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The emergence of novel computational hardware is enabling a new paradigm

for rapid machine learning model training. For the Department of Energy’s

major research facilities, this developing technology will enable a highly

adaptive approach to experimental sciences. In this manuscript we present

the per-epoch and end-to-end training times for an example of a streaming

diagnostic that is planned for the upcoming high-repetition rate x-ray Free

Electron Laser, the Linac Coherent Light Source-II. We explore the parameter

space of batch size and data parallel training across multiple Graphics

Processing Units and Reconfigurable Dataflow Units. We show the

landscape of training times with a goal of full model retraining in under

15 min. Although a full from scratch retraining of a model may not be

required in all cases, we nevertheless present an example of the application

of emerging computational hardware for adapting machine learning models to

changing environments in real-time, during streaming data acquisition, at the

rates expected for the data fire hoses of accelerator-based user facilities.
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1 Introduction

In this manuscript we motivate using machine learning (ML) acceleration engines

that enable continuous data acquisition streams to accommodate rapid intermittent self-

calibration in order to accommodate both sensor and source variation. Extendable to a

wide variety of scientific use cases, there is an explosive trajectory for autonomous and

semi-autonomous control systems across the spectrum of accelerator applications [1–3].

Many of these use cases require either real-time model update in a reinforcement learning

approach in support of active control systems or they require predictive planning for
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optimised experimental parameter exploration, e.g. “next shot”

planning for DIII-D tokamak.

We concentrate on a particular detector currently under

development for the Department of Energy’s premiere ultra-

high data-rate x-ray Free Electron Laser (xFEL), the Linac

Coherent Light Source II (LCLS-II) [4], an angle resolving

array of charged particle Time-of-Flight (ToF) spectrometers

[5]. For this demonstration we simulate 128 sensor channels of

an angular array. Although the current physical system as

described in Ref. [5] is comprised of only 20 total sensor

angles, our motivation for the oversampling lies in the

potential for generalization across multiple domains that share

a common tomographic-like image reconstruction/classification

pattern.

There is an impending need to develop advanced

computational hardware accelerators to process, analyze, and

act upon—in real-time—the ultra-high rate data that will stream

from the detectors at next generation particle accelerator facilities

[6,7]. We foresee a coming broad adoption of transformer

models [8–10], originally engineered for language

interpretation, that will accommodate situations where

unlabeled data is abundant but task-specific labeled data is

rare. An inspiring example comes from the extension of GPT-

2 to the very different task of music interpretation [11]. This

exemplifies the pattern of using a deep encoding network as a

structure preserving “featurizer.” The resulting latent

representation can then feed many downstream models that

manage experiment-specific tasks with significantly smaller

labeled data sets.

The featurizing, or embedding, model poses a unique

challenge for real experimental systems. Although we

concentrate here on simulation based results, our motivation

is the ultimate physical detector system of electron spectrometers

[5]. In such spectrometers, there is a series of electron focusing

and retarding electrostatic lenses. Physically, these are copper

rings and meshes, each having different high voltage static

electric potentials that energetic electrons must pass through

on their way to the detection sensor. This forms an electrostatic

potential hill for the electrons to climb, shedding the majority of

their kinetic energy, such that the drift time in a flat field region

more favorably scales with energy. This hill is a compound

electrostatic lens with a comparable length to the post-hill

drift length with up to 0.25 eV resolution on a 500 eV

electron (~2000 resolving power). As such, a simple

deterministic equation is quite challenging and would

nevertheless exclude the physical particulars of a given

detector channel such as high voltage supply variations. The

typical for the environmental conditions inside the experimental

end-station as well as the changing accelerator operating

conditions and user experimental plan changes on the

20–30 min to hourly time-scale. Furthermore, raw data will

stream unaltered through the acquisition stream at 0.1% of

the full 1 MHz frame rate, at 1 kHz. At this rate, a freshly

updated 900k sample-size training set will accumulate every

15 min, thus allowing a fresh update of the embedding model

to accommodate the environment, end-station, and accelerator

variation. For the sake of such convergence of variation

timescales, we target a 15 min model retraining cadence in

this manuscript.

