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This article studies fluid dynamics and convection of the geothermal system.

Earthquakes cause faults. Fault zones come up with the pathways for fluid

convection. These paths have different characteristics and space distribution,

causing the challenge to investigate the geothermal system. The cavity

considered in the study is normally found in energy reservoirs. An unsteady,

incompressible, and laminar flow along with convection is studied. The finite

element method (FEM) is operated to study the flow and heat transfer governed

by continuity equations, Navier-Stokes equations, and temperature equations.

These equations are tackled with the finite element method. The streamlines

and isothermal contours for the problem under discussion are displayed in the

Results section. It is observed that the Nusselt number and velocity of the fluid

increase with the increased Grashof number.
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Introduction

According to geophysics, earthquakes cause faults. Faults can be considered as planar

or curved fractures in rock due to which the rock displaces from its place to the other side

of the fracture. Their length starts from centimeters and varies up to kilometers. They

move either slowly or rapidly. Faults moving rapidly release more energy. The

conglomeration of parallel faults forms a fault zone. Faults can be classified into three

types: (I) tensional faults, in which the block of rock moves vertically upwards to the fault;

(II) compressional faults, in which the block of rock moves vertically downwards to the

fault; and (III) strike-slip faults, in which the block of rock moves along the fault

horizontally [1–3].

The energy accumulation of radioactive material disintegration results in the

expansion of material in the earth’s interior with the increase of temperature. The
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expansion may produce tensional fault zones. Faults without

magma are filled with mantle gas and supercritical fluid. Fluids

in their supercritical states have very high molar volume, and

very low density and conductivity. These fluids exhibit strong

fluidity and low viscosity. According to hydrothermal ore-

forming theory, hydrothermal fluid in the middle-lower crust

can move to the upper crust where it changes to its normal

state. Also SiO2, CaCO3, some metals, and non-metals

add to this hydrothermal fluid. This movement of fluid

creates a cavity in the middle and lower crust. This cavity

cannot be filled because sedimentation cannot occur in a

supercritical state [4, 5]. The analysis of heat transfer

and flow properties of hydrothermal fluid through such

cavities is very influential and has several applications. The

cavity found in the energy reservoirs is considered in this

study.

Energy that transfers from system to system as a consequence

of temperature difference is called heat. Heat transfer is a process

to determine such energy transfers. It is very significant for

physicists, mathematicians, engineers, and researchers. It

effects the fluid flow and due to its remarkable applications in

different engineering fields, biological processes, industrial

mechanisms, and geothermal studies, its study is of great

significance [6–17].

Conduction, convection, and radiation are three different

ways in which heat transfer is classified. Heat transfer through

molecular collision is called conduction, heat transportation

between a fluid adjacent to a surface and that surface is called

convection, and heat transfer through electromagnetic waves is

called radiation. Convection is either natural convection or

forced convection. Forced convection is driven by external

body forces, and natural convection is simply a result of

buoyancy force [18–30].

Fluid flow is an analysis to study the behavior of fluids and

their interaction with their surroundings. The flow of a fluid may

be turbulent or laminar. In laminar flow, parallel layers form

during the flow such that these layers do not disturb each other,

while flows aremore chaotic in the case of turbulent flows. On the

other hand, flow is steady if fluid properties do not depend on

time; otherwise they are unsteady. Fluid flow is visualized using

streamlines, streaklines, and pathlines. Most problems in fluid

dynamics are too complex to solve analytically. To solve such

complex problems, numerical methods are implemented with the

help of computer simulation. This field of study is called

computational fluid dynamics (CFD). In this paper, the

subsurface hydrothermal fluid flow has been studied using

computational techniques [31–43].

A cavity having an inlet and an outlet is considered to be in

the fault zone. A viscous and incompressible fluid enters through

the inlet on one side and leaves the cavity on the other side. A

metal piece in a rectangular shape is considered inside the cavity.

The article studies unsteady and laminar fluid flow through the

cavity and heat transfer during natural convection between the

metal piece and the fluid.

