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Quasi-zero stiffness (QZS) metamaterials and metastructures have great

advantages of being highly integrable and lightweight for vibration isolation

in aerospace and aviation applications. However, the geometric uncertainty

introduced from additive manufacturing (AM) significantly affects the

metamaterial/metastructure’s vibration isolation performance and therefore,

needs to be evaluated accurately and efficiently in the design process. In this

study, a high-order sparse Chebyshev polynomial expansion (HOSPSCPE)

method is first utilized to quantify the influence of AM-induced geometric

uncertainty in the QZS microstructure. Excellent accuracy and much higher

efficiency (about 470 times faster) of the proposed method are observed when

compared to the widely usedMonte Carlomethod (MCM). Uncertainty analyses

are then conducted for vibration isolation performance of the QZS

metastructures and band gap properties of the QZS locally resonant

metamaterials, respectively. The numerical results demonstrate that the

geometric uncertainty analysis can provide useful guidance and

recommendations for the manufacturing-influenced design of QZS

metastructures and metamaterials.
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1 Introduction

Elastic metamaterials with carefully engineered geometries in their microstructures

demonstrate various peculiar dynamic effective material properties absent from natural

materials and, therefore, have gained great attention in many engineering fields [1–10].

These excellent properties of metamaterials and metastructures, the metamaterial-based

finite structures, are dictated by man-made microstructures and, therefore, are critically

dependent on the choice of the fabrication method. During the past decades, the

development of additive manufacturing (AM) techniques has offered new potential

for the fabrication of metamaterials or metastructures with complex geometries, many
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of which cannot be achieved through traditional fabrication

methods [11–13]. One of the most important advantages of

AM techniques is for lightweight engineering structures which

are of particular interest in the aerospace and aviation industry

[14–17].

In aerospace and aviation applications, vibration is a

significant cause of concern particularly for lightweight

aircraft and spacecraft structures, as it can result in numerous

disasters, system performance degradation, human discomfort,

and even catastrophic failures [18, 19]. Conventional elastic

materials, such as rubber and other polymers, can attenuate

high-frequency vibrations well, but require greater thickness for

low-frequency vibration attenuation, which unfortunately

increases the overall weight of the engineering structures [20,

21]. Locally resonant metamaterials possess extensive potential

applications in low-frequency vibration and noise reduction

[22–24], but suffer from limitations, such as the narrow

working frequency ranges [25]. On the other hand,

mechanism-based vibration isolators, such as quasi-zero

stiffness (QZS) isolators, become widely used in broadband

low-frequency vibration control [26]. A perfect QZS property

can be achieved by utilizing a negative stiffness (NS) adjustable

mechanism to neutralize the positive stiffness (PS) element [27].

Various QZS isolator designs have been investigated, such as

buckling beam [28], cam–roller–spring mechanism [29],

horizontal and oblique springs [30, 31], X-shaped structure

[32], bionic structure [33], and magnetic mechanism [34].

However, miniaturization and installation of those

mechanisms caused serious challenges for high-precision

machining and packaging. To meet the requirements of the

high-integrity and lightweight QZS structure, researchers

started looking into metastructures with QZS microstructures

[35–37], which can be directly fabricated via AM techniques

without high-cost machining and packaging.

One of the major barriers that hinder the realization of

functional metastructures via AM techniques is the variation

in the geometric parameters of the manufactured

microstructures. Therefore, uncertainty analysis is of

critical importance in the design process of the

metastructure. The probabilistic method is the traditional

numerical method for uncertain systems. The Monte Carlo

method (MCM) [38] is widely used in uncertain systems

because of its simplicity, but the computational cost of this

method is very high. To overcome expensive numerical

simulation procedures in engineering, Wu et al. [39]

developed the order increment strategy based on the high-

order Chebyshev polynomial surrogate model for interval

uncertainty analysis. Li et al. [40] used sparse regression

and Chebyshev polynomials to help the interval analysis

and applied them to the response-bound estimation of

nonlinear dynamic systems. Chen et al. [41] proposed a

new high-order sparse Gergenbauer polynomial surrogate

model to effectively evaluate the band structure of

phononic crystals under three uncertain models. Xie et al.

