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In recent years, the microscopy technology referred to as Polarized Light

Imaging (3D-PLI) has successfully been established to study the brain’s nerve

fiber architecture at themicrometer scale. Themyelinated axons of the nervous

tissue introduce optical birefringence that can be used to contrast nerve fibers

and their tracts from each other. Beyond the generation of contrast, 3D-PLI

renders the estimation of local fiber orientations possible. To do so, unstained

histological brain sections of 70 μm thickness cut at a cryo-microtome were

scanned in a polarimetric setup using rotating polarizing filter elements while

keeping the sample unmoved. To address the fundamental question of brain

connectivity, i. e., revealing the detailed organizational principles of the brain’s

intricate neural networks, the tracing of fiber structures across volumes has to

be performed at the microscale. This requires a sound basis for describing the

in-plane and out-of-plane orientations of each potential fiber (axis) in each

voxel, including information about the confidence level (uncertainty) of the

orientation estimates. By this means, complex fiber constellations, e. g., at the

white matter to gray matter transition zones or brain regions with low

myelination (i. e., low birefringence signal), as can be found in the cerebral

cortex, become quantifiable in a reliablemanner. Unfortunately, this uncertainty

information comes with the high computational price of their underlying

Monte-Carlo sampling methods and the lack of a proper visualization. In the

presented work, we propose a supervised machine learning approach to

estimate the uncertainty of the inferred model parameters. It is shown that

the parameter uncertainties strongly correlate with simple, physically

explainable features derived from the signal strength. After fitting these

correlations using a small sub-sample of the data, the uncertainties can be

predicted for the remaining data set with high precision. This reduces the

required computation time bymore than two orders of magnitude. Additionally,

a new visualization of the derived three-dimensional nerve fiber information,

including the orientation uncertainty based on ellipsoids, is introduced. This
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technique makes the derived orientation uncertainty information visually

interpretable.
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polarized light imaging, birefringence, nerve fibers, uncertainty propagation,
neuroimaging, uncertainty visualization, machine learning, Markov chain Monte Carlo

1 Introduction

The centerpiece of human brain connectivity is the

connectome-a comprehensive description of how neurons and

brain regions are interconnected. It is the indispensable

foundation for understanding how brain dynamics and

function emerge from their underlying structural (neural)

substrate [1, 2]. This general concept of the connectome was a

key driver in the field of connectivity research in the last

two decades. It has triggered impressive advancements in in-

vivo and postmortem neuroimaging, in particular, DiffusionMRI

(dMRI) [3–5], but also of light microscopic and electron

microscopic techniques applicable to postmortem brain tissue,

aiming for cross-validation of connectivity analysis results [6]. A

major challenge for any imaging technique is that the human

brain is a vastly complex organ built-up of about 86 billion

neurons interacting in differently sized neural networks with

each other. A neuron exhibits a slender projection, i. e., an axon

that may be surrounded by myelin sheaths. Myelinated axons

(here referred to as nerve fibers) do have calibers at the order of

1 μm [7] and transmit signals sometimes over millimeters or even

centimeters [8].

Recently, label-free optical imaging techniques, such as

polarization microscopy [9, 10], optical coherence tomography

[11] and harmonic generation microscopy [12], have been

adopted to visualize and trace nerve fibers in the brain. These

techniques rely on intrinsic tissue contrasts sensed by the used

techniques instead of classical staining [13, 14]. Another novel

approach is clearing, i. e., rendering tissue transparent, after

which the tissue is treated with fluorescent dyes and imaged

with fluorescence microscopy [15–17]. Multi-Photon

Fluorescent Microscopy has also been used for high-resolution

in-depth scanning in regions of interest in histological brain

sections [18–20]. While the mentioned techniques achieve (sub-)

micrometer resolution, imaging neural structures at the

nanoscale can only be provided by electron microscopy [21,

22]. However, most of these microscopic approaches are limited

to small volumes and/or numbers of samples which prevents

addressing the entire human brain in a reasonable time frame [6].

Three-Dimensional Polarized Light Imaging (3D-PLI [9, 10])

has emerged as a unique imaging technique capable of

contrasting nerve fibers and fiber tracts in white and gray

matter, quantifying their spatial courses connecting different

brain regions, and covering serial whole-human brain sections

at a few micrometer resolution. Polarization microscopy as a tool

for connectivity analysis was elaborated in numerous studies on

normal and pathologically impaired nervous tissue for more than

a century [23, 24]. However, its application to histological brain

sections and the reconstructions thereof aiming to compare with

dMRI results experienced a considerable boost in the last decade

[9, 10, 25–31].

Compared to other microscopic techniques, 3D-PLI has the

distinct advantage of enabling the direct estimation of three-

dimensional fiber orientation information in unstained brain

sections. This is achieved by probing the orientation-dependent

birefringence of myelinated nerve fibers using oblique

polarimetric measurements [32]. The fiber orientation is

estimated by fitting an effective biophysical model of the

interaction of light with the specimen to the acquired

measurement data pixel per pixel. The confidence in the

inferred fiber orientation has to be investigated to avoid

misinterpretation and identify potential methodical artifacts.

Uncertainty measures for nonlinear parametric models are

typically obtained from Markov Chain Monte Carlo (MCMC)

sampling [33–36]. Informally speaking, the goal of MCMC

sampling is to reconstruct the full posterior probability

distribution of the model parameters given the likelihood of

the observed measurement data and prior knowledge by

generating a representative sample of the distribution.