The prevailing equations are worked out followed by

Boussinesq assumption. Numerical results are acquired by the

use of the Galerkin finite element method (FEM) [44–54]. The

influences of changing the involved parameters in the study on

velocity and isothermal contours are presented. The physical

FIGURE 1
Geometry of cavity formed by fault.

FIGURE 2
Meshing of the cavity.
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properties of heat transfer and flow are exhibited using

isotherms, temperature distribution, and streamlines. Further,

the average Nusselt number is evaluated which analyzes heat

transfer rate from the rod.

Mathematical modeling

A 2D unsteady, incompressible, laminar, and natural

convective flow inside a cavity is carried out in the study. A

metal piece is placed at the middle of the considered cavity. The

walls of the cavity are thermally active and are at a higher

temperature Th, while cavity walls are thermally insulated.

The fluid is considered to be at low temperature Tc. Figure 1

exhibits the illustrative diagram for the considered cavity. The

center C of the metal piece is taken to be the origin of the

coordinate system.

The fluid’s thermophysical characteristics are defined to be

fixed. For natural convection, the density can be defined

according to the Boussinesq approximation; this variation is

expressed in the momentum equation (Eq. 4 below). The

density can be related to temperature linearly by the relation

defined in Eq. 1:

TABLE 1 Grid independent test.

Number
of triangular
elements

Average
Nusselt
number (Nu)

Percentage
error

1,236 2.8590 ---

2,348 2.8639 0.17%

2,879 2.8655 0.05%

3,001 2.8661 0.02%

3,930 2.8664 0.01%

FIGURE 3
Streamlines at Re = 700 and at different Grashof numbers.
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ρ � ρo[1 − β(T − To)], (1)

In the energy equation, the radiation heat transfer and joule

heating are disregarded. The governing equations [55, 56]

depending on the above assumptions taken are as follows:

zu

zx
+ zv

zy
� 0, (2)

zu

zt
+ u

zu

zx
+ v

zu

zy
� −1

ρ

zp

zx
+ ](z2u

zx2
+ z2u

zy2
), (3)

zv

zt
+ u

zv

zx
+ v

zv

zy
� −1

ρ

zp

zy
+ ](z2v

zx2
+ z2v

zy2
) + gβ(T − Tc), (4)

zT

zt
+ u

zT

zx
+ v

zT

zy
� k

ρcp
(z2T
zx2

+ z2T

zy2
), (5)

Initial conditions for the under-discussion problem are as

follows:

For t � 0:

u � v � 0, T � Tc, (for the fluid inside the cavity), (6)
T � Th, (for the walls ofmetal rod). (7)

Boundary conditions are as follows:

For t > 0:

u � U0, v � 0 (At inlet) (8)
T � Th (for the walls ofmetal rod), (9)
zT

zn
� 0 (for walls of the cavity), (10)

where n is normal to the surface.

FIGURE 4
Streamlines at Re = 1,000 and at different Grashof numbers.
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Reduction to dimensionless form

The system of governing equations given by Eqs. 2–10 is

reduced to dimensionless form by the use of dimensionless

variables given as follows:

X � x

L
, Y � y

L
, U � u

U0
, V � v

U0
,

t̂ � tμ

ρL2
, P � p

ρU2
0

, θ � T − Tc

Th − Tc
.

After this parametrization, Eqs. 2–5 become the following:

zU

zX
+ zV

zY
� 0, (11)

zU

zt̂
+ U

zU

zX
+ V

zU

zY
� −zP

zX
+ 1
Re

(z2U
zX2

+ z2U

zY2
), (12)

zV

zt̂
+ U

zV

zX
+ V

zV

zY
� −zP

zY
+ 1
Re

(z2V
zX2

+ z2V

zY2
) + Gr

Re2
θ, (13)

zθ

zt̂
+ U

zθ

zX
+ V

zθ

zY
� 1
Re × Pr

(z2θ

zX2
+ z2θ

zY2
). (14)

with initial conditions as the following:

For t̂ � 0:

U � V � 0, θ � 0, (for the fluid inside the cavity), (15)
θ � 1, (for thewalls ofmetal rod), (16)

and boundary conditions as the following:

For t̂ > 0:

U � 1, V � 0 (At inlet), (17)
θ � 1 (for thewalls ofmetal rod) (18)

FIGURE 5
Pressure Variation at Re = 700 and at different Grashof Number.
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zθ

zn̂
� 0 (for walls of the cavity), (19)

where

Gr � gβL3ΔT
]2

, Re � U0L

]
, Pr � μcp

k
, ] � μ

ρ
,ΔT � Th − Tc.