[42], based on the Chebyshev polynomial surrogate model,

calculated the interval bounds of the phononic crystals band

structure with interval variables. However, there are no studies

to quantify the effect of geometric uncertainty in the

metastructures or metamaterials with QZS microstructures.

In this work, the high-order sparse Chebyshev polynomial

expansion (HOSPSCPE) method is utilized for geometric

uncertainty analysis of QZS metastructures. First, a sparse

point sampling scheme is introduced to reduce the potential

samples in high-dimensional problems. Also, the simplex format

of Chebyshev polynomials is derived to decrease the number of

coefficients of the approximation model. Then, the HOSPSCPE

method is applied in geometric uncertainty analysis of the QZS

metastructure designed for broadband low-frequency vibration

isolation. The uncertainty analysis results show that the

HOSPSCPE can accurately and efficiently evaluate the effect

of the AM-induced geometric uncertainty in QZS

metastructures and metamaterials. Thus, the geometric

uncertainty analysis can combine manufacturing and design

to provide guidance and recommendations for engineering

applications.

The remainder of this study is organized as follows: Section 2

describes the geometric uncertainty analysis method for the QZS

microstructure. Section 3 analyzes the static and dynamic

geometric uncertainties of the QZS unit cell and

metastructure. In Section 4, the bandgap characteristics of the

QZS locally resonant metamaterial are investigated, and the

geometric uncertainty from AM is analyzed. Finally, we draw

some conclusions in Section 5.

FIGURE 1
The 3D QZS metastructure and its cosine beam
microstructure.
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2 Uncertainty analysis of QZS
microstructure via the HOSPSCPE
method

2.1 The QZS microstructure

Since metastructures are composed of periodic units, the

microstructure in each unit determines the overall properties of

the metastructure. With more 3D metastructures being

fabricated via 3D printing technology, the manufacturing

imperfections being introduced to the microstructures can be

critical to the stable performances of the 3D metastructures.

Figure 1 shows the cosine beam microstructure in a QZS

metastructure [37]. The performance of the pre-stressed

microstructures is very sensitive to geometric uncertainty, and

therefore, six parameters of microstructures are investigated. The

shape of the cosine beam is given by y � h/2[1 − cos(2π(x/l))],
where the length, depth, and thickness are l, b, and t, respectively.

h is the height of the cosine beam. r1 and r2 are the parameters for

the upper and bottom chamfers, respectively.

2.2 The HOSPSCPE method

2.2.1 Surrogate model
With the defined six parameters, the QZS microstructure is a

high-dimensional system for uncertainty analysis. The interval

bounds of the system response can be obtained by conducting

numerous finite element (FE) simulations with different

sampling points of the parameters, which unfortunately

consumes impractical computational time. On the other hand,

surrogate models as replacements for FE models can be

introduced, which overcome the expensive simulation

procedures for uncertainty analysis of a high-dimensional

system. In order to obtain the surrogate model for uncertainty

analysis of the QZS microstructure, Chebyshev polynomial

expansion is used to construct the relationship between the

stiffness of the microstructure beam, K, and the displacement

of the beam along the height direction, u. In order to build the

surrogate model, an interval model is first constructed [42], and

the six parameters are treated as the interval variables, which can

then be defined as X:

X � l, b, t, h, r1, r2[ ] (1)
X � X , �X[ ] � xi( ), xi � xi , xi[ ], i � 1, 2, . . . , n, (2)

whereX and �X are the upper and lower bounds of interval vector

X, respectively. Similarly, xi and xi are the upper and lower

bounds of interval variable xi, respectively. n is the number of

interval variables.