In this study, we compare the model training time for a noise

eliminating encoder-decoder network, CookieNetAE [12]. We

demonstrate the power of parallel training in batches for moving

quickly through a large, 900k images, training set. We evaluate a

new AI optimized hardware accelerator, the SambaNova

Reconfigurable Dataflow UnitTM (RDU), and compare it to a

benchmark DGX node available at the Argonne Leadership

Computing Facility (ALCF) with 8 A100 Graphics Processing

Units (GPUs). We additionally compare to a more commonly

available training engine of up to 8 V100 GPUs also hosted in a

single node. We investigate the performance of RDUs versus

GPUs for scientific ML training applications and discuss our

results in the context of high data rate accelerator-based scientific

facilities where diagnostics and detectors provide continuous

streams of data to keep 1M sample size training sets

continuously refreshed.

The remainder of the paper is organized as follows. In

Subsection 2.1, we present an overview of the RDU AI

accelerator involved in this study and give a description of the

distributed training on RDUs in Subsection 2.2. We do not review

the GPU accelerator owing to community familiarity with GPUs

for ML tasks. In Subsection 2.3, we discuss briefly the data

generation process and we give the structure of the

CookieNetAE model [12] in Subsection 2.4. We briefly describe

the experimental setup in Subsection 2.5. Obtained accuracy and

performance results are provided in Subsections 3.1 and 3.2 for

single and multi-accelerator cases, respectively, with comparisons

with the two generations of GPU. Finally, concluding remarks and

thoughts on future work are given in Section 4.

2 Materials and methods

Foreseeing a future of transformer models for distilling

information from streaming scientific sensors, we have

targeted an encoder-decoder network as a demonstrating case

for training acceleration. To relieve concerns about discovery

information being lost, we have chosen the downstream task of

reconstructing Y′, the noise free probability distribution function

(PDF) used to produce the under-sampled and grainy X, the

input. This reconstruction can only perform well if all of the

physically relevant information is contained in the latent

representation, otherwise the variation in stochastic sampling

of the PDF would dominate the mean-squared-error (MSE) loss

between Y and the predicted Y′.
The structure of the encoding side of our CookieNetAE

network [12] closely matches that of the embedding side of
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transformer models, and therefore we take this as a first stage in

ML-enabled data featurization for streaming acquisition at so-

called data fire hose facilities like the next generation of the Linac

Coherent Light Source (LCLS-II) [4,6] and the Upgraded

Advanced Photon Source (APS-U) [13]. Although

downstream models will be experiment specific, changing on

the daily or weekly time scale, the upstream embedding (encoder)

layers will be closely tied to the shared detectors. Nevertheless,

they will need to accommodate a minutes scale “breathing” of

experimental and accelerator conditions. Embedding model

retraining must therefore be accelerated to handle such

frequent—likely continuous—retraining, thus motivating our

exploration of uniquely engineered training accelerators like

the SambaNova RDU in comparison to the familiar family of

GPU accelerators, Nvidia V100 and A100.

2.1 Sambanova reconfigurable dataflow
architecture

We investigated the SambaNova solution for its flexible,

dataflow-oriented execution model that enables pipeline

operations and programmable data access patterns as will be

required of our high velocity data pipelines from streaming

scientific detectors. For multi-user facilities, reconfigurability is

essential; thus our interest in an architecture that can be

programmed specifically for any model application but

nevertheless results in an application-specific optimized

accelerator. The core of the SambaNova Reconfigurable

Dataflow ArchitectureTM (RDA) [14,15] is a dataflow-optimized

processor, the Reconfigurable Dataflow UnitTM (RDU). It has a

tiled architecture that is made up of a network of programmable

compute (PCUs), memory (PMUs) and communication units.

There are 640 PCUs and 640 PMUs connected to one another and

the external world via the communication units. The PCUs yield a

peak performance of over 300 TFLOPs per RDU. The PMUs

provide over 300 MB of on-chip memory and 150 TB/s of on-chip

bandwidth. These units are programmed with the structure of the

dataflow graph that instantiates the ML application, allowing the

RDU to use its own parallelism to natively leverage the parallel

patterns that are inherent to dataflow graphs.

SambaFlowTM is the framework used to leverage RDUs. As a

complete software stack, it takes computational graphs as input

from common ML frameworks such as PyTorch [16] and

automatically extracts, optimizes, and maps the dataflow

graph onto one or more RDUs. SambaFlow achieves

performance without the need for low-level kernel tuning.