Solution method

Since analytical methods to solve the system of equations

given by Eqs. 11–19 fail for complicated cases, numerical

techniques are used to obtain the solution. As discussed

before, the Galerkin finite element method is applied to solve

the system of Eqs. 11–19. The pressure term is penalized by the

virtue of the penalty parameter γ using the penalty finite element

method [57, 58] as follows:

P � −γ (zU
zX

+ zV

zY
). (20)

Using Eq. 20 in Eqs. 12 and 13, wegetthe following:

zU

zt̂
+ U

zU

zX
+ V

zU

zY
� γ(z2U

zX2 +
z2V

zXzY
) + 1

Re
(z2U
zX2 +

z2U

zY2),
(21)

zV

zt̂
+ U

zV

zX
+ V

zV

zY
� γ( z2U

zYzX
+ z2V

zY2) + 1
Re

(z2V
zX2 +

z2V

zY2)
+ Gr

Re2
θ.

(22)

FIGURE 6
Pressure Variation at Re = 1,000 and at different Grashof Number.

Frontiers in Physics frontiersin.org06

Nadeem et al. 10.3389/fphy.2022.959168

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.959168


Weak formulation

Weight functions are used to give the weak formulation of

Eqs. 14, 21, and 22. The weak formulations of these equations for

a triangular element Ae of the cavity using w1, w2, and w3 as the

weight functions are as follows:

∫
Ae
w1(zU

zt̂
+ U

zU

zX
+ V

zU

zY
)dA − ∫

Ae
w1γ(z2U

zX2 +
z2V

zXzY
)dA

−∫
Ae
w1

1
Re

(z2U
zX2 +

z2U

zY2)dA � 0, (23)

∫
Ae
w2(zV

zt̂
+ U

zV

zX
+ V

zV

zY
)dA − ∫

Ae
w2γ( z2U

zYzX
+ z2V

zY2)dA
− ∫

Ae
w2

1
Re

(z2V
zX2 +

z2V

zY2)dA − Gr

Re2
∫
Ae
w2 θ dA

� 0,

(24)

∫
Ae
w3(zθ

zt̂
+U zθ

zX
+V zθ

zY
)dA− 1

Re×Pr
∫
Ae
w3(z2θ

zX2 +
z2θ

zY2)dA� 0,
(25)

FIGURE 7
Temperature distribution at Re = 700 and at different Grashof Number.
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where the subscript Ae on the integral is for the triangular

discretized elements.

Finite element method

Using FEM, we approximate the functions U (X, Y,t̂), V (X,

Y,t̂) and θ (X, Y,t̂) as Ue, Ve, and θe over the triangular elements

Ae. Thus,

U ≈ Ue(X,Y, t̂) � ∑6

i�1U
e
iϕ

e
i (X,Y, t̂), (26)

V ≈ Ve(X,Y, t̂) � ∑6

i�1V
e
iϕ

e
i (X,Y, t̂), (27)

θ ≈ θe(X,Y, t̂) � ∑6

i�1θ
e
iϕ

e
i (X,Y, t̂), (28)

FIGURE 8
Temperature distribution at Re = 1,000 and at different Grashof Number.

TABLE 2 Computation of Nusselt number for different Grashof
numbers and Reynolds numbers.