Here, let us first look at the one-dimensional case of an

uncertain system, then we can easily expand to the high-

dimensional case (six parameters in this study). It is assumed

that the target stiffness functionY(x) on x ∈ [a, b] is continuous,
and can be approximated by using a polynomial p(x). For any
manufacturing imperfection introduced error ϵ ∈ (ϵ> 0), the
polynomial p(x) converges to Y(x):

‖Y x( ) − p x( )‖∞ < ε, x ∈ a, b[ ] (3)
ps x( ) � a0 + a1x +/ + asx

s, x ∈ a, b[ ], (4)

where ps(x) is a series of polynomials of order not greater than s,

and a0, . . . , as are coefficients of polynomials, respectively. If

there exists a unique polynomial pp
s(x) satisfying:

Y x( ) − ps x( )���� ����∞≥ Y x( ) − pp
s x( )���� ����∞, x ∈ a, b[ ]. (5)

Then, pp
s(x) is the best approximation polynomial of Y(x).

With a format of truncated Chebyshev series, pp
s(x) can be

rewritten as follows [39]:

Y x( ) ≈ pp
s x( ) � 1

2
Y0 +∑s

i�1
YiCi x( ) x ∈ −1, 1[ ] (6)

where Yi is the constant Chebyshev coefficients. Ci(x) can be

normalized and fit into the range [−1, 1] via a linear

transformation, denoting the Chebyshev polynomials as

follows:

Cs x( ) � cos sθ, θ � arccos x( ) ∈ 0, π[ ]. (7)
Then, the orthogonality of the Chebyshev polynomial can be

embodied as follows:

∫1

−1
Cs x( )Cp x( )ρ x( )dx � ∫π

0
cos sθ cospθdθ

�
π, s � p � 0
π/2, s � p ≠ 0
0, s ≠ p,

⎧⎪⎨⎪⎩ (8)

where ρ(x) � 1/
�����
1 − x2

√
is a weight function. Considering the

orthogonality, we can obtain the following equation:

∫1

−1
1�����

1 − x2
√ Y x( )Cp x( )dx ≈ ∫1

−1
1�����

1 − x2
√ 1

2
Y0 +∑s

i�1
YiCi x( )⎛⎝ ⎞⎠Cp x( )dx

� π

2
Yi.

(9)

Due to the orthogonality between Ci and Cp, the surrogate

model coefficients can be obtained via the Gauss–Chebyshev

integration method [43]:

Yi � 2
π
∫1

−1

Y x( )Cp x( )�����
1 − x2

√ dx ≈
2
π

π

m
∑m
j�1

Y xj( )Cp xj( )
� 2
m

∑m
j�1

Y cos θj( )cospθj, (10)

where m is the number of interpolation points and xj is the

interpolation point of the Chebyshev polynomial:

xj � cos θj, θj � 2j − 1
m

p
π

2
, j � 1, 2 . . .m (11)
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In order to balance the accuracy and the computational

cost, the number of interpolation points m is usually set to s +

1. If the interval range of xi is not within [−1, 1], xi has to be

converted, and the converted interval variable can be defined

as follows:

xp
i �

2xi − xi + xi( )
xi − xi

, (12)

where xp
i is [−1, 1]. Similarly, n-dimensional interval Chebyshev

polynomial expansion can be expressed as follows:

Ci1 ,i2 ,i3 ...in X( ) � cos i1θ1 cos i2θ2 cos i3θ3 . . . cos inθn, (13)

where θi is an angle related to xp
i and can be expressed as follows:

θi � arccos xp
i( ) � arccos

2xi − xi + xi( )
xi − xi

⎛⎝ ⎞⎠ ∈ 0, π( ). (14)

Thus, the surrogate model can be converted into the following:

Y X, u( ) � ∑s
i1�0

∑s
i2�0

/∑s
in�0

1
2

( )l

Yi1 ,...in u( )Ci1 ,...in X( ), (15)

where l is the number of equal-zero ir, (r = 1, 2, . . . , n).

Yi1 ,i2/ ,in(u) is the Chebyshev coefficient of the n-dimensional

surrogate model as follows:

Yi1 ,i2 ...in u( ) � 2
π

( )n ∫1

−1
/∫1

−1
Y X,u( )Ci1 ,...in X( )�����
1 − x2

√
. . .

