ζ , q( )[ ], (38)

where q is an embedding parameter and Zf, Zg, Zh, Zθ, -χ,

and Zϕ are the non-zero auxiliary parameters. ℵf, ℵg, ℵh, ℵθ,

ℵχ, and ℵϕ are the nonlinear operators and are given as

ℵh f ζ , q( ), h ζ , q( )[ ] � 2f ζ , q( ) + zh ζ , q( )
zζ

, (39)

ℵf f ζ , q( ), g ζ , q( ), h ζ , q( ), θ ζ , q( )[ ] � z2f ζ , q( )
zζ2

− f ζ , q( )( )2 + g ζ , q( )( )2 − zf ζ , q( )
zζ

h ζ , q( )
+ β1 h ζ , q( ) z3f ζ , q( )

zζ3
+ 2f ζ , q( ) z2f ζ , q( )

zζ2
− zf ζ ,q( )

zζ
( )2

− zg ζ ,q( )
zζ

( )2[ ]
− M

1 +m2

zf ζ , q( )
zζ

−mg ζ , q( )[ ] + Grθ ζ , q( ), (40)
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ℵg f ζ , q( ), g ζ , q( ), h ζ , q( )[ ] � z2g ζ , q( )
zζ2

− zg ζ , q( )
zζ

h ζ , q( ) + β1
z2f ζ , q( )

zζ2
h ζ , q( )[

+ 2f ζ , q( ) z2g ζ , q( )
zζ2

] − M

1 +m2

mzf ζ , q( )
zζ

+ g ζ , q( )[ ], (41)

ℵθ f ζ , q( ), g ζ , q( ), h ζ , q( ), θ ζ , q( )[ ] � 1 + Rd

Pr

z2θ ζ , q( )
zζ2

− h ζ , q( ) zθ ζ , q( )
zζ

+ 2
Ec

Re
zh ζ ,q( )

zζ
( )2

+ 2 f ζ , q( )( )2[ ]
+ MEc

1 +m2 f ζ , q( )( )2 + g ζ , q( )( )2[ ]
+Ec zf ζ ,q( )

zζ
( )2

+ zg ζ ,q( )
zζ

( )2[ ], (42)

ℵχ h ζ , q( ), ϕ ζ , q( ), χ ζ , q( )[ ] � z2χ ζ , q( )
zζ2

− Lbh ζ , q( ) zχ ζ , q( )
zζ

− Pe
zϕ ζ , q( )

zζ

zχ ζ , q( )
zζ

+ z2ϕ ζ , q( )
zζ2

γ1 + χ ζ , q( )( )[ ], (43)

ℵϕ h ζ , q( ), ϕ ζ , q( ), χ ζ , q( )[ ] � 1
Sc

z2ϕ ζ , q( )
zζ2

− h ζ , q( ) zϕ ζ , q( )
zζ

− k1ϕ ζ , q( ) 1 − zϕ ζ ,q( )
zζ

[ ]2.
(44)

Eq. 33 has the boundary conditions

h 0, q( ) � hw. (45)

Eq. 34 has the boundary conditions

f 0, q( ) � s1, f ∞, q( ) � 0. (46)

Eq. 35 has the boundary conditions

g 0, q( ) � 1, g ∞, q( ) � 0. (47)

Eq. 36 has the boundary conditions

θ′ 0, q( ) � −Bi 1 − θ 0, q( )( ), θ ∞, q( ) � 0. (48)

Eq. 37 has the boundary conditions

χ 0, q( ) � 1, χ ∞, q( ) � 0. (49)

Eq. 38 has the boundary conditions

ϕ′ 0, q( ) � k2ϕ 0, q( ), ϕ ∞, q( ) � 0. (50)

For q = 0 and q = 1, Eqs 33–38 provide

q � 00h ζ , 0( ) � h0 ζ( ) and q � 10h ζ , 1( ) � h ζ( ), (51)
q � 00f ζ , 0( ) � f0 ζ( ) and q � 10f ζ , 1( ) � f ζ( ), (52)
q � 00g ζ , 0( ) � g0 ζ( ) and q � 10g ζ , 1( ) � g ζ( ), (53)
q � 00θ ζ , 0( ) � θ0 ζ( ) and q � 10θ ζ , 1( ) � θ ζ( ), (54)
q � 00χ ζ , 0( ) � χ0 ζ( ) and q � 10χ ζ , 1( ) � χ ζ( ), (55)
q � 00ϕ ζ , 0( ) � ϕ0 ζ( ) and q � 10ϕ ζ , 1( ) � ϕ ζ( ). (56)

Expanding h(ζ, q), f(ζ, q), g(ζ, q), θ(ζ, q), χ(ζ, q), and ϕ(ζ, q)

through Taylor series, Eqs 51–56 generate

h ζ , q( ) � h0 ζ( ) + ∑∞
m�1

hm ζ( )qm, hm ζ( ) � 1
m!