Reynolds
number (Re)

Grashof
number (Gr)

Average Nusselt
number (Nu)

700 1×104 0.0516

5×104 0.3276

1×105 0.6956

5×105 2.8664

1×106 7.5720

1,000 1×104 0.0564

5×104 0.3204

1×105 0.7820

5×105 2.9524

1×106 6.6796
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where ϕei is used as a trial function. Substituting Eqs. 26–28 in

Eqs. 23–25 obtains the system of residuals as follows:

R(1)
j � ∑6

i�1U
e
i∫

Ae

⎧⎨⎩zϕe
i

zt̂
+⎛⎝∑6

i�1U
e
iϕ

e
i
⎞⎠ zϕe

i

zX

+⎛⎝∑6

i�1V
e
iϕ

e
i
⎞⎠ zϕe

i

zY

⎫⎬⎭ϕe
jdA − γ

⎧⎪⎨⎪⎩∑6

i�1U
e
i∫

Ae

zϕe
j

zX

zϕe
i

zX

+∑6

i�1V
e
i∫

Ae

zϕe
j

zX

zϕe
i

zY

⎫⎪⎬⎪⎭dA − 1
Re

∑6

i�1U
e
i∫

Ae
{zϕe

j

zX

zϕe
i

zX

+zϕ
e
j

zY

zϕe
i

zY
}dA, (29)

R(2)
j � ∑6

i�1V
e
i∫

Ae

⎧⎨⎩zϕe
i

zt̂
+⎛⎝∑6

i�1U
e
iϕ

e
i
⎞⎠ zϕe

i

zX

+⎛⎝∑6

i�1V
e
iϕ

e
i
⎞⎠ zϕe

i

zY

⎫⎬⎭ϕe
jdA − γ

⎧⎪⎨⎪⎩∑6

i�1V
e
i∫

Ae

zϕe
j

zY

zϕe
i

zX

+∑6

i�1V
e
i∫

Ae

zϕe
j

zY

zϕe
i

zY

⎫⎪⎬⎪⎭dA − 1
Re

∑6

i�1V
e
i∫

Ae
{zϕe

j

zX

zϕe
i

zX

+ zϕe
j

zY

zϕe
i

zY
}dA − Gr

Re2

∫
Ae
∑6

i�1θ
e
iϕ

e
i dA (30)

FIGURE 9
Isothermal contours at Re = 700 and at different Grashof numbers.
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R(3)
j � ∑6

i�1θ
e
i∫

Ae

⎧⎨⎩zϕe
i

zt̂
+⎛⎝∑6

i�1U
e
iϕ

e
i
⎞⎠ zϕe

i

zX

+⎛⎝∑6

i�1V
e
iϕ

e
i
⎞⎠ zϕe

i

zY

⎫⎬⎭ϕe
jdA

− 1
Re × Pr

∑6

i�1θ
e
i∫

Ae
{zϕe

j

zX

zϕe
i

zX
+ zϕe

j

zY

zϕe
i

zY
}dA. (31)

The above integrals are evaluated by numerical integration.

Newton method

Thus, we get a linear system of equations and is tackled using

Newton-Raphson form:

J(dm − dm+1) − R(dm) � 0. (32)

The above system of equations is solved for every iteration. Here

d represents the iterative index, R (dm) the vector of residual, and

J (dm) the Jacobian matrix. The Jacobian matrix J (dm) includes

FIGURE 10
Isothermal contours at Re = 1,000 and at different Grashof numbers.
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the partial derivatives of the family of residuals in respect of U, V,

and θ. Divided differences are used to evaluate the Jacobian.

Computation of the Nusselt number

The Nusselt number measures the rate of heat transfer from

the heated rod. It is calculated as follows:

Nu � −zθ
zn
, (33)

where n is normal to the plane.

At the vertical wall of the rod, it is defined as follows:

Nu � −∑6

i�1θ
e
i

zϕe
i

zX
. (34)

And at the horizontal wall, it is defined as follows:

Nu � −∑6

i�1θ
e
i

zϕe
i

zY
, (35)

The expressions that calculate the average Nusselt number

over vertical and horizontal sides of the rod will be given by the

following:

Nu � 1
L
∫L

0
Nu dY, Nu � 1

L
∫L

0
Nu dX, (36)

respectively.