�����
1 − x2

n

√ dx1 . . . dxn

� 2
π

( )n ∫π

0
/∫π

0
Y cos θ1 , . . . , cos θn, u( )cos i1θ1 . . . cos inθn dθ1/dθn

.

(16)

According to the Gauss–Chebyshev integration method [43],

Eq. 16 can be written as follows:

Yi1 ,i2 ...in u( ) � 2
π

( )n ∫1

−1
. . .∫1

−1
Y X,u( )Ci1 ,...in X( )�����
1 − x2

√
. . .

�����
1 − x2

n

√ dx1 . . . dxn

≈
2
m

( )n ∑m
j1�1

/ ∑m
jn�1

Y cos θj1 , . . . , cos θjn ,u( )cos i1θj1 . . . cos inθjn ,
(17)

where xji is interpolation point of the Chebyshev polynomial and

can be obtained by the following form:

xji � cos
π

2
2ji − 1
m

( ), ji � 1, 2, . . . , m; i � 1, 2, . . . , n. (18)

Substituting Eqs. 17 and 18 into Eq. 15, the interval response

of the high-dimensional uncertainty system can be

approximately expressed as follows:

Y X, u( ) ≈ ∑s
i1�0

/ ∑s
in�0

∑m
j1�1

/ ∑m
jn�1

1
2

( )l 2
m

( )n

Y cos θj1 , . . . , cos θjnu( )
· cos i1θj1( )/ cos inθjn( )cos i1θ1( )/ cos inθn( ).

(19)

The truncated order s and the number of interval variables n

determine the number of approximate polynomial coefficients as

N = (s + 1)n. For large s and n, a very high computational cost can

be expected. In order to reduce the computational cost, Eq. 15

can be expressed in a simplex form as follows:

Ŷ X, u( ) � ∑
0≤i1+i2+/+in ≤ s

Yi1 ,i2 ,...,in u( )Ci1 ,i2 ,...,in X( ), and i1, i2, . . . , in

� 0, 1, . . . , s,

(20)
where the coefficient Yi can also be calculated by using the least

square method. It is noted that the number of polynomial

coefficients in Eq. 20 can be written as follows:

Nsimplex � n + s( )!
n!s!

. (21)

However, the “simplex” format may reduce the

computational accuracy of the surrogate model. In the next

section, how to balance the accuracy and efficiency of the

model will be discussed.

2.2.2 Sparse point sampling scheme
The accuracy of the surrogate model can be affected by the

sampling scheme. In general, the more samples are taken, the higher

the accuracy of the surrogate model can be achieved. But such a

sampling scheme sacrifices the corresponding computational

efficiency. For high-dimensional systems, the tensor product of

the interpolation points of the Chebyshev polynomial generates a

TABLE 1 First m samples in θ space.

No. of variable No. of sample

1 2 3 4 5

1 1 2 3 4 5

2 2 5 1 4 2

3 3 1 5 4 1

4 4 1 1 5 2

5 5 1 1 1 4

6 1 5 3 1 4

TABLE 2 The design matrix of the position in θ space.

No.
of variable

No. of sample

1 2 3 4 5 6 7 8 9 10 ··· 30

2 2 5 1 4 2 1 2 3 4 5 ··· ···
3 3 1 5 4 1 2 4 2 1 3 ··· ···
4 4 1 1 5 2 1 2 5 3 2 ··· ···
5 5 1 1 1 4 1 3 3 5 3 ··· ···
6 1 5 3 1 4 1 5 5 2 1 ··· ···
1 1 2 3 4 5 4 1 4 4 5 ··· ···
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large number of sampling points, which results in unaffordable

computational time. Hence, to balance the accuracy and

computational efficiency of the surrogate model, we introduce

the sparse point sampling scheme which selects some points with

statistical properties in the sampling candidate set [39].