Recently, MCMC sampling was applied to 3D-PLI, resulting

in accurate maps of the uncertainties of in-plane fiber

orientation, out-of-plane fiber orientation, and birefringence

[37]. The huge drawback of MCMC sampling is its high

computational cost as it requires thousands of samples per

pixel which yields computation times of hundreds of core

hours for single brain sections. This computational burden

severely limits the applicability of MCMC for whole-brain

analysis. Another difficulty regarding the uncertainty measures

lies in the interpretation of the results: while the two-dimensional

maps of the angular uncertainties, in principle, provide the

derived information, fiber orientations are three-dimensional.

Hence, a three-dimensional visualization that captures the full

three-dimensional probability density of the fiber orientation is

necessary to make the obtained data more interpretable.

Therefore, this work’s contributions are twofold: we developed

a strategy to estimate the parameter uncertainties based on a

machine learning model. We introduced an intuitive

visualization of three-dimensional fiber orientation uncertainty

via ellipsoids.

The problem of excessive computation times for MCMC

sampling also arises in dMRI analysis, where orientation

uncertainty serves as an important prerequisite for
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probabilistic tractography algorithms [36]. Recently, GPU

implementations have been presented to reduce the runtimes

in DWI as the computations can be parallelized voxelwise [35,

38]. Still, exemplary resulting runtimes amount to approx. One

hour for processing a brain volume of 410,000 voxels with the

popular diffusion tensor model [35]. In 3D-PLI, one individual

brain section can consist of millions of pixels at mesoscopic

resolution and up to a billion pixels at microscopic resolution.

Although the computation times for MCMC sampling in 3D-PLI

and DWI per voxel are not the same, GPU acceleration alone is

insufficient for whole brain processing in 3D-PLI. Bootstrapping

approaches (like the wild bootstrap [39] or non-local bootstrap

[40]) represent an alternative for the calculation of confidence

measures. Still, they come with similar computational complexity

as MCMC sampling as they typically require at least hundreds of

iterations of resampling the measurement data and refitting the

model [41]. For example, the bootstrap sample time alone of a

SPARC phantom [42] measured with Mean Apparent

Propagator MRI (MAP) [43] is still 0.4 h for 208 voxels on

40 CPU threads.

Instead, we propose learning the uncertainty from the data by

examples. The assumption is that pixels with similar signal

strengths and underlying nerve fiber properties for each brain

section express similar uncertainties of the model parameters.

We expect high confidence for strong signals, and for weak

signals, we expect low confidence in the derived model

parameters. Based on a machine learning model which relates

features derived from the signal strength with the uncertainties of

the biophysical parameters, these can be predicted instead of

explicitly calculated via MCMC. The idea to use machine

learning to predict the uncertainty of physical model

parameters was already applied in different fields such as

weather forecasting [44], hydrology [45, 46], power grid

dynamics modeling [47] and fluid dynamics [48, 49]. In 3D-

PLI, we found clear and physically explainable correlations

between the parameter credible intervals and parameters

derived from the birefringence properties of the tissue. A

regression model fits these correlations for a few pixels. The

trained model then predicts the credible intervals for the

remaining majority of pixels.

A recent overview of visualization techniques for fiber

orientation uncertainty is given in [50]. As 3D-PLI currently

models one nerve fiber orientation per voxel, we focused on

visualization techniques for this case. The most commonmethod

introduced in [41] utilizes a three-dimensional circular cone

whose main axis is given by the fiber orientation and whose

radius indicates the confidence of the orientation. The circularity

implies that the underlying orientation uncertainty must be

circularly symmetric. In histological imaging techniques such

as 3D-PLI, the in-plane orientation can typically be derived with

much higher confidence than the out-of-plane orientation. These

differences are neglected by the visualization based on circular

cones. In principle, cones with ellipsoidal base areas, as proposed

in [51], can display an anisotropic fiber orientation probability.

Yet, these still suffer from one fundamental disadvantage of

cones: for very high angular uncertainty, the base area of the

cones diverges to infinity. Hence, regions of high orientation

uncertainty are intrinsically hard to display in a visually

comprehensible way using cones. As an alternative, we

propose a visualization with ellipsoids which is well known

from Diffusion Tensor Imaging [52, 53]. Ellipsoids naturally

allow elliptically symmetric orientation probability densities via

the ellipsoids’ two semi-axes and become spherical in the case of

diverging orientation uncertainty. While ellipsoidal

visualizations are not new, fiber orientation uncertainty in

3D-PLI represents a valuable new application for them.

This publication is organized as follows: We give a short review

of 3D-PLI and showcase the relevant correlations between the

derived parameters. Afterward, a regression model to predict the

uncertainty measures and the construction of the ellipsoidal

visualization for the orientation uncertainty is presented. We test

the developed machine learning approach for different training data

sizes on experimental data. Exemplary results for the ellipsoidal

visualization are shown for human brain data. Finally, the results are

critically discussed, and directions for future research are proposed.

