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Heat transport over an upper paraboloid horizontal surface of revolution (UPHSR) has
attractedmuch interest of the researchers and aero dynamists. The flow of fluid around the
pointed surface of rocket, bullets, bonnet, and fighting aircrafts exhibits flows in which
engineering parameters like shear stresses and Nusselt number significantly contributed.
Therefore, the study of fluid comprising heat generation/absorption, Lorentz forces, and
chemical reaction over a radiative UPHSR is conducted. The basic constitutive relations
are transformed into dimensionless version via similarity variables and tackled numerically.
The temperature β(η) extensively intensifies under stronger dissipation effects (Ec).
Furthermore, Prandtl, Biot, and thermal radiations effects are observed to be of huge
significance in the analysis of heat transfer. The concentration of the fluid decays for
optimum Sc and γ over a UPHSR. The local rate of mass (−ϕ′(0)) and temperature (−β′(0))
effectively increases for Bi and Sc, respectively.
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INTRODUCTION

The flow characteristics over an upper paraboloid horizontal surface of revolution (UPHSR) are
significant and have attracted much interest from researchers and scientists. Flows of such a
nature are seen across the tops of vehicles, the top face of bullets, and in aerodynamic phenomena.
In this light, flow behavior over an UPHSR is a potential topic of interest in the field of fluid
dynamics.

Keeping in mind the concept of the flow over an upper horizontal paraboloid surface of
revolution, the researchers have focused on heat transport and fluid motion characteristics
under various flow situations. Recently, Khan et al. [1] explored the behavior of Carreau liquid
over a UPHSR. The model was introduced for bioconvection fluid by considering the influences of
chemical reaction. The dimensionless comprising a new parametrization for Carreau fluid was
treated by implementing Keller box techniques and decorated the results against the flow parameters.
The reduction in the velocity of the bioconvection fluid against the stronger magnetic field was
explored in the study. Moreover, they concluded that the stronger Prandtl effects reduced the fluid
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temperature and thermophoresis, and Brownian effects led to an
increment in the bioconvection fluid temperature.

In 2020, Santoshi et al. [2] presented the analysis of non-
Newtonian fluid over a paraboloid of revolution. They adopted
similarity transformations for the nondimensionalization of the
model and then found impacts for various flow quantities, such as
the Prandtl number, the Casson parameter, and the Weissenberg
number for the flow properties. They indicated that the fluid
motion drops by increasing the strength of the imposed magnetic
field. Furthermore, augmentation to fluid temperature was
reported against the Casson parameter. The influences of
thermal radiations on the flow behavior are significant from
an industrial and engineering point of view. In this regard,
Makinde et al. [3] modeled a flow problem by comprising the
thermal radiations effects in constitutive relations and attained a
dimensionless version of the model via similarity transformation.
They elaborated the results for the fluid temperature and motion
and discussed them comprehensively.

In recent decades, researchers and scientists focused on
exploring heat transport mechanisms in nanofluids [4].
Nanofluids are newly engineered colloidal suspensions of a
host liquid and metallic nanomaterials. These have attracted
attention among scientists and engineers due to their superior
thermal performance compared to conventional liquids. The
Lorentz forces significantly alters the characteristics of the
nanofluids. Therefore, Animasaun et al. [5] conducted thermal
transport in the nanofluids by considering the impacts of Lorentz
forces [6] over an UPHSR. The colloidal mixture is made up of
29 nm CuO nanomaterials, and water was taken as the host
liquid. It was assumed that the metallic nanoparticles were
uniformly diluted in the host liquid. Significant alterations in
the nanofluid velocity in the vicinity of UPHSR and
augmentation in the thermal field were examined against a
higher volumetric fraction.

Another significant analysis regarding the heat transport in the
nanofluids over an UPHSR was conducted by Animasaun et al.
[7] in 2019. They presented an analysis in the presence of Lorentz
forces ([8]) and reported the fascinating flow behavior and
thermal transport in the nanofluid against multiple flow
quantities. The heat transfer and fluid motion for gyrotactic
microorganisms in the presence of thermoelectric phenomena
was reported in [9]. The authors examined the maximum fluid
motion against Peclet and buoyancy parameters. To enhance the
novelty of the study, they also incorporated the thermal radiation
effects in the governing model and explored significant results for
thermal performance in the flow of gyrotactic microorganisms.