The sampling candidate sets of the x set and the θ space can

be, respectively, expressed as follows:

X � x1 ⊗/⊗ xn, θ � θ1 ⊗/⊗ θn, (22)

where xi and θi are the candidates of the ith variable in the x space

and θ space, respectively. Based on Eq. 11, the link between xi and

θi space can be written as follows:

xi � cos θi, θi

� θji �
2ji − 1
m

π

2
, j � 1, 2, . . . , m, i � 1, 2, . . . , n{ }. (23)

Based on Eq. 21, smax can be calculated from the following:

smax + n( )!
smax!n!

<Nmax, (24)

where Nmax is the allowable maximal sampling amount. Hence,

the candidate set of the surrogate model can be expressed as

follows:

Ntotal smax, n( ) � smax + 1( )n. (25)

FIGURE 2
Flowchart of the HOSPSCPE method for the QZS microstructure analysis with uncertainty.

TABLE 3 The geometric interval parameters with uncertainties.

Geometric parameter (mm) Uncertainty Interval Mean

l 2% [58.800, 61.200] 60

b 2% [9.800, 10.200] 10

t 2% [2.058, 2.142] 2.1

h 2% [2.156, 2.244 2.2

r1 2% [0.490, 0.510] 0.5

r2 2% [0.490, 0.510] 0.5
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The maximin principle is utilized to estimate the uniformity

of the initial sampling candidate set [44]. The scalar-valued

criterion function [45] is utilized to select the sample points,

which can be expressed as follows:

Φq θ( ) � ∑s0
i�1

∑s0
j�i+1

d θ i( ), θ j( )( )−q⎛⎝ ⎞⎠1/q

, (26)

where q is a large positive integer and set as 100 in this study, and

s0 is the number of samples. θ is the sampling set in the θ space.

The Euclidean distance d(θ(i), θ(j)) is defined as follows:

d θ i( ), θ j( )( ) � ∑n
k�1

θ i( )
k − θ

j( )
k

∣∣∣∣∣∣ ∣∣∣∣∣∣2⎛⎝ ⎞⎠1/2

, (27)

where θ(i)k is the kth variable of the n-dimensional θ(i).

When the allowable maximal sampling amount Nmax is 400,

it can be determined that smax is 4 according to Eq. 24. The initial

sample size is N0 = mn. The first five elements of the pre-set

reference column and reference row are highlighted in gray color

in Table 1. In the table, the numbers represent the positions of the

interpolation points in the corresponding variable interval. If the

orderm is smaller than i, the level of the ith variable will be set as

the remainder of i/m.

Φq θ, θ
j( )

1( ) � ∑s0
i1�1

∑s0
i2�i1+1

d θ i1( )
0 , θ i2( )

0( )−q + ∑s0
i1�1

d θ i1( )
0 , θ

j( )
1( )−q⎛⎝ ⎞⎠1/q

� Φq θ( )q + ∑s0
i1�1

d θ i1( )
0 , θ

j( )
1( )−q⎛⎝ ⎞⎠1/q

.

(28)

Since smallerΦqmeans more uniformity of the sampling set,

the remaining elements will be generated by Eq. 26 in order to

create a uniformly distributed initial sample set, denoting the

sampled set as θ and the remaining candidate set as ψ. When the

new sample point θ(j)1 is decided, the sampling point is removed

from the candidate set ψ and added to the set θ. Hence, the new

sampled set θ consists of the new sampling point θ(j)1 ∈ ψ and the

initial sample θ(i)0 ∈ θ. In order to ensure the uniformity of set θ,

θ(j)1 should minimize Φq which can be expressed.

Since the first term of the right side in Eq. 28 is a constant, the

minimizing operation will be applied to the second term, and

then the equation can be written as follows:

ϕq θ
j( )

1 , s0( ) � ∑s0
i�1

d θ i( )
0 , θ

j( )
1( )−q⎛⎝ ⎞⎠1/q

. (29)

According to Eq. 29, when Φq is the smallest in a two-

dimensional space, the element in the second row of the second

column in Table 1 can be calculated as 5. Similarly, we can obtain

other elements of the sample point. When the second sample

point is decided, the sampling point is removed from the

candidate set ψ and added to the set θ. Similarly, the first m

samples can be obtained, as shown in Table 1.