zmh ζ , q( )
zζm

|q�0,

(57)
f ζ , q( ) � f0 ζ( ) + ∑∞

m�1
fm ζ( )qm, fm ζ( ) � 1

m!

zmf ζ , q( )
zζm

|q�0,

(58)
g ζ , q( ) � g0 ζ( ) + ∑∞

m�1
gm ζ( )qm, gm ζ( ) � 1

m!

zmg ζ , q( )
zζm

|q�0,

(59)
θ ζ , q( ) � θ0 ζ( ) + ∑∞

m�1
θm ζ( )qm, θm ζ( ) � 1

m!

zmθ ζ , q( )
zζm

|q�0,

(60)
χ ζ , q( ) � χ0 ζ( ) + ∑∞

m�1
χm ζ( )qm, χm ζ( ) � 1

m!

zmχ ζ , q( )
zζm

|q�0,

(61)
ϕ ζ , q( ) � ϕ0 ζ( ) + ∑∞

m�1
ϕ ζ( )qm, ϕ ζ( ) � 1

m!

zmϕ ζ , q( )
zζm

|q�0.

(62)
From Eqs 57–62, the convergence of the series is obtained by

taking q = 1 for the appropriate values of -f, -g, -h, -θ, -χ, and

-ϕ, so

h ζ( ) � h0 ζ( ) + ∑∞
m�1

hm ζ( ), (63)

f ζ( ) � f0 ζ( ) + ∑∞
m�1

fm ζ( ), (64)

g ζ( ) � g0 ζ( ) + ∑∞
m�1

gm ζ( ), (65)

θ ζ( ) � θ0 ζ( ) + ∑∞
m�1

θm ζ( ), (66)

χ ζ( ) � χ0 ζ( ) + ∑∞
m�1

χ ζ( ), (67)

ϕ ζ( ) � ϕ0 ζ( ) + ∑∞
m�1

ϕ ζ( ). (68)

3.2 mth order deformation problems

The mth order deformation equations are

Lh hm ζ( ) − ψmhm−1 ζ( )[ ] � -hR
h
m ζ( ), (69)

Lf fm ζ( ) − ψmfm−1 ζ( )[ ] � -fR
f
m ζ( ), (70)

Lg gm ζ( ) − ψmgm−1 ζ( )[ ] � -gR
g
m ζ( ), (71)

Lθ θm ζ( ) − ψmθm−1 ζ( )[ ] � -θR
θ
m ζ( ), (72)

Lχ χm ζ( ) − ψmχm−1 ζ( )[ ] � -χR
χ
m ζ( ), (73)

Lϕ ϕm ζ( ) − ψmϕm−1 ζ( )[ ] � -ϕR
ϕ
m ζ( ), (74)
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hm 0( ) � 0, (75)
fm 0( ) � 0, fm ∞( ) � 0, (76)
gm 0( ) � 0, gm ∞( ) � 0, (77)
θm′ 0( ) � 0, θm ∞( ) � 0, (78)
χm 0( ) � 0, χm ∞( ) � 0, (79)
ϕm′ 0( ) � 0, ϕm ∞( ) � 0, (80)

where

Rh
m ζ( ) � hm−1′ + 2fm−1, (81)

Rf
m ζ( ) � fm−1′′ − ∑m−1

k�o
fm−1−kfk + ∑m−1

k�o
gm−1−kgk − ∑m−1

k�o
fm−1−k′ hk

+β1 ∑m−1

k�o
hm−1−kf

′′′
k + 2fm−1−kf

′′
k − fm−1−k′ fk′ − gm−1−k′ gk′[ ]

− M

1 +m2 fm−1′ −mgm−1[ ] − Grθm−1,

(82)

Rg
m ζ( ) � gm−1′′ − ∑m−1

k�o
gm−1−k′ hk − 2 ∑m−1

k�o
fm−1−kgk

+β1 ∑m−1

k�o
gm−1−k′′ hk + 2fm−1−kg′′

k[ ]− M

1 +m2 mfm−1′ + gm−1[ ], (83)

Rθ
m ζ( ) � 1 + Rd

Pr
θm−1′′ − ∑m−1

k�o
hm−1−kθk′

+2Ec
Re

∑m−1

k�o
hm−1−k′ hk′ + 2fm−1−kfk[ ]

+ MEc

1 +m2 ∑m−1

k�o
fm−1−kfk + gm−1−kgk[ ] + Ec

∑m−1

k�o
fm−1−k′ fk′ + gm−1−k′ gk′[ ], (84)

Rχ
m ζ( ) � χm−1′′ − Lb ∑m−1

k�o
hm−1−kχk′ − Pe ∑m−1

k�o
χm−1−k′ ϕk′ + ϕm−1−k′′ χk[ ]