The flow over a UPHSR exhibits a boundary layer flow and
practiced in daily life and in engineering sides as well. The
boundary layer is a thin layer of fluid in which the effects of
viscosity are dominant. Such flows occur naturally around the
wings of fish, flow of air around birds, and other occasions
species. Therefore, the applications of such flows comprised in
solar collectors, aeronautical engineering, and in aerodynamics.
In 2017, Reddy et al. [10] introduced a computational model over
an UPHSR by taking convective flow condition and Lorentz
forces. To intensify the heat transport mechanism in the fluid,
they used ferro magnetic nanomaterials and gained a colloidal

model. They examined a better heat transfer rate in ferrofluid in
comparison with simple fluid. Moreover, the results for skin
friction coefficient and the local thermal performance rate were
elaborated in the form of numeric values.

The study of micropolar fluid over UPHSR in the presence of
chemical reaction was carried out by Koriko and Animasaun [11]
in 2017. They revealed that the temperature-dependent viscosity
leads to an increment in the vertical fluid motion near the free
stream, but the microrotation parameter declines near UPHSR.
Furthermore, thermal radiation [12] had a significant influence
on fluid thermal performance and walls shear stresses. The
viscous dissipation effects greatly influence and alter the fluid
characteristics over a finite or semi-infinite regions. In 2017, Ajayi
et al. [13] detected the results for Casson dissipative fluid over a
thermally radiative UPHSR. They reduced the constitutive
relations for the momentum and energy into a dimensionless
flowmodel, and then for mathematical analysis of the model, they
utilized an RK scheme and portrayed the results in opposition to
the flow parameters. They explored the significant effects of St on
the wall shear stresses. Furthermore, significant investigation of
the fluid characteristics over different geometries and flow
conditions were reported in [14, 15] and in the literature cited
therein.

The investigation of thermal performance in variety of
nanofluids under bunch of physical conditions representing
the fluid flow behavior at the boundaries with certain sources
(magnetic field, thermal radiations [16], viscous dissipation, heat
generation/absorption etc.) and activation energy is examined in
[17–21]. The authors pointed that thermal radiations and
activation energy are better sources to improve internal heat
ability of the nanofluids particularly is Sutterby nanofluid. The
exploration of fluid behavior in porous media is very significant
and is of huge importance for underground reservoirs. In this
context, a study is reported by Turkyilmazoglu [22] and engaged
the study with novel aspects of solar heat, MHD, and internal
thermal sources. The role of hybrid nanomaterials (Cu-Al2O3) for
thermal enhancement in water under the impact of MHD,
radiation source, and surface slip are discussed by Wahid et al.
[23]. A recent analysis of heat transport was conducted by taking
nonvariable magnetic field along a horizontal direction in [24].

PROBLEM STATEMENT AND
MATHEMATICAL MODELING

Consider two-dimensional, steady, and laminar flow of
chemically reacting and electrically conducting Newtonian
fluid past a thermally stratified upper horizontal surface of
paraboloid of revolution place in Cartesian coordinate system.
The coordinate axes are taken in such a way that x − axis is along
the paraboloid surface and y − axis makes right angle with
x − axis. Magnetic field B is imposed perpendicularly to the
UHSPR. It is considered that flow regimes are
A(x + b) 1−m

2 ≤y<∞. Furthermore, fluid velocity at the
paraboloid surface is of the form Uw � U0

(x+b)−m. Here, b and m
represent parameter related to stretchable sheet and velocity
index parameter, respectively. The temperature of the fluid at
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the surface is the function Tw(x) � A(x + b) −m+1
2 . The physical

model for the flow of chemically reacting fluid over a thermally
stratified paraboloid surface of revolution is depicted in Figure 1.