To obtain the other samples, the first row moves to the last,

and the other rows sequentially move forward, as shown in

Table 2. Similarly, the remaining part of the initial sample point

set θ0 can be obtained.

Since the allowable maximal number sampling amount is

Nmax, the number of the remaining sample point set θr is Nmax −

N0. The remaining sample point set θr is written in matrix form

as n*(Nmax −N0). Similarly, the remaining sample point set θr can

be obtained by Eq. 29.

2.2.3 Uncertainty analysis of the QZS
microstructure

Here, the HOSPSCPE method is utilized for the effective

stiffness analysis of the QZS microstructure with uncertainties.

The widely used Monte Carlo method (MCM), which is popular

due to its simplicity but suffers high computational cost,

particularly for high-dimensional uncertainty systems, is used

to verify the accuracy of the HOSPSCPE method.

The computational process of the HOSPSCPE method is

illustrated in Figure 2. Ns is the number of points obtained by the

random sampling method. The geometric interval parameters of

the QZSmicrostructure are listed in Table 3 where an uncertainty

of 2% is introduced. The photosensitive resin is chosen as the

material for the QZS microstructure (the density is ρ = 1160 kg

·m−3; Young’s modulus is E = 1,400 MPa; and Poisson’s ratio is

v = 0.23).

A sampling method within the variables’ interval range

randomly generating Ns = 10,000 sample data is introduced

into the HOSPSCPE method and the MCM. Simulations are

then carried out using MATLAB R2020a on a 3.0 GHz Xeon(R)

CPU Gold 6154. The stiffness characteristics of the QZS

microstructure with ξ = 2% uncertainty calculated by the two

FIGURE 3
The stiffness characteristics of the QZS microstructure with
2% uncertainty obtained by the HOSPSCPE method and the MCM.
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methods are illustrated in Figure 3. u* = 2h (1 + ξ) is the

normalized displacement; K* = K/K0, the normalized stiffness

with K0 being the lowest stiffness. It can be found in the figure

that the stiffness characteristics of the QZS microstructure with

2% uncertainty obtained by the HOSPSCPE method (upper

bound: red dots and lower bound: blue pentagrams) are very

FIGURE 4
The probability densities of (A) the normal distribution samples and (B) the uniformly distributed samples of theQZSmicrostructure in the quasi-
zero region.

FIGURE 5
(A) QZS unit cell model. (B) The stiffness characteristics of the QZS microstructure for two cases.

TABLE 4 The interval ranges of geometric parameters under the actual accuracy (0.1 mm) of the 3D printer.

Geometric parameter (mm) Accuracy (mm) Interval Mean

l 0.1 [59.900, 60.100] 60

b 0.1 [9.900, 10.100] 10

t 0.1 [2.000, 2.200] 2.1

h 0.1 [2.100, 2.300] 2.2

r1 0.1 [0.400, 0.600] 0.5

r2 0.1 [0.400, 0.600] 0.5
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close to those obtained with the MCM (upper bound: the solid

red line and lower bound: the blue dotted line). The

computational time for the HOSPSCPE method is about

1868s, while the computational time for the MCM is about

880865s. Thus, a much higher efficiency (about 470 times

faster) of the HOSPSCPE method is demonstrated.

TABLE 5 The interval ranges of geometric parameters of the QZS unit cell.

Geometric parameter (mm) Accuracy (mm) Interval Mean

l1 0.1 [59.900, 60.100] 60

b1 0.1 [9.900, 10.100] 10

t1 0.1 [2.000, 2.200] 2.1

h1 0.1 [2.100, 2.300] 2.2

l2 0.1 [59.900, 60.100] 60

b2 0.1 [9.900, 10.100] 10

t2 0.1 [2.000, 2.200] 2.1

h2 0.1 [2.100, 2.300] 2.2

FIGURE 6
Static uncertainty analysis of the QZS unit cell. (A) The stiffness characteristics of the QZS unit cell. (B) Static analysis of the QZS unit cell with
symmetrical microstructures. (C) Static analysis of the QZS unit cell with asymmetric microstructures.
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2.3 Sample interval density analysis under
different sample distributions

In order to demonstrate the effect of different sample

distributions on the stiffness characteristics of the QZS

microstructures, we analyzed the sample density of the QZS

effective stiffness interval for a large number of sample points

obtained by the HOSPSCPE method. In general engineering

problems, the samples with varying geometric parameters

obey statistical characteristics such as normal distribution and

uniform distribution. Hence, the sample interval density under

different sample distributions can reflect the different stiffness

characteristics of the QZS microstructures.