2.2 Distributed training

The RDA is a scalable solution that not only leverages highly-

parallel on-chip computation but also enables parallel computation

across multiple RDUs. The SambaFlow framework automatically

handles the parallelization used here for data parallel training with

the DataScale® platform, a rack-level, datacenter accelerated

computing platform. The platform consists of one or more

DataScale SN10-8 nodes with integrated networking and

management infrastructure in a standards-compliant data center

rack—the DataScale SN10-8R [15]. We used up to 4 SN10-8 nodes

for the results presented here, each consisting of a host module and

8 RDUs. The RDUs on a node are interconnected via the RDU-

ConnectTM fabric while the multiple SN10-8 nodes communicate

via Remote direct memory access over Converged Ethernet (RoCE).

Beyond the more traditional model parallelism—large models

spread across multiple devices—we use the node interconnects to

enable data parallelism across all RDUs in the system.

Data parallelism spreads the training workload across

multiple accelerator devices, each with its own copy of the

full model to be trained. Each device uses the same model with

different training samples. For every iteration, each device

runs the forward and backward passes to compute gradients

on a batch of its respective data. The gradients from all the

devices are then aggregated to compute the averaged gradients

which are in turn transmitted back to each device to

update the local model weights and proceed with the next

iteration.

2.3 Data generation

We concentrate on x-ray pulse time-energy reconstruction

for two reasons. First, it is one of the more compute-intensive

examples of attosecond angular streaking [17], and it is

associated with a detector suite that is fully capable of the

highest data acquisition rates in the early stages of the LCLS-

II [5]. In angular streaking, x-ray induced photoelectron spectra

are modulated by the dressing laser field. This modulation can be

crudely simulated in the energy domain simply by adding a

sinusoidal excess energy to photo-electrons depending on the

angle of emission and phase of the dressing laser field. This

simplified simulation [18] begins with an electron emission

probability distribution,

Ypdf � ∑
N

i�0
pi ]i, θ, ϕi( ). (1)

The sum over pi in Eq. 1 runs for each of N sub-spikes where

pi itself is a function of the photon energy (]i), the emission angle

(θ), and a random phase (ϕi) that represents the sub-spike arrival

time relative to the optical carrier field of the dressing laser. From

this we draw random samples from Ypdf, plus a uniform dark-

count likelihood, for every measurement angle θ and sub-spike

energy ]i. These draws form a list of energies Xhits for each

measurement angle (row in Figure 1A) which are in turn used to

update the image Ximg. Therefore, the goal of CookieNetAE is an

optimal inverse mapping from Ximg (Figure 1A) to Ypdf

Frontiers in Physics frontiersin.org03

Milan et al. 10.3389/fphy.2022.958120

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.958120


(Figure 1C). In so doing, we have confidence that the latent

representation of CookieNetAE (Figure 1D) holds all

information that could be used as an input feature vector for

any relevant classification or regression task. We note that noise

is included insofar as we have dark counts at such a level in

physical measurements, but the more insidious difference

between actual measurements of Ximg and that simulated here

is that the conversion to energy domain, here a pre-supposition

from upstream featurizing algorithm, loses calibration, then the

rows of Ximg would not align, suffering arbitrary relative shifts.

Such an artifiact, interestingly, would be effectively trained out by

just the sort of adaptation of CookieNetAE by applying the

corrective shift to recover smooth sinusoidal curves of Ypdf;

re-training would therefore accommodate the expected effects

of power supply drift and resister failure in the electronics of the

individual spectrometers.

Algorithmic xFEL pulse reconstruction requires inverting the

angle-resolved photo-electron spectra as per Refs. [17,19] and is

much the same as tomographic image reconstruction. A principle

challenge here is the high frame rate of the x-ray source. In

preparation, we create a simulated dataset of one million example

images. The full simulated dataset spans nearly 80 GB and yet

represents only one second of acquisition of the LCLS-II. These

examples are used with 90% for training and 10% are held out for

validation and testing of the CookieNetAE model.