The equations that govern the flow of chemically reacting and
electrically conducting fluid over a paraboloid surface of
revolution are the following [3, 13, 15]:

zu

zx
+ zv

zy
� 0, (1)

u
zu

zx
+ v

zu

zy
� μ

ρ
(z2u
zy2

) − σB2

ρ
u, (2)

u
zT

zx
+ v

zT

zy
� k

ρcp
(z2T
zy2

)
+ Q0(T∞ − T0)

ρcp
(2.7128)−ny

��
m+1
2

√ ��
U0
]

√
(x+b)m−1

2

+ σB2

ρcp
(u2) − 16σpT3

∞

3kpρcp
(z2T
zy2

), (3)

u
zC

zx
+ v

zC

zy
� D(z2C

zy2
) − k1(C − C∞). (4)

The law of conservation of mass is given as in Eq. 1. The
momentum and energy equations in the presence of magnetic
field, internal heat source, and resistive heating are given in Eqs 2,
3, respectively. Furthermore, Eq. 4 shows the mass transfer of the
fluid. The dimensional physical quantities ingrained in Eqs 1–4
are fluid density (ρ), fluid dynamic viscosity (μ), imposed
magnetic field (B), specific heat capacity at constant pressure
(cp), velocity stretching index (m), Stefan Boltzmann constant
(σ*), mean absorption coefficient (k*), ambient temperature T∞,
mass diffusivity (D), the rate of chemical reaction (k1), u is the
velocity component along x-axis, v is the velocity of the fluid
along y-axis, C is the fluid concentration, electrical conductivity
(σ), and thermal conductivity is k.

For our flow model, feasible set of boundary conditions for
fluid motion, temperature, and concentration at the surface of
paraboloid and away from the surface of paraboloid are listed in
Eqs 5, 6. Physically, these conditions convey the message that
velocity and concentration at y � 0 is same as that of the surface.
Furthermore, the UPHSR is subject to convective heat condition.
As for as the fluid stream approaches to its final layer, the
dynamics asymptotically decay.

At y � 0:

u(x, y) � Uw, v(x, y) � 0,−k zT
zz

� h(T − Tw), C(x, y)
� Cw(x), (5)

At y → ∞ :

u(x, y) → 0, T(x, y) → T∞, C(x, y) → C∞. (6)
Furthermore, supporting self-similar variables are defined in

the following way:

u � zψ

zy
, v � −zψ

zx
,

ψ(x, y) � �����
2]U0

m + 1

√
(x + b) m+1

2 f(η),
η �

���������
(m + 1)U0

2]

√
(x + b)(m−1)/2 y,

β*(η) � T − T∞

Tw − T∞
,

ϕ*(η) � C − C∞

Cw − C∞
. (7)

In Eq. 7, ψ is the stream function and it gratifies the law of
conservation of mass given in Eq. 1. After the differentiation of
stream function w.r.t x and y, we arrive with the following u and v
components of the velocity:

FIGURE 1 | | Floe configuration over a UPHSR.
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u � U0(x + b)mf′(η), (8)

v � −
�������
2]U0

(m + 1)

√
(m + 1)

2
(x + b) (m−1)

2 f(η). (9)

The dimensional form of the flow model reduced into the
following set of nonlinear differential equations by means of
Eqs 7–9.

f‴ − ( 2m
m + 1

)f′2 + ff″ −M2f′ � 0, (10)

(1 + Rd)β*″ − (m − 1
m + 1

)Pr ηf′β*′ + Prf β*′ + 2Prγ1
(m + 1)(2.7128)

−nη

+ 2PrEcM2

(m + 1) f′2� 0,

(11)
ϕ*″ − (m − 1

m + 1
) Sc ηf′ϕ*′ + Sc fϕ*′ − γScϕ � 0. (12)

Here, it is important to mention that the lower value of y is
not at the infant point of the slot. In this condition, it is impossible
to apply all the boundary conditions in Eq. 5 at y � 0.
Applying A � (x + b) −m+1

2 smaller value of y is almost
correspond to the smaller values of the dimensionless variable
η. For this purpose, a suitable value for η is taken in the
following way:

η � A

���������
(m + 1)U0

2]

√
� χ. (13)