2 Methods

2.1 Brain preparation

Brain preparation is a fundamental issue for polarization

microscopy as the organization of the lipid bilayers composing

the myelin sheaths have to be preserved. The examined brain was

removed within 24 h after the donor’s death. The right

hemisphere was fixed in 4% buffered formaldehyde solution

for 15 days to prevent tissue degeneration. After immersion in

a 20%, solution of glycerin with dimethyl sulfoxide (DMSO) for

cryoprotection the brain was frozen at a temperature of −80°C.

The sectioning resulted in 843 coronal sections of 70 μm

thickness (Polycut CM 3500, Leica, Germany), which is a

factor of 3–4 thicker than a brain section suitable for classical

histological cell or fiber staining [54]. However, polarization-

based imaging imposes no fundamental restriction on using

thinner sections, but cryo-sectioning and handling of large-

area sections intended to be 3D-reconstructed led to this

compromise of section thickness.

The sections were mounted on glass slides, immersed in a

20% solution of glycerin to avoid dehydration, and sealed by

cover-slips. For this study, randomly selected sections were

scanned at 64 × 64 μm pixel size in one planar and four

tilting (i. e., oblique) positions [32]. The postmortem human

tissue sample used for this study was acquired in accordance with

the local ethics committee of our partner university at Heinrich

Heine University Düsseldorf. Written, informed consent of the

subject is available.
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2.2 Correlations between 3D-PLI
parameters

The basic principle of 3D-PLI is to generate polarized light, pass

it through a thin unstained histological brain section, and measure

alterations of the polarization state of light using a circular analyzer

and a CCD camera [10]. Thus, contrast may be generated between

individual fibers, fiber tracts, and other tissue components,

ultimately giving access to the orientation of interacting

birefringent/fibrous structures.

During themeasurement, the filters are rotated stepwise, and the

camera records an image at each rotation angle ρ. By this means, a

series of intrinsically registered images is generated, which allows to

extract (of sinusoidal) light intensity profiles for each pixel across the

stack. An effective biophysical model describes myelinated nerve

fibers as uniaxial birefringent material whose optical axis yields the

dominant nerve fiber orientation [10]. The Jones calculus [55] finally

allows to derive a function I(ρ) that describes the obtained light

intensity profiles:

I ρ( ) � IT
2

1 + sin 2 ρ − φ( )( ) · sin δ( )( ), (1)

where IT reflects the light extinction due to scattering and

absorption (referred to as transmittance), φ ∈ [0, π) the

in-plane nerve fiber orientation (referred to as direction)

(Figure 1) and δ the phase retardance induced by the

birefringent nerve fiber (retardation [9, 10]. The retardation

depends on setup (light source wavelength λ) and material

specific characteristics (section thickness ts, relative thickness t,

birefringence strength Δn, and fiber inclination

angle α ∈ (−π2 , π2):

δ � 2π
tsΔn
λ

· cos α( )2 � π

2
t cos α( )2, (2)

with

t � 4tsΔn
λ

. (3)

The relative thickness t was introduced by Axer et al. [10] to

measure the combined effect of birefringence Δn, wavelength λ

and section thickness ts. A detailed derivation of Eq. 2 can be

found in [56]. As t is directly proportional to the birefringence

Δn, it can serve as a measure of birefringence and, indirectly, as a

measure of myelin density. The parameters of interest are the

angular orientations φ and α and birefringence parameter t. So

every voxel of the measured specimen is assigned the parameter

tuple (φ, α, t), while the two angles build a three-dimensional

vector indicating the orientation of the nerve fibers. These vectors

are typically (RGB or HSV) color-coded, as shown in Figure 2,

top left.

The most probable parameter set is estimated by fitting the

model to data taken from additional oblique views of the

sample, which induce experimentally defined small variations

to the signal [32]. The primary source of uncertainty in the

inferred parameters is photon detection noise which can be

modeled as heteroscedastic Gaussian noise [32, 37].

Confidence measures are then obtained via MCMC

sampling. From the empirical distribution of the sample’s

highest posterior density (HPD) intervals, the shortest

intervals, which contain a certain amount of the probability

mass, are computed and serve as credible intervals (CIs).

These CIs represent the analogon to confidence intervals in

Bayesian statistics. In [37], 95% highest posterior density

intervals were obtained from samples computed by an

ensemble MCMC algorithm [57]. The modality maps and

their credible intervals are shown for one brain section in

Figure 2. All plots in this paper were created using the Python

packages matplotlib and seaborn [58, 59].

From physical intuition, it can be assumed that the

confidence in the model parameters increases with the

signal strength. In our case, the signal strength is given by

the retardation value, which determines the relative amplitude

of the sinusoidal light intensity profile. This is further

illustrated in Figure 3. It depicts two simulated sinusoidal

signals Isim according to Eq. 1 with the same offset IT = 2000

and phase φ = 45° but different relative amplitudes sampled in

steps of ρ = 20°. Here, the relative amplitude is defined as the

FIGURE 1
3D-PLI coordinate system with fiber orientation vector r, in-
plane angle φ (direction) and out-of-plane angle α (inclination).
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difference between maximum Imax and the average IT of the

signal divided by the average

Relative Amplitude � sin δ � Imax − IT
IT

. (4)