2.4 Encoder-decoder model

CookieNetAE [12] is a convolutional encoder-decoder

network designed to infer the angle-energy probability density

function of photoionized noble gas electrons. Since we are free in

simulation to explore any number of angular samples, we increase

the number of evenly distributed angles to 128 around the plane

perpendicular to x-ray pulse propagation. In Figure 1Awe show an

unwrapped (Cartesian) example such that each row in the image

corresponds to an energy histogram with 128 energy bins of 1 eV

width; panel B shows the polar representation of the electrons

emitted. We also show the to-be-recovered Ypdf in panel C with a

schematic of the encoder-decoder in panel D (see Ref. [12]). From

the input at left in Figure 1D to the output probability distribution

at right, we indicate schematically the halving of spatial dimensions

and doubling of channels as the filter-depth of layer denoted; this is

detailed in Table 1. The encoder contains three convolution layers

with the corresponding max pooling layers followed by a single

convolution layer to get the latent space representation of the input

image. The decoder contains four transposed convolution layers

followed by a single convolution layer to get the output. Themodel

is trained by using a standard MSE loss with the following

hyperparameters: a maximum number of epochs of 51, a

learning rate of 3 × 10–4 for the Adam optimizer, and the

ReLU activation function at relevant layers.

FIGURE 1
(A). Cartesian “image” representation of the in energy-angle space (our input X). (B). Polar representation of an example streaking shot. (C).
Cartesian “image” representation of the energy-angle emission probability distribution (our output Y). (D). Schematic of the CookieNetAE as
described in Table 1.
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The model architecture was chosen for reconstruction fidelity

and to serve as a somewhat generic model form representing auto-

encoders like a “U-net” but without skip-connects. Avoiding the

skip-connections holds closer to a scheme that is consistent with

compression at sensor and decompression at acquisition when the

model is used in inference at the recording node and was held fixed

since the scope of the manuscript is taken to be a survey of data-

parallel training across the different training accelerators rather

thanmodel architectures. Of course differentmodel forms are likely

to instantiate with better or worse performance for different

acceleration hardware architectures, and we do indeed plan to

investigate this in future research acrossmultiple scientific domains.

2.5 Experimental setup

We compare accelerators by measuring the training time for

the SambaNova DataScale SN10-8R in comparison with an

Nvidia DGX node of A100 GPUs and another Nvidia node of

V100 GPUs. For both the A100 and V100 GPU tests, the

CookieNetAE model is run with the PyTorch API v1.9 in data

parallel training with Horovod [20]. For the DataScale SN10-8R,

the SambaFlow software stack v1.11.2 compiles the model from

the same PyTorch reference. For all hardware, we measure the

average training time per epoch.

We perform these measurements by examining the dependence

of model training time on variation of batch sizes for single

accelerator as well as data-parallel training across multiple

accelerators. Because the batch size is an important

hyperparameter in deep neural networks, we investigate the

hardware performance for a wide variety of local and global

batch sizes in order to exercise the available design space defined

by the number of accelerators and batch size. The local batch size

(LBS) is the batch size per device, while the global batch size (GBS) is

the batch size across all devices. This design space clearly impacts

hardware utilization and convergence characteristics of the learning

algorithm [21]. Results from Ref. [22] show that training with batch

sizes of 32 samples or smaller can help improve training stability and

model generalization. On the other hand, larger batch sizes expose

more computational workload per weight update and therefore

often result in better hardware utilization. For these reasons, we span

a broad range of relevant batch/parallelization parameters. In

particular, given the relative novelty of the SambaNova hardware,

a more extensive survey of its performance landscape is conducted

compared to the GPU landscape.

3 Results

3.1 Single-processor runs

The CookieNetAE model is validated against a held out set of

samples not used by the model for parameter updating. A low

MSE value of 2.763 × 10–4 is observed for this validation dataset

for the case with the reference batch size of 128, indicating that

the model performs in the desired manner and without

overfitting. Example predictions shown in Figure 2 indicate

excellent agreement with the ground truth data.