This implies that suitable auxiliary conditions obtain at the
surface for feasible scale at η � χ. Thus, boundary conditions are
reduced into the following manner:

f′(χ) � 1, f(χ) � χ[1 −m

1 +m
], βp′(χ) � Bi(βp(χ) − 1), ϕp(χ)

� 1,

(14)
f′(χ) → 0, βp(χ) → 0, ϕp(χ) → 0. (15)

Furthermore, to restrict the domain [χ,∞) to [0,∞), we use
F(ζ) � F(η − χ) � f(η), β(ζ) � β(η − χ) � β*(η), and
ϕ(ζ) � ϕ(η − χ) � ϕ*(η). Thus, Eqs 10–12 reduce into the
following set of nonlinear ordinary differential equations:

F‴ − ( 2m
m + 1

)F′2 + FF″ −M2F′ � 0, (16)

(1 + Rd)β″ − (m − 1
m + 1

)Pr ηF′β′ + PrF β′ + 2Prγ1
(m + 1)(2.7128)

−nζ

+ 2PrEcM2

(m + 1) F′2

� 0,

(17)
ϕ″ − (m − 1

m + 1
) Sc ηF′ ϕ′ + Sc Fϕ′ − γScϕ � 0. (18)

For our flow problem, nondimensional boundary conditions
are set in the following manner:

At ζ � 0:

F′(ζ) � 1, F(ζ) � χ[1 −m

1 +m
]β′(ζ) � Bi(β(ζ) − 1), ϕ(ζ) � 1.

(19)
At ζ → ∞ :

F′(ζ) → 0, β(ζ) → 0, ϕ(ζ) → 0. (20)
The non-dimensional physical quantities appeared in Eqs

16–18 are as follows:
M2 � σB2

0
ρ , Pr � ]ρCp

k , Ec � U0(x+b)m+1
cp(Tw−T∞) and Sc � ]

D
Quantities of physical and practical interest, such as skin

friction coefficient, local heat transfer, and mass transfer
gradients in nondimensional form, are as follows:

CF

���
Rex

√ � F″(0),
Nu(Rex)−1

2 � −β′(0), (21)
Sh(Rex)−1

2 � −ϕ′(0).
Here, Rex � Uw(x+b)

] and is known as the local Reynold
number.

MATHEMATICAL ANALYSIS

For our flow model, it is very difficult to perform analytical
computations, or such solutions may not even exist. Thus, for the
flow model, we adopted numerical technique called the Runge-
Kutta scheme [25–27]. First, we transformed under consideration
flow model in a system of first-order initial value problem, and
then computations are carried out by means of Mathematica 10.0.
To obtain the first-order initial value problem, we made the
following substitutions:

y1 � F, y2 � F′, y3 � F″, y4 � β, y5 � β′, y6 � ϕ, y7 � ϕ′.
(22)

The system given in Eqs 16-18 can be written in the following
manner:

F‴ � ( 2m
m + 1

)F′2 − FF″ +M2F′, (23)

β″ � ( 1
1 + Rd

)[(m − 1
m + 1

)Pr ηF′β′ − PrFβ′ − 2Prγ1
(m + 1)(2.7128)

−ζn

− 2PrEcM2

(m + 1) F′2],
(24)

ϕ″ � (m − 1
m + 1

)ScηF′ ϕ′ − ScF ϕ′ + γScϕ. (25)

With the help of the substitution given in Eq. 22, we arrive with
the following system of first-order initial value problem:
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. (27)

Here, li (for i � 1, 2, 3, 4) are unknown. Using Mathematica
10.0, we compute the tabulated results for the velocity,
temperature, and concentration fields (Table 1):

RESULTS AND DISCUSSION

This section explores the influence of various dimensionless
physical quantities appearing in the flow in terms of the
velocity, temperature, and concentration of the fluid. These
quantities play significant role in the flow regimes. In this
study, these parameters are magnetic number, Prandtl
number, Eckert number, radiation parameter, chemical
reaction parameter, Schmidt number, and Biot number. For
this purpose, Figures 2–8 are portrayed. Three-dimensional
scenario of the flow regimes is also provided. Furthermore, in
this section numerical computations for skin friction coefficient,
local rate of heat, and mass transfer are carried out for varying
physical quantities.