The same amount of Gaussian noise ε � N (0, 250) was

added to both ideal signals resulting in the shown synthetic

datasets Isyn = Isim + ε. From both datasets, 95%HPD intervals for

offset, amplitude, and the phase representing the in-plane fiber

orientation in 3D-PLI were inferred via MCMC according to

[37]. While the prediction bands of the inferred models are

similarly wide for both datasets, the confidence in the obtained

phase differs strongly: for the case of the relative amplitude of 0.3

(Figure 3, red curve), the phase is determined as φ � 47.6+2.1−2.2°. On

FIGURE 2
3D-PLI modalities and their credible intervals. Top row: maps of best-fit parameters. From left to right: Fiber Orientation map, retardation map,
relative thickness map. Contrary to typical visualizations in dMRI, the brightness of the FOM was not scaled to emphasize the arbitrary orientations
inferred for vanishing signals in the cortex. Middle row: credible interval maps. From left to right: relative thickness credible interval, direction angle
credible interval, inclination angle credible interval. Note the inverted grayscale color bar: areas with high confidence and low credible intervals,
respectively, are brighter than areas of low confidence. All scalar maps are log scaled. The arrows (white and blue, upper and middle row left) point
out the stratum sagittal, which contains dominantly strongly inclined nerve fibers concerning the coronal sectioning plane. Overall, a correlation
between the z-component whichmanifests in blue coloring in the FOM, and σt can be observed. For the angular credible intervals, correlations exist
between the retardation and the in-plane orientation confidence σφ (middle column) and relative thickness t and out-of-plane orientation
confidence σα (right column). Bottom row: correlations between the parameters visualized as log scaled two-dimensional histograms.
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the other hand, for a relative amplitude of 0.05 (Figure 3, blue

curve), the phase is estimated as φ � 55.7+8.3−9.4° which clearly

shows a much higher degree of uncertainty and higher

deviation from the ground truth. This illustration suggests

that the phase uncertainty decreases with increasing

amplitude. Given a mapping from amplitude to phase credible

interval, the latter could be predicted solely based on the former

for comparable amounts of noise in the input data. As no

analytical mapping can be derived for arbitrary noise levels, it

must be learned from the data.

For 3D-PLI, the parameter estimation is more complex than

in this simple example, as the derivation of relative thickness and

fiber inclination exploits the differences between the sinusoidal

signals from different oblique views [32]. Also, the retardation or

relative amplitude, respectively, depends on the out-of-plane

orientation and the birefringence strength by Eq. 2. This

equation means that the amplitude increases non-linearly with

increasing birefringence strength and decreases non-linearly with

the fiber inclination. Based on these relationships, the model

parameters are signal strength measures, and correlations

between their maximum likelihood estimates and the credible

intervals can be investigated.

In the modality maps (cf. Figure 2), it can already be seen

that for vanishing birefringence and amplitude in the cortex,

the angular credible intervals increase strongly. The credible

interval for the relative thickness rises with the z − component

of the fiber orientation, which can be seen in the stratum

sagittal (cf. arrows). These correlations, which are visible by

the eye, are confirmed in Figure 2 (bottom row). Besides

ambiguity for very low retardation values, the in-plane

credible interval σφ decreases with increasing retardation

sin δ. In the same way, the out-of-plane angle credible

interval σα decreases with increasing relative thickness t.

For the relative thickness, a monotonic increase of the

credible interval σt with the absolute out-of-plane angle

|α| = | arcsin(z)| for all but very low values of σt can be

observed. The next section introduces a regression model

that fits these correlations and later predicts the credible

intervals for previously unseen data.

2.3 Uncertainty prediction

The uncertainty prediction works in three steps:

• Training data generation: Compute credible intervals via

MCMC for a small number of training pixels

• Training: Fit a regression model to the computed

training data

• Prediction: predict credible intervals for the remaining

pixels with the trained model

Keeping the number of training pixels small is necessary as

computing credible intervals for training via MCMC is

computationally expensive. We decided to process each brain

section individually as the modality maps of retardation, and

FIGURE 3
Illustration of the effect of the amplitude of a sinusoidal signal
on the uncertainty of the extracted phase. Both datasets were
generated with the same offset of IT = 2000, phase φ = 45°, and
noise levels. The phase can be inferred with higher accuracy
and a lower degree of uncertainty for a higher amplitude. Shaded
areas represent 95% prediction intervals for the sinusoidal model.

FIGURE 4
Comparison of possible regression models for predicting a
model parameter credible interval as a function of the signal
strength. An unconstrained model (blue) allows an ambiguous
relationship that potentially predicts the same credible
interval for different signal strengths. A monotonic model (orange)
resolves this ambiguity but does not ensure that the credible
interval decreases faster for smaller than higher signal strength.
This can result in almost step-like functions (cf. Blue arrow) and
nonasymptotic behavior (red arrow). These issues can again be
avoided by functions that are both monotonic and convex (green).
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relative thickness express significant variations between sections.

These variations originate from small but practically unavoidable

differences during the histological sectioning and mounting

process of the individual sections [60]. Fitting the correlations

represents a one-dimensional nonlinear regression problem for

which a huge number of potential solutions are available [61, 62].

Still, two factors limit the choice of regression models.

First, extensive manual hyperparameter tuning for each

section is not feasible for batch processing of a large number

of sections. Therefore the model must be able to perform

automatic and reliable hyperparameter selection. Second, not

all possible models are physically plausible (cf. Figure 4).