The variation of the training time per epoch versus the batch size

is shown in Figure 3A for a single RDU as filled black circles, a single

A100 as open black circles, and a single V100 as open black squares

(color denotes the number of accelerators used). Numerical values are

listed in Tables 3 and 4. For the single RDU case, results are included

for batch sizes as few as 8 and as large as 1024, while for the single

GPU cases only batch sizes 64–1024 are tested. The training time per

epoch is defined as the time taken to run over all the batches in a

given epoch. Both the A100 and RDU are roughly twice as fast as

V100 in terms of training time, and the RDU is comparable or faster

than A100 for all but one batch size, i.e., batch size of 64. The RDU

shows a speedup of up to 1.82 times over V100, and up to 1.09 times

over A100. Additional results for the RDUwith very small batch sizes

(i.e., 8, 16 and 32) are also included in Figure 3A andTable 3.Wenote

Ref. [23] demonstrated that FPGAhas a performance advantage over

GPU on small batch size ResNet-50 inference workloads. Given that

RDU and FPGA are both instances of reconfigurable architectures, it

remains as an interesting future work to compare very small batch

size CookieNetAE training performance between RDU and GPU.

3.2 Multi-processor runs

For fixed LBS of 128, Figure 4 shows the variation of the end-

to-end training time versus the number of RDUs. This time

includes data loading, model initialization, training and

validation for 51 epochs along with printing selected output

variables to file. As one can see, the end-to-end training time is

reduced as the number of RDUs is increased. For example, it is

TABLE 1 Network structure of the CookieNetAE [12].

Layer Output shape Activation

Input (1,128,128) –

1st Conv2d (16,128,128) ReLU

1st MaxPool2d (16,64,64) –

2nd Conv2d (32,64,64) ReLU

2nd MaxPool2d (32,32,32) –

3rd Conv2d (64,32,32) ReLU

3rd MaxPool2d (64,16,16) –

4th Conv2d (128,16,16) ReLU

1st ConvTranspose2d (128,32,32) ReLU

2nd ConvTranspose2d (64,64,64) ReLU

3rd ConvTranspose2d (32,128,128) ReLU

4th ConvTranspose2d (16,128,128) ReLU

5th Conv2d (1,128,128) ReLU
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162 min for the case with one RDU while only 8.3 min for the

case with 32 RDUs. This corresponds to a speedup factor of more

than 19 times. The parallel efficiency, defined as the ratio of the

speedup factor to the number of RDUs, is around 78% of linear

scaling for the case of one SN10-8 node with 8 RDUs and only

decreases gradually as the number of nodes is increased, reaching

61% for the case of 32 RDUs (4 nodes). From this weak scaling

analysis, we observe that two or more SN10-8 nodes (16 or more

RDUs) are capable of achieving end-to-end training times in

under 15 min. The MSEs for validation data are shown in

Table 2, indicating that the accuracy is not significantly

affected with the increase in the number of RDUs, and

consequently the GBS; the error remains below 5 × 10–4.

The variation of the training time per epoch versus the GBS

for multiple RDUs, A100s and V100s is shown in Tables 3 and 4

and visualized in Figure 3. For GPUs, results are shown using up

to 8 devices with GBSs up to 1024, while for RDUs results are

shown using up to 32 devices with GBSs up to 4096. Both RDUs

and A100s outperform V100s in terms of training time for all

tested conditions. For the comparison between RDUs and A100s,

a mixed picture is observed, where the result depends on the

batch size and number of devices. For given GBS and number of

devices, when the resulting LBS is small, RDUs outperform

A100s, for example, GBS of 64 with 2, 4 and 8 devices, which

correspond to LBS of 32, 16 and 8, respectively. For GBS of 128,

results are closely comparable between the two architectures,

with RDUs slightly faster by a factor of 1.13 for the case with

8 devices. For GBS of 1024, A100s appear to be slightly faster than

RDUs by a factor of up to 1.17 for the cases with 2, 4 and

8 devices. Additional performance data for RDUs with 16, 24 and

32 devices are included in Table 3, which correspond to cases

with end-to-end training times below 15 min (cf. Figure 4).

The thick blue line in Figure 3A indicates the power law of

x−0.89 scaling for constant LBS of 128 for RDUs, quite close to

inverse scaling, even when the training workload is distributed

across multiple SN10-8 nodes. The general trends in Figures

3B–D indicate that RDUs tend to give a performance

advantage for smaller LBSs, for example at LBS = 8 (GBS =

FIGURE 2
Comparison of model input (A–C), ground truth (D–F) and model prediction (G–I) for three example hold-out test samples from the single-
RDU run with a batch size of 128. The MSE values are 6.255×10–4, 3.036×10–4, and 9.162×10–4, respectively.
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64, num. devs = 8) the RDU has a 1.26x and 1.34x advantage

over the A100 and V100, respectively. Overall, we find that the

CookieNetAE model can be efficiently trained at scale on

multiple RDUs with relative performance versus

A100 between a 1.26 advantage to a 0.85 disadvantage for

GBS of 64 and 1024, respectively. The RDUs therefore

comparable to the A100 with a slight disadvantage for GBS

above 128 and a performance advantage for GBS at or below

128. These results are promising, point to the benefits for

alternative architectures in regions of hyperparameter space,

and motivate further research using other scientific ML

models.