Figures 2A,B illustrate the impact of the velocity index
parameter m and Lorentz force on the velocity field and the
velocity gradient, respectively. The velocity index parameter
shows the decline in the fluid velocity. The activity of the fluid
decreases rapidly in the region 0.1≤ ζ ≤ 1.0. As we move beyond
this region, velocity field of the fluid starts decreasing
asymptotically. The variations in velocity gradient F′(ζ) also
decreases due to increasing the velocity index parameterm. In the
vicinity of the paraboloid surface, the velocity gradient shows
almost inconsequential variations. However, as we move away
from the surface of paraboloid, the velocity gradient starts
decreasing rapidly. Furthermore, three-dimensional view of the
velocity field F(ζ) and the velocity gradient F′(ζ) is depicted in
Figures 3A,B, respectively, due to varying velocity index
parameter m and magnetic number M.

The effects of the Eckert number Ec and velocity index
parameter m on the fluid temperature and temperature
gradient are portrayed in Figures 4A,B, respectively. It is
noted for increasing Ec fluid temperature increases rapidly in
the vicinity of the paraboloid surface. Far away from the surface,
the influence of the Eckert number on the fluid temperature is
almost inconsequential, and temperature vanishes
asymptotically. On the other hand, temperature gradient
shows reverse behavior for increasing the Eckert number. In
the region 0.5≤ ζ ≤ 2.0, temperature gradient β′(ζ) decreases
rapidly. The velocity index parameter m against the fluid
temperature and temperature gradient, respectively. For the
higher velocity index parameter m thermal field and thermal
gradient field decreases rapidly. Figures 5A,B elucidates 3D view
of the temperature field β(ζ) and thermal gradient field β′(ζ),
respectively.

The next set of figures highlight the variations in fluid
temperature β(ζ) and temperature gradient field β′(ζ) for
arising Prandtl and Biot numbers, respectively. From
Figure 6A, it can be seen that for higher Prandtl value,
thermal field β(ζ) increases rapidly near the paraboloid
surface. However, after ζ > 2, the fluid temperature begins
to decrease and vanishes asymptotically beyond ζ > 12.
Similarly, a rapidly falling temperature gradient β′(ζ) is
noted near the surface. The Biot number Bi opposes the
fluid temperature. This behavior of the fluid can be seen

TABLE 1 | Numerical solutions for the velocity, temperature, and concentration
fields.

M � 0.8, Ec � 0.5, Pr � 0.5, Rd � 0.5

η F ′(η) β(η) ϕ(η)
0.0 1.0000000000 1.0000000000 0.4146310423

0.5 0.7662305531 0.9191915518 0.2819022951

1.0 0.5464022186 0.8030584935 0.1821525111

1.5 0.3661580056 0.6751297664 0.1141150633

2.0 0.2324718931 0.5494943249 0.0701936150

2.5 0.1402323502 0.4325166571 0.0425405624

3.0 0.0799362225 0.3261851156 0.0252387806

3.5 0.0422413076 0.2305211258 0.0143625937

4.0 0.0196724145 0.1448369037 0.0074459103

4.5 0.0068222641 0.0682750712 0.0029695571

5.0 −2.24747564 × 10−8 −3.558369439 × 10−8 2.504364957 × 10−8
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FIGURE 2 | Influence of (A) m and (B) M on the velocity field.

FIGURE 3 | 3D view for (A) m and (B) M on the velocity field.

FIGURE 4 | Influence of (A) Ec and (B) m on β(ζ) and β′(ζ).
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FIGURE 5 | 3D view of β(ζ) and β′(ζ) for (A) Ec and (B) m.

FIGURE 6 | Influence of (A) Pr and (B) Bi on β(ζ) and β′(ζ).

FIGURE 7 | Influence of (A) Rd and (B) M on β(ζ) and β′(ζ).
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from Figure 6B. Over a more convectively heated surface, the
fluid temperature decreases rapidly. This decreasing behavior
of the fluid is very clear in the vicinity of the paraboloid
surface. Furthermore, the Biot number favors the thermal
gradient profile near the surface, and the asymptotic behavior
is investigated away from the surface for both fluid
temperature and its gradient.