The normally distributed interval variables set X satisfies the

following:

X ~ N μ, σ2( ) � ∫+∞

−∞
1���
2π

√
σ
exp − X − μ( )2

2σ2
( )dX � 1 (30)

where μ is themean and σ is the standard deviation.Mathematically,

a feasible way to retain the primary characteristics of a normal

distribution while avoiding extreme values involves the truncated

normal distribution, where the defined range is limited at one or

both ends of the interval. So, we assume that the variable interval (X

(1 − ξ),X (1 + ξ)) is the same as the horizontal axis interval (μ − 3σ, μ

+ 3σ) of the normal distribution. In addition, 10,000 samples

satisfying the normal distribution are randomly generated in the

variable interval shown in Table 3.

From the perspective of vibration isolation performance, the

quasi-zero region of the microstructure’s stiffness characteristics is

our main area of concern. According to Figure 3, a quasi-zero

region of K* is defined at [0, 2], and the range of the corresponding

dimensionless displacement u* is [0.371, 0.633]. In order to obtain

the sample interval density within the quasi-zero region, we divide

the abscissa and ordinate of the quasi-zero region in Figure 3 into

120 parts and count the number of sample points in each divided

part. Hence, the interval probability density of the normal

distribution samples in the quasi-zero region can be obtained as

shown in Figure 4A. d* is the probability density of the samples.

Similarly, by randomly generating 10,000 sample points within the

variable interval, the probability density of the uniformly

distributed samples in the quasi-zero region is obtained in

Figure 4B.

It can be found that high probability density results of the

normally distributed samples are mainly concentrated in a

narrow region in the middle, as shown in Figure 4A; while

those of the uniformly distributed samples are of more

scattered distribution in the entire quasi-zero region, as shown

in Figure 4B. By comparing the sample interval densities to the

left and right of the minimum stiffness point, it is concluded that

the influence of geometric uncertainty can be reduced when the

QZS microstructure is less loaded. Based on the method of data

mining, the influence of the sample distribution on the stiffness

characteristics of the metastructure can be analyzed, which can

provide suggestions and guidance for various practical

engineering applications.

3 Uncertainty analysis of the QZS
metastructure from additive
manufacturing

3.1 Static uncertainty analysis of the QZS
unit cell

A total of two QZS microstructures are connected in series

to form a unit cell of the metastructure, as shown in Figure 5A.

FIGURE 7
Dynamic uncertainty analysis of the QZS metastructure for vibration isolation. (A) The QZS metastructure model. (B) The transmittance of the
QZS metastructure when the geometric uncertainty effect is considered.
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When conducting uncertainty analysis for the QZS unit cell,

the number of interval variables and the calculation cost will

increase exponentially. To ensure an affordable calculation

cost of the unit cell analysis, the dimension of the uncertainty

system needs to be reduced. A total of two cases (case I: the

QZS microstructure with six geometric parameters including

the chamfers r1 and r2 and case II: the QZS microstructure

with four geometric parameters excluding the two chamfers)

will be analyzed, respectively. The interval ranges of the

geometric parameters are listed in Table 4. The accuracy

(0.1 mm) in the table is the actual accuracy of the

stereolithography appearance (SLA) 3D printing

technology. Based on the HOSPSCPE method, the effective

stiffness interval of the QZS microstructures of the two cases is

obtained, as shown in Figure 5B. The upper and lower bounds

of the stiffness interval are very close for both cases, indicating

that the chamfers of the QZS microstructure have very few

effects on the stiffness characteristics