4 Discussion

The rapid adoption of ML for scientific data processing is

triggering an explosion in researchers’ appetites for data [24]. An

FIGURE 3
(A). Per epoch training time versus the global batch size (GBS). The number of accelerators used for data-parallel training is represented by
symbol color as indicated in panel A: 1 = black, 2 = red . . . 32 = cyan. Note that we have added a slight “jitter” shift around the x-axis value for ease of
data point visibility—all GBSs and number of devices are indeed integer powers of 2. The thick blue line indicates that, for a constant LBS of 128,
increasing the number of RDUs scales the training time as x−0.89. That the V100 (open squares) line upwith A100 (open circles) with a color offset
of one (a doubling) indicates that for this workload the A100 generally performs twice as fast as the equivalent V100 condition. (B–D). Training time
versus number of accelerators for GBSs of 64, 256, and 1024 as indicated with symbol color remaining consistent with panel A convention.

FIGURE 4
Variation of the end-to-end training time with the number of
RDUs. This end-to-end time begins with the loading of data from
system memory, includes 51 epochs of training into convergence
(no early stopping), and return of trained model back to
systemmemory. Results are shown using a fixed LBS of 128 and up
to 32 RDUs.
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often overlooked challenge for such appetites, mining that

voluminous data becomes its own challenge for which

researchers quickly lose a taste. There has been a growing

effort at accelerator-based user facilities to distill sensor data

into physics-informed representations automatically in real-time

[7]. When physics information is available as a stream of results,

one can consider adaptive experimental campaigns that can

rapidly explore parameters for faster scientific discovery. In

the context of tokamak plasma fusion, this experimental

redirection would occur between shots, e.g. one would

incorporate the previous shot into an adaptive “shot plan” for

the upcoming shots. This shot interval at the DIII-D reactor is

10 min which sets the timescale for our conservative expectation

of 10–15 min training time in order to incorporate the last shot

results into the adaptive sensor interpretation model for between-

shot adaptation. A similar paradigm is an active pursuit for

upcoming United States facilities as the LCLS-II [25] and APS-

U [13] and existing foreign facilities like the EuroXFEL, each of

which faces data acquisition rates that are pushing the limits of

what can be transferred continuously over a network. Addressing

this challenge, researchers are exploring reduced representations

that retain as much of the relevant information contained in the

original raw data while mapping to a more information-dense

representation for storage and downstream use. This is a particular

challenge for scientific cases whereby representation bias could

poison data production pipelines. This negative aspect reduces

trust of supervised ML approaches both for the fear that it will

implicitly exclude novel discovery results or propagate errors

undetected.

The attractiveness of recent developments in transformers

[8–10] lies in their tendency to be forgiving in situations where

task-specific labeled data is rare but unlabeled data, upon which

deep embedding models can be trained, is abundant. Scientific

use cases, though they rarely involve natural language processing,

can in many situations treat multi-sensor data streams as if they

were multi-channel audio streams as in analogy with MuseNET

of Ref. [11]. The flexibility of transformer architectures to encode

general structures into the feature embedding will allow

researchers to leverage volumes of unlabeled results at our

user facilities, leaving them with significantly less parameters

to train with the highly valuable, but scarce, labeled datasets.

This manuscript was driven by our interest in retraining such

embedding models frequently in order to accommodate sensor,

light-source, and experimental variation. Our embedding models

will continuously evolve with a running experiment, at the

human and thermal timescale of minutes to hours, while the

downstream task specific layers will be constant throughout an

experimental campaign—days to weeks. In this case, the task-

specific layers are significantly more static than the deep

embedding layers. This is very much opposite to transformer

use in language tasks. By analogy, imagine the spellings of the

words in your vocabulary vary appreciably every 15 min during

an extended conversation. This is exactly the case for the deep

embedding model in scientific use cases, as the experimental

environment varies, so too does the encoded representation of

the incoming data stream. Our aspirations to keep on top of these

variations, accommodating the experimental variations, is why

we have chosen the encoder-decoder CookieNetAE example [12]

for our benchmark.