Especially, as the correlations are ambiguous in parts of the

parameter space (consider e. g. the variety of in-plane angle

credible intervals for very low retardation values in Figure 2),

adding constraints is key for a useful predictive model. Most

importantly, the relationship between signal strength and

parameter credible interval must be strictly monotonic to

avoid ambiguities. Furthermore, as the employed biophysical

model is an imperfect model of the data acquired during the 3D-

PLI measurement, an unknown lower bound must exist for the

parameter uncertainty, even for very strong signals. Therefore,

the model which relates signal strength and parameter

uncertainty has to obey asymptotic behavior. While specifying

a lower bound for a flexible regression model is not

straightforward, the asymptotic property also requires that the

credible interval decrease faster for small signal strengths than for

high ones. The regression model must be mathematically convex

(formal proof in App. A). A convex and monotonic model

ensures asymptotic behavior and avoids counterintuitive step-

like functions (cf. Arrows in Figure 4). As a side effect, the

convexity constraint also suppresses overfitting. A flexible

regression model which allows enforcing such shape

constraints, as well as reliable hyperparameter selection, is the

Generalized Additive Model (GAM) [63].

2.3.1 A short introduction to generalized additive
models

Generalized Additive Models (GAMs) were developed by

Trevor Hastie and Robert Tibshirani and were published in

1986 in the same-named article [64]. The basic idea of a

GAM is to cover non-linear relationships in an additive

regression model. This approach is desirable because we can

keep basic regression estimation of the form E (y|X) = α + βX and

easy interpretability. Because of that, GAMs are used in a wide

area of research interest like genetics, epidemiology, molecular

biology, and medicine [65]. The principle of the method is

substituting the linear function term X with a flexible function

f(X) which is defined by a sum of splines

f X( ) � ∑q
j�0

bjβj � Bβ, (5)

with the so-called basis functions B and the coefficients β.

The coefficients β can be considered the height of the splines.

With this representation, a property like the monotonicity of f(X)
translates into ordered entries of the coefficient vector. To

incorporate prior knowledge into the regression model,

Bollaerts et al. proposed to use a (symmetric) penalty on the

second-order differences of the coefficients to ensure smoothness

and asymmetric penalties on first-order differences and second-

order differences to favor monotonicity respectively curvature

[66]. We get the optimization problem

α, β � argmin
α,β

y − α + Bb( )���� ����22 + λ∑q
j�3

Δ2βj( )2

+k∑q
j�2

uj β( ) Δ1βj( )2 + k∑q
j�3

vj β( ) Δ2βj( )2,
(6)

with the intercept α, the penalty parameters λ (smoothness)

and k (monotonicity and curvature), the difference operators Δ1

and Δ2, and the indicator variables uj and vj. The difference

operators are defined as Δ1βj = βj − βj−1 and Δ2βj = βj − 2βj−1 +

βj−2. The indicator variables uj and vj for the monotonic

increasing respectively convex case are defined by

uj β( ) � 0, if βj − βj−1 ≥ 0
1, otherwise

{ (7)

vj β( ) � 0, if βj − 2βj−1 + βj−2 ≥ 0
1, otherwise.

{ (8)

The parameters α and β are then estimated by a penalized

iteratively re-weighed least squares (P-IRLS) scheme [67]. The

penalty parameter k is set to a large number (k = 109) to guarantee

the given monotonicity and curvature. The smoothing parameter

λ represents a hyperparameter of the model and cannot be

predefined. A grid search is employed to find the model (λ

respectively) with the lowest generalized cross-validation

(GCV) score to choose the model which generalizes the best

[68]. In this work, we use the python package PyGAM [69] as an

implementation of GAMs in Python.

2.3.2 Model training
We can observe a monotonic and convex behavior (cf.

Figure 2) by looking at the relationship between the

modalities and the credible intervals. We implement three

TABLE 1 Table of target (Y) and predictor (X) variables with assumed
constraints as they are observed from Figure 2.

Target (Y) Predictor (X) Constraints

In-plane angle CI σφ Retardation sin δ mon. dec. and convex

Out-of-plane angle CI σα Rel. thickness trel mon. dec. and convex

Rel. Thickness CI σt Out-of-plane angle |α| mon. inc. and convex
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independent learning procedures and choose Y and X as in

Table 1.

2.3.2.1 Training dataset generation

As the distributions of the predictor variables are strongly

skewed, random sampling would result in oversampling and

undersampling in different regions of the parameter space. This

potentially causes overfitting in oversampled and underfitting in

undersampled areas. To cope with this issue, we implemented an

equidistant sampling of the parameter space to ensure that all

samples have the same influence on the regression model. The

equidistant samples are found by computing a grid of N

equidistant points spanning the entire parameter space and

picking the closest data point to each grid point. As the three

uncertainty measures are predicted by different modalities, these

data points are found individually for each modality (retardation,

inclination, relative thickness). The selected data samples are

then used to calculate the related target variables Y, the

uncertainties, via MCMC sampling.

2.3.2.2 Preprocessing and number of basis functions

Because our data distribution p(Y|X) is skewed and the

variable to be estimated is heteroscedastic, we perform a

log1p-transform (f(10) = log (x + 1)) on both axes to get rid

of the high variance of the prediction variable for small values of

the predictor variable and also adjust the slope of the variable. A

steep function would require a higher number q of basis

functions, increasing the risk of overfitting. For the number of

basis functions, we choose q = 20 to have enough flexibility in the

model and to guarantee enough freedom when fitting with strong

constraints.