− γ1Peϕm′′,
(85)

Rϕ
m ζ( ) � 1

Sc
ϕm−1′′ − ∑m−1

k�o
hm−1−kϕk′ − k1 ∑m−1

k�o
ϕm−1−k ∑k

l�o
ϕk−lϕl( )

+ 2k1 ∑m−1

k�o
ϕm−1−kϕk − k1ϕm,

(86)
ψm � 0, m#1,

1, m> 1.
{ . (87)

If fm* (ζ), gm* (ζ), hm* (ζ), θm* (ζ), χm* (ζ), and ϕm* (ζ) are the

particular solutions, then the general solutions of Eqs

69–74 are

hm ζ( ) � hpm ζ( ) + C1, (88)
fm ζ( ) � fp

m ζ( ) + C2 exp −ζ( ) + C3 exp ζ( ), (89)
gm ζ( ) � gp

m ζ( ) + C4 exp −ζ( ) + C5 exp ζ( ), (90)
θm ζ( ) � θpm ζ( ) + C6 exp −ζ( ) + C7 exp ζ( ), (91)

χm ζ( ) � χpm ζ( ) + C8 exp −ζ( ) + C9 exp ζ( ), (92)
ϕm ζ( ) � ϕp

m ζ( ) + C10 exp −ζ( ) + C11 exp ζ( ). (93)

4 Comparsion of the present work
with the published work

Table 1 is constructed to verify the obtained results. The

achieved results are compared with the published results [57]

which are found in excellent agreement.

TABLE 1 Comparsion of the present results with [57].

Profile Hafeez et al. [57] Present result

f′(0) 0.5101162643 0.5101162642

- g′(0) 0.6158492796 0.6158492795

- θ′(0) 0.9336941126 0.9336941125

FIGURE 2
Role of the radial velocity profile and parameter.

FIGURE 3
Role of the azimuthal velocity profile and parameter.
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5 Analysis and discussion of results

It is shown in Figure 2 that an increment in second-grade

nanofluid parameter β1 accelerates the radial velocity f(ζ).

Figure 3 demonstrates that the azimuthal velocity g(ζ) has

reducing features of flow. It is due to the fact that effective

conductivity σf
1+m2 is decreased with increasing values of Hall

current parameter m which results in reducing the damping

effect on g(ζ). It is detected in Figure 4 that azimuthal velocity

g(ζ) increases due to the strong Lorentz force effect generated by

the magnetic field. Physically, the term M(mf′+g)
1+m2 in Eq. 14 shows

that g(ζ) achieves the maximum value at 0.30, 1.30, 2.30, and

3.30 forM and for the fixed value of m. Figure 5 anticipates the

effect of the suction/injection parameter hw on the axial velocity

h(ζ). The values of hw < 0 correspond to injection of the fluid,

and values of hw > 0 correspond to suction of the fluid. For hw > 0,

it is shown in Figure 5 that the axial velocity h(ζ) acquires high

value. It is due to the fact that on the non-dimensional axial

coordinate ζ, hw is defined as w0

[ ]fΩ ]12 which is the transpiration

velocity at the surface of the disk. The centrifugal force due to

the spinning disk flow results in the outward axial velocity. So

the axial flow created from the disk surface, as proceeded in

the axial direction, reaches to the maximum value. It is

observed that with enhancing hw for positive values, the

highest value of h(ζ) is shown. Therefore, with higher disk

injection, axial flow acceleration is higher further from the

surface of the disk. It is evident that through injection, the

involvement of mass transfer into the boundary layer exists.

The stretching parameter s1 influence on radial velocity f(ζ) is

shown in Figure 6. The flow enhances in the radial direction.

The reason is that the stretching rate increases in the radial

direction as the stretching parameter is the ratio of c1
(stretching rate) and Ω (angular velocity). The Biot number

Bi role is discussed in Figure 7. It is observed that the Biot

number raises the heat transfer. The boosting up phenomena

of heat transfer is clear from its definition hf
kf
[ ]f
Ω ]12 which shows

the convective heat transfer coefficient enhanced performance, and

consequently, from the surface, more heat transfer is

enhanced. Figure 8 depicts the influence of rotational

Reynolds number Re on the temperature profile θ(ζ). Heat

FIGURE 4
Role of the azimuthal velocity profile and parameter.

FIGURE 5
Role of the axial velocity profile and parameter.

FIGURE 6
Role of the radial velocity profile and parameter.