Our measured results demonstrate rapid retraining of the

network that is sufficiently deep to capture all relevant

information needed for a broad range of domain specific

tasks. We show that the expected 15-min scale of

experimental evolution can be accommodated with the use of

as few as 16 RDUs (two SN10-8 nodes) in data parallel training.

Our work finds that the RDU architecture provides for an

attractive system, one that is unique from GPUs, that

accelerates ML workloads for scientific applications. The

general trends seem to point that the RDU represents an

TABLE 2 MSE values on validation data for multi-RDU runs.

Number of RDUs GBS MSE valid

1 128 2.763e-4

8 1024 3.672e-4

16 2047 4.186e-4

24 3072 4.594e-4

32 4096 4.992e-4

TABLE 3 Strong scaling, training time in seconds for one epoch with different GBSs using RDUs. Cases not carried out are indicated with dashes.

RDUs GBS =
8

16 32 64 128 256 512 1024 2048 3072 4096

1 471.1 312.5 222.0 195.2 173.7 158.8 156.2 147.1 – – –

2 – – – 127.2 106.2 94.9 87.4 89.7 – – –

4 – – – 99.3 73.0 60.2 53.3 49.6 – – –

8 – – – 92.9 56.0 40.3 31.6 28.1 – – –

16 – – – – – – – – 14.4 – –

24 – – – – – – – – – 10.3 –

32 – – – – – – – – – – 8.2
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advantage to the A100 GPU for training data that is broadly

distributed among devices and shallow in each batch while the

A100 favors deeper and less broadly distributed training data.

We add to the potential advantage to a shallow and broadly

distributed training data, e.g. smaller LBSs and more number of

devices [22]. In particular, for ensembles of models, a gradual

increase in the variance of outputs could indicate the onset of

concept drift. In such a case, having the ability to quickly add new

individuals to a larger ensemble of smaller training batches,

potentially enlisting additional RDUs for the growing

ensemble, would allow for rapid adaptation to this drift. Since

accelerator systems like free-electron lasers are typically in a state

of fluctuation—much less calm than their synchrotron

brethren—they are just such a case for wide, shallow, and

dynamic training data sets.

Given the impending TB/s scale of data ingest at the LCLS-

II [6], it is imperative that we leverage the trickle of raw—pre-

scaled—data for adapting running inference models. Because

this new machine [4] and others of its ilk [13] are quickly

ramping the data velocity, we expect that an increasing number

of users will explore ways to move as much of the pre-

processing into the various operations that can be

accelerated by dataflow architectures. These accelerators and

the downstream user beamlines are dynamic environments

where experimental configurations change on the 15 min

timescale. The rapid retraining of the associated models

could opportunistically leverage intermittent pauses in

acquisition, typically every 20–30 min, but only for model

retraining that consumes a small fraction of that cadence,

e.g. one to few minutes. This cadence is set by the human

driven environment at the xFEL where human interpretation of

interactive data visualization consumes of order 15 min of

collaborator discussion before deciding how best to drive the

next steps in experimental campaign. In the fusion case, as

noted above, the 10 min of between-shot time likewise sets a

natural few shots and then discuss cadence to experimental

campaigns. To date, this cadence represents a loose constraint

as the results of such diagnostic interpretation models are not

yet incorporated into accelerator feedback control systems

dynamically, but such plans to feed dynamic model output

into machine controls are actively being pursued by this and

other groups at FELs and tokamaks. This study serves as a

timely impetus for benchmarking short training time with

emerging new computational hardware.

In conclusion, the advent of new architectures and the

continual improvement in data parallel training will be a win

for advancing our accelerator-based scientific user facilities. It

will enable the kind of dynamic autonomous control that is

required of these large accelerator facilities as is already being

incorporated into fields as far reaching as neutron diffraction [1]

and magnetic confinement fusion [2]. As the scientific data

velocity accelerates in the coming years, and as control

systems move to include low-latency high throughput

inference, we will find an ever increasing need to match ML

acceleration architectures to the scientific facilities that best take

advantage of them.
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