2.4 Model evaluation

2.4.1 Dataset description
We chose 20 randomly selected brain sections to test our

developed learning procedure and to ensure its robustness. The

sections were obtained from a data set of 230 coronal sections of a

right human hemisphere, which were initially described in [32]

(see Section 2.1). For all sections, maps of fiber orientation,

retardation, and relative thickness were computed as described in

[32]. Finally, ground truth credible intervals were calculated for

the entire sections using MCMC sampling [37].

2.4.2 Evaluation metrics
We tested different training sample sizes N = 200, 400, 800,

1,200, 1,600, 2,400, and 3,200 for the uncertainty prediction to

find the minimal training sample size required which achieves an

acceptable prediction error. The predictive performance was

evaluated based on the distributions of the prediction error

and visual inspection of maps of the prediction error.

Additionally, the training samples and the GAM fit were

plotted to crosscheck against over- or underfitting. Further

information about the quality of the fit was obtained from the

effective degrees of freedom and the explained deviance of the

fitted model.

2.5 Fiber orientation uncertainty
visualization

Using triaxial ellipsoids, both the current fiber orientation

and the uncertainties of the respective angles can be observed (cf.

Figure 5). The main axis of the ellipsoid points in the direction of

the fiber orientation and has the maximal length of 1. The two

semi-axes are scaled according to the credible interval of the

direction angles φ and α using a linear function σφ/π or σα/π. This

ensures that the ellipsoid becomes a sphere for the maximal

angular uncertainties of σα = σφ = 180°. Figure 5B shows the

respective shapes of the ellipsoid with increasing uncertainty

(from linear, when both angular credible intervals are close to 0°,

to spherical, when both angular credible intervals are close

to 180°).

For the visualization of the ellipsoids, a unit sphere is

discretely sampled with a fixed number of longitudes and

latitudes. The points on the surface of the sphere are

multiplied by the radius r = (σα/π, σφ/π, 1) to determine the

lengths of the semi-axes and then aligned by rotation in fiber

orientation. With OpenGL, these points are represented as an

illuminated triangle mesh. The RGB color of the ellipsoids is

obtained from the fiber orientation, with red representing the

x-axis, green the y-axis, and blue the z-axis.

The uncertainty visualization was developed in C++ and

OpenGL and embedded in the software suite PLIVis [70].

3 Results

3.1 Uncertainty prediction

3.1.1 Training sample size evaluation
A scatterplot of the out-of-plane angle uncertainty σα vs its

predictor variable t and the GAM fit for one exemplary brain

section is depicted in Figure 6 for different sample sizes (N = 200,

400, 800). It can be observed that the small sample size results in

overfitting of the data because the prediction line lies too close to

the data and does not satisfy our desired smooth curvature (see

circled area). The other fits for the sample sizes N = 400 and

800 satisfy this condition. This outcome reflects itself in the map

of the signed prediction error. The prediction for N = 400 and

800 shows less overestimating the orientation uncertainty in the

cortex (arrow 1) and white-matter to gray matter transition

(arrow 2). White matter regions show only minor uncertainty

prediction errors. Fiber crossing constitutes an exception (arrow

3). The GAM fits and prediction errors for the in-plane angle
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uncertainty σφ and relative thickness uncertainty σt shown in

App. B Figures 1, 2 express a similar behavior. Also, the

cumulative densities of the prediction errors are very similar

for the different sample sizes (cf. App. B Figure 3) for this

exemplary brain section. To assess the prediction accuracy

across different brain sections, the median absolute prediction

error was computed for the different training sample sizes (cf.

Figure 7) for all investigated sections. There is a clear difference

between N = 200, 400 and N ≥ 800, but no further improvement

is visible for bigger sample sizes.

FIGURE 5
Visualization of orientation uncertainty by ellipsoids. (A) ellipsoid construction. Left: a sketch of themaximum likelihood fiber orientation r given
by in-plane angle φ and out-of-plane angle α. Right: resulting orientation uncertainty ellipsoid. The main axis is given by r while the semi-axes are
scaled by the angular credible intervals σα and σφ. Fiber parameters: α = φ = 30°, σα = 40°, σφ = 30°. (B) Ellipsoids for varying orientation uncertainty. For
small orientation uncertainty the ellipsoid appears linear (left, σα = σφ = 0°). With increasing uncertainty the representation becomes more
spherical (right, σα = σφ = 180°).

FIGURE 6
Evaluation of three different training data sizes for predicting the out-of-plane angle uncertainty for one brain section. The tested training
sample sizes are 200, 400, and 800 (left to right). Top row: Training data and GAM fit. Bottom row: Map of the uncertainty prediction error. The circle
indicates a regionwhere the fitted GAMmodel becomes smoother for increasing sample size. The prediction error decreases with increasing training
samples (arrows 1/2) for some areas at the boundary of white matter and cortex. While white matter mostly expresses small prediction errors,
still regions of high prediction errors can be observed in fiber crossing regions (arrow 3).
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3.1.2 Comparison of all predictions
In Figure 8, we show a complete evaluation of the GAM

procedure for in-plane angle uncertainty, out-of-plane angle

uncertainty, and relative thickness uncertainty. The fits (first row)

are smooth for every uncertainty prediction and show the desired

monotonic and convex behavior. Furthermore, the 2D-histograms

(second row) of prediction vs ground truth show a good agreement

for every modality. The cumulative histogram of the absolute

prediction error within white matter (third row) shows the best

result for the in-plane angle uncertainty: for more than 90% of white

matter pixels, the absolute error is smaller than 2°. While the error is

higher for the out-of-plane angle uncertainty, still approx. 80% of

white matter pixels express a prediction error smaller than 2°. In the

case of the relative thickness uncertainty, for more than 90% of the

pixels, a prediction error smaller than 0.02 was found. These results

can also be observed in the prediction error maps (fourth row),

where white matter regions dominantly express small errors outside

of crossing regions. Higher errors occur in cortical areas.

Further information about the fit quality is available from

the explained deviance and the effective degrees of freedom

(cf. App. B Figure 4). The explained deviance is higher than

95% for all three fits. The effective degrees of freedom lies

between 7 and 15 due to the constraints.

3.1.3 Computation time
The computation times for training data generation via

MCMC for different sample sizes are shown in Table 2 (for

implementation and hardware details, see App. C). Whereas

MCMC sampling for the whole brain section consumes 300 core

hours, it reduces to a few minutes using the training sample sizes

tested in this work. The computation time for fitting the GAMs

and predicting the remaining pixels amounts to approx. 10 s.

3.2 Orientation confidence visualization

Visualizing the uncertainty ellipsoids immediately and

intuitively reveals regions with higher uncertainty.

In Figure 9 details of a human hemisphere are visualized with

ellipsoids. White matter is dominated by linear ellipsoids,

indicating very high orientation confidence (compare

Figure 5). Larger uncertainties are found in areas where the

signal is likely superimposed, such as crossings (Figure 9 left).

Spherical ellipsoids and thus low orientation confidence can also

be found in the transition zone from white to gray matter and at

the border of the cortex (Figure 9 right). The uncertainty

ellipsoids also show regions with different confidence levels of

the individual angles, which are represented by planar ellipsoids

(cf. Figure 10).

4 Discussion

We proposed a new strategy to reduce the excessive

computation times for uncertainty estimation. It is based on a

physically motivated machine learning model which predicts the

uncertainty measures from features derived from the strength of

the physical signal. To our knowledge, this represents the first

machine learning-based method for orientation uncertainty

computation in neuroimaging. We expect this approach to be

applicable in other fields, such as dMRI, where the anisotropy of

the diffusion signal is a strong predictor for the orientation

uncertainty [41, 51] as well. Especially microstructural models

could benefit from a learning-based estimation of parameter

credible intervals as they are computationally very expensive

[35, 38].

Different training data sizes were evaluated based on the

median absolute prediction error. It was found that the

prediction accuracy did not improve for more than Nmin =

800 samples. Using this number of samples per predictor

variable, MCMC sampling only has to be applied to 3 ·
Nmin = 2.400 pixels, independent of the size of the

investigated brain section. Furthermore, the computation time

for training the GAMmodel and predicting the uncertainty maps

FIGURE 7
Evaluation of different training data sizes. The three plots
depict the median absolute prediction error for 20 selected brain
sections. Top: In-plane angle uncertainty prediction error. Middle:
Out-of-plane angle uncertainty prediction error. Bottom:
Relative thickness uncertainty prediction error.
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is negligible compared to the training data generation via

MCMC. This reduces the computation times by a factor of

Ntotal/Nmin for a total number of pixels Ntotal independent of

the employed hardware. For the 20 sections chosen for the

predictive model’s evaluation, the number of tissue pixels

varies between approx. 200,000 and 1,000,000 pixels, the

speedup factor thus ranges between ca. 100 and 400. Such

small computation times enable the processing of complete

brain sections of millions of pixels within minutes using a

small CPU cluster. A GPU-based implementation of MCMC

sampling could potentially further reduce the training time to

several seconds. A GPU implementation of the fiber orientation

fitting algorithm already demonstrated the high potential

reduction in computation time compared to a CPU-based

implementation in 3D-PLI [71].

The evaluation proved a very high accuracy of the predictive

model for white matter regions, especially the in-plane

orientation credible interval could be predicted with a very

small error. For gray matter regions, higher prediction errors

were found. It has to be noted that the credible intervals

FIGURE 8
Collected evaluation of the three uncertainty predictions for one selected section with N = 800 samples. Left column: In-plane angle
uncertainty. Central Column: Out-of-plane angle uncertainty. Right Column: relative thickness uncertainty. From top to bottom: 1.Training samples
and fitted GAM model. 2. Prediction vs Ground truth (MCMC sampling). 3. Cumulative Histogram of the absolute prediction error within the white
matter. 4. Maps of the signed prediction error.
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computed by MCMC for cortical areas are not as accurate as in

white matter. In [37], studies on synthetic data showed that the

credible intervals are often underestimated for vanishing

birefringence. The measured light intensity profile resembles a

constant function with random noise for vanishing birefringence

and fiber crossings. This makes it hard to estimate correct,

credible intervals for MCMC algorithms [72]. Another

consequence is that the relationship between signal strength

and uncertainty parameters becomes ambiguous for vanishing

signals. In that sense, the MCMC results, which serve as training

data, cannot be treated as reliable ground truth in gray matter

regions. Future studies should investigate if it is possible to train

two separate models for gray and white matter, respectively, and

test if other MCMC algorithms achieve a better estimation of the

parameter uncertainties for cortical areas [72].