FIGURE 7
Role of the heat transfer profile and parameter.
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transfer increases with the increasing value of rotational

Reynolds number Re. It is clear that the rotational

Reynolds number quantifies the power of the rotation-

induced flow and for higher values of Re, the flow is

enhanced, as a result, the temperature field also increases

with increasing flow of rotation. Figure 9 shows the influence

of the Eckert number Ec on the temperature profile θ(ζ). Heat

transfer decreases with increasing values of the Eckert

number. Figure 10 illustrates the characteristics of heat

transfer θ(ζ) and thermal radiation parameter Rd. An

increase in Rd results in decline in the boundary layer of

temperature near the surface. The behavior of gyrotactic

microorganism concentration χ(ζ) due to bioconvection

Lewis number Lb effect is visible in Figure 11. Due to the

development of bioconvection Lewis number Lb, the

gyrotactic microorganism concentration diffusion rate is

enhanced. The decrease in gyrotactic microorganism

concentration with enhanced values of the Peclet number

Pe is seen in Figure 12. The reason is that rising values of Pe

increase the cell swimming speed, which results in decreasing

the microorganism density. Concentration of the chemical

reaction ϕ(ζ) and homogeneous chemical reaction parameter

k1 are considered in Figure 13. It is scrutinized that ϕ(ζ)

decreases as k1 enhances. The heterogeneous chemical

FIGURE 8
Role of the heat transfer profile and parameter.

FIGURE 9
Role of the heat transfer profile and parameter.

FIGURE 10
Role of the heat transfer profile and parameter.

FIGURE 11
Role of the gyrotactic microorganism concentration profile
and parameter.

FIGURE 12
Role of the gyrotactic microorganism concentration profile
and parameter.
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reaction parameter k2 and the concentration of chemical

reaction ϕ(ζ) are pictured in Figure 14. The graph shows a

reduction trend for various values of k2. The Schmidt

number Sc effect and the concentration of the chemical

reaction ϕ(ζ) are plotted in Figure 15. It is observed that

ϕ(ζ) has a decreasing behavior for Sc = 1.10, 2.10, 3.10,

and 4.10.

6 Conclusion

A porous spinning disk is studied in terms of second-grade

nanofluid flow, heat and mass transfer with the flow of

gyrotactic microorganisms incorporating the effects of Hall

current, thermal radiation, and mixed convection under

convective boundary conditions. The Homotopy analysis

method (HAM) is used to obtain the solution of

transformed equations.The concluding remarks are given as

follows:

1) The radial velocity is increased with the increasing values of

second-grade nanofluid and stretching parameters.

2) The azimuthal velocity is enhanced with the increasing values

of the magnetic field and injection parameters.

3) The temperature is reduced with the increasing values of

the thermal radiation parameter and Eckert number,

while it is enhanced with the Biot and Reynolds

numbers.

4) The gyrotactic microorganism concentration is enhanced

with the increasing values of the bioconvection Lewis

number and is reduced with the increasing values of the

Peclet number.

5) The concentration of the chemical reaction is reduced with

the increasing values of homogeneous–heterogeneous

chemical reaction parameters and Schmidt number.

6) There exists excellent agreement between the previously

published work and present work.
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Nomenclature

Abbreviations

m Hall parameter

(u, v, w) velocity components

(r, ϑ, z) cylindrical coordinates

c1 stretching rate

ṽ average swimming velocity of oxytactic microorganisms

Wce cell swimming speed

w0 suction/injection parameter

Sc Schmidt number

M magnetic field parameter

Pr Prandtl number

Ec Eckert number

Lb bioconvection Lewis number

Pe Peclet number

Ci, i = 1, 2, 3..., 11 arbitrary constants

Re Reynolds number

Rd thermal radiation parameter

k thermal diffusivity

kc, ks chemical reactant rate constants

k1 strength of the homogeneous chemical reaction

k2 strength of the heterogeneous chemical reaction

ke mean absorption coefficient

T temperature

N motile microorganism concentration

P pressure

Bi Biot number

cP specific heat at constant pressure

s1 non-dimensional stretching parameter

b1 chemotaxis constant

hw non-dimensional suction/injection parameter

D diffusivity

Gr Grashof number

A, B chemical species

a, b concentration of chemical species

f dimensionless radial velocity

g dimensionless tangential velocity

h dimensionless axial velocity

g1 gravity acceleration

B0 applied magnetic field strength

qr radiation heat flux

hf convective heat transfer

L linear operator

Greek symbols

Ω angular velocity

σ electrical conductivity

σ* Stefan–Boltzmann constant

ζ similarity variable

ϕ(ζ) concentration of the homogeneous chemical reaction

ϕ1(ζ) concentration of the heterogeneous chemical reaction

θ(ζ) dimensionless temperature

χ(ζ) non-dimensional motile microorganism concentration

α1 second-grade fluid parameter

γ1 microorganism concentration difference parameter

δ ratio of diffusion coefficients

β coefficient of volumetric volume expansion

β1 non-dimensional second-grade nanofluid parameter

ν kinematic viscosity

μ dynamic viscosity

ρ density

Subscripts

f base fluid

w condition at the wall

Superscripts

9 differentiation with respect to ζ
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