Meshing

A triangular mesh of 3,930 elements was used to study the

problem numerically as shown in the Figure 2.

Algorithm validation and grid
independent test

The grid independent test is necessary to ensure the

accuracy of the results. For this, the Nusselt number is

calculated for a different number of triangular mesh

elements. It is noted that the percentage error in the

Nusselt number for mesh elements 3,001 is about 0.01% as

compared with the refined mesh of 3,930 triangular elements.

Therefore, the refined mesh of 3,930 triangular elements is

used to explore the present problem. Table 1 shows different

values of the Nusselt number for different mesh elements at

Re = 700 and Gr = 5×103.

Results and discussion

In this portion, the flow and heat transfer through the cavity

formed due to the fault have been shown graphically for various

parameters using COMSOL Multiphysics. In Figure 3, the

Reynolds number is kept constant at 700 and the Grashof

number is varied, and in Figure 4, the Reynolds number is

kept fixed at 1,000 and the Grashof number is varied. It can

be seen that the flow pattern is varied slightly for greater Grashof

numbers, but velocity increases remarkably for Gr ≥ 2 × 106

(this can be seen from the attached color legend in Figures 3 and

4) which shows that velocity of the fluid increases with the

increased Grashof number. On the other hand, from Figures 5

and 6, it can be observed that pressure is less in the surrounding

of the lower wall than that of the upper wall, showing that the

velocity is higher near the lower wall. This can also be analyzed

with reference to the buoyancy force effect.

Moreover, from Figures 7–10, significant variation can be

observed in the convection dominant region. Figures 7 and 8

represent temperature distributions and isotherms, respectively

at different Grashof numbers and fixed Reynolds number 700,

and Figures 9 and 10 show temperature distributions and

isotherms, respectively for different Grashof numbers and

fixed Reynolds number 1,000. The temperature distribution

becomes more uniform, and isotherms spread more within

the cavity for Gr ≥ 2 × 106. The physical meaning is that the

temperature variation between the metal piece and surrounding

fluid increases with the Grashof number. The heat transfer rate is

evaluated in the form of the average Nusselt number for various

Grashof numbers and Reynolds numbers, which is displayed in

Table 2.

Conclusion

In this paper, heat transfer has been investigated in laminar

flow due to natural convection through the cavity formed by

faults. The finite element method discretizes the prevailing

equations. The discretized equations are dealt with through

COMSOL Multiphysics. The computed results are displayed

in the Discussion section. From the simulation of the flow, it

is analyzed that the velocity of the fluid increases as the Grashof

number increases, and it is greater below the metal piece due to

the effect of the buoyancy force. Moreover, the Nusselt number

also increases with the increased Grashof number. It is also

concluded that the tensional fault zones formed by the energy

accumulation of radioactive material disintegration cause the

cavities which are responsible for the transportation of energy in

the form of heat. There are many applications of the analysis of
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heat transfer and fluid flow characteristics of hydrothermal fluid

through such cavities.
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Nomenclature

u, v Velocity components (ms−1)

T Temperature (K)

p Pressure (Pa)

cp Specific heat at constant pressure (kJ kg−1K−1)

μ Dynamic viscosity of fluid (N s m−2)

ν Kinematic viscosity of fluid (m2 s−1)

k Thermal conductivity of fluid (W m−1 K−1)

β Coefficient of thermal expansion (K−1)

ρ Density of fluid (kg m−3)

g Acceleration due to gravity (m s−2)

Th Temperature of metal piece (K)

Tc Temperature of fluid (K)

ρ0 Density of fluid at Tc (kg m−3)

U0 Characteristic velocity (m s−1)

L Characteristic length (m)

U ,V Dimensionless velocity components (—)

t̂ Dimensionless time (—)

P Dimensionless pressure (—)

θ Dimensionless temperature (—)

Re Reynolds number (—)

Pr Prandtl number (—)

Gr Grashof number (—)

Nu Nusselt number (—)
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