One obvious pitfall of the developed learning approach is that

the predictors are afflicted with non-negligible uncertainty.

While the retardation given by the relative amplitude of the

sinusoidal light intensity can be derived with very high precision,

this does not hold for inclination and relative thickness. Taking

the uncertainty of the predictors into account, as well as

interactions between inclination and the relative thickness,

could potentially improve the accuracy of the uncertainty

prediction. Another potential improvement lies in the loss

function: the utilized L2 loss is computationally efficient but

sensitive to outliers and could be replaced by more robust GAM

estimation techniques [68, 73, 74]. This might improve the

stability of the fit for very weak signals.

For orientation confidence, the derived angular uncertainties

were incorporated into an intuitive ellipsoidal visualization.

Whereas ellipsoidal visualizations have been available in DWI

for a long time, they provide significant new information in 3D-

TABLE 2 Computation time for different training sample sizes N. The
first 3 N represent the computation time with the presented GAM
procedure and the last row N represent the order of magnitude of the
computation time needed for MCMC sampling on a whole brain
section.

Sample size N Computation time

200 214 s

400 428 s

800 856 s

..

. ..
.

1,000 000 = 106 ca. 300 Core hours

FIGURE 9
Fiber orientation uncertainty ellipsoids for human brain data. The color of the ellipsoids corresponds to an RGB color coding of their principal
fiber orientation. Using the ellipsoids, regions with greater uncertainty in the signal can be intuitively identified (top). These regions are located, for
example, in regions of fiber crossings (bottom left) or at the border from white to gray matter and in the cortex (bottom right). Very slim ellipsoids
characterize white matter.

Frontiers in Physics frontiersin.org12

Schmitz et al. 10.3389/fphy.2022.958364

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.958364


PLI: they enable easy identification of areas of high and low

orientation confidence in three-dimensional visualizations of

3D-PLI connectome data for the first time. This represents a

significant step forward for future anatomical studies based on

3D-PLI, which are prone to misinterpretations without this

information. In the future, visualizations based on less

ambiguous superquadrics than ellipsoids could be employed

[75, 76].

This study was limited to mesoscale data acquired at

64 μm × 64 μm with a section thickness of 70 μm,

constrained by the resolution of the available polarimetric

setup enabling oblique scans. Given typical fiber calibers of

1 μm, there is a certain likelihood to measure a mixture of fibers

with different courses within a voxel, leading to a

misinterpretation of the fiber orientation. This is caused by

the used effective physical model that only provides an estimate

of one fiber orientation vector per voxel. A new beam tilting

polarizing microscope is currently under construction which

will allow us to image the brain sections from different views at

1.8 μm (i. e., at axonal scales) in the near future. Together with

generating smaller sections, we will benefit from the smaller

voxel sizes in terms of partial volume effects due to less nerve

fibers comprised in white matter regions and better distinction

of individual fibers in cortical brain regions. In a first

approximation, we also assumed that fiber composition (e. g.,

myelination) is similar for all fibers. While this assumption

appears to be valid in many cases of normal brain tissue, a

degenerative disease alters the distribution of myelin and fibers

in general in the effected brain regions. First scans of myelin

degenerated brain sections showed a strong decrease in

retardation (i. e., birefringence strength) as compared to

normal controls which at least results in an increase of

uncertainty in our analysis. However, future studies urge for

multi-modal imaging of the same tissue to enable cross-

validation and developing learning strategies able to adapt to

individual tissue properties. Costantini et al. [77] developed a

protocol to enhance autofluorescence of myelinated axons in

brain sections prepared for 3D-PLI. This opened up the

possibility to visualize nerve fibers and their myelin content

within a brain section using Two-Photon Fluorescence

Microscopy, for example. Furthermore, anisotropic tissue

properties are not limited to retardance only [78, 79].

Certain anatomical structures are for example sensitive to

polarization-dependent attenuation as in Diattenuation

Imaging [80]. For a complete picture, multi-modal imaging

in form of combining 3D-PLI with Müller [81] and Stokes

polarimetry [82] can also be taken into account.

A fundamental challenge of multi-modal approaches, in

addition to the tissue preparation required for the different

measurements, is the alignment of the (often complementary)

datasets across the scales frommillimeters (provided by dMRI) to

nanometers (electron microscopy) which is subject of current

research (e. g. [83]). An important aspect in this context is the

anatomical localization of the studied tissue (sub-)sample with

respect to the entire human brain. 3D-PLI is well suited to bridge

the gap between the extreme resolutions as it is able to provide

both information about nerve fibers and their tracts (e. g.,

orientations and their distributions) similar to dMRI at whole

brain level and local microstructural characteristics revealed at

even higher resolution showing more details by fluorescence or

electron microscopy. An important step for the alignment is the

detection of mutual features in the different modalities, such as

anatomical landmarks (e. g., vasculature). Obviously, imaging the

same brain tissue or sub-samples thereof should be a key goal in

future multi-scale connectome studies.

The machine learning approach presented here is an

essential step to provide quantitative analysis of 3D-PLI

scaled to fiber orientation analysis for whole human brains,

keeping the computational demands reasonably low. MCMC

sampling would have to be applied to billions of pixels for

thousands of individual brain sections. In this light, it can be

concluded that the concepts introduced in this paper pave the

way towards the human connectome at the microscale.
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