The influence of thermal radiation and the magnetic
parameter M on fluid temperature and its gradient β′(ζ) are
illustrated in Figures 7A,B. The radiation parameter shows
fascinating behavior in the fluid temperature β(ζ) and
temperature gradient β′(ζ). It is noted that fluid temperature
decreases for stronger radiation parameter. These effects can be
seen in the region ζ � 1. On the surface of the paraboloid of
revolution, the influence of Rd on β(ζ) is noted almost

inconsequential. Away from the surface, decrement in the
fluid temperature become slow. The radiation parameter
favors the temperature gradient profile β′(ζ). These effects are
very clear in the portion 1.0≤ ζ ≤ 2.0. Beyond this region, the
temperature gradient profile shows almost negligible behavior for
imposed thermal radiation. The influence of Lorentz forces on
fluid temperature depicted in Figure 8B. It is observed that
imposed magnetic field favors the fluid temperature on the
surface of paraboloid. Away from the surface, the increasing
activity of the temperature profile becomes almost
inconsequential. On the other hand, temperature gradient field
β′(ζ) decreases for stronger magnetic fields.

The influence of chemical reaction parameter γ and Schmidt
number Sc on mas transfer profile illustrated in Figures 8A,B,
respectively. To increase γ and Sc, the mass transfer decreases and

FIGURE 8 | Influence of (A) γ and (B) Sc on ϕ(ζ).

TABLE 2 | Numerical values for skin friction coefficient and local Nusselt and Sherwood numbers.

m M Pr Ec Bi Sc γ F99(0) −β9(0) −ϕ9(0)

0.1 0.3 0.3 0.3 0.3 0.3 0.3 −0.744088 0.057493 0.50555
0.2 −0.805269 0.063379 0.49437
0.3 −0.854406 0.068558 0.48551
0.1 0.5 −0.63036 0.058409 0.51649

0.7 −0.433181 0.059690 0.53641
0.9 −0.111974 0.059664 0.56915
0.3 0.5 0.030813

0.7 0.012479
0.9 0.000392
0.3 0.5 0.056514

0.7 0.055534
0.9 0.054555
0.3 0.5 0.073178

0.7 0.082867
0.9 0.089446
0.3 0.5 0.689998

0.7 0.857216
0.9 1.009620
0.3 0.5 0.567593

0.7 0.623424
0.9 0.674436
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rapid decrement is investigated. In the case of Schmidt number,
these variations are much more rapid than those of the chemical
reaction parameter.

The variations in skin friction coefficient, local rate of
heat transfer (local Nusselt number), and local rate of
mass transfer (Sherwood number) are described in Table 2
due to variations in pertinent flow parameters. It is noted
that for increasing velocity index parameter m stronger
magnetic parameter M, the skin friction coefficient
increases absolutely. The Biot number enhanced the local
rate of heat transfer and in more dissipative flow
(increasing Eckert number), the local Nusselt number starts
decreasing. Furthermore, the Schmidt number and chemical
reaction parameter γ favor local mass transfer (Sherwood
number).

STUDY VALIDATION

The current investigation is validated through numerical
comparison with previously described data in the literature.
This was carried out using certain assumptions for the model,
and a fine comparison between both the current and reported
results for F″(0) was found. The computation is performed for
m � 0.1, 0.2, 0.3. Furthermore, thermal radiations and chemical
reaction effects were neglected in the comparison, and these
results are listed in Table 3.

CONCLUSION

A novel study regarding the heat and mass transfer over an
UPHSR subject to magnetic field, radiation effects, chemical
reaction, and internal heat source is reported. The results for
the flow field demonstrated and indicated that:

• The velocity index parameter opposes the fluid motion
inside the flow field.

• Thermal field β(η) increases prominently in the locality of
the surface under high dissipation effects.

• The more chemically reacting fluid and increasing Schmidt
number, ϕ(ζ) decreases.

• The skin friction coefficient shows absolutely increasing
behavior for m and M, respectively.

• The local heat and mass transfer rate intensify by enhancing
convection from the surface and Schmidt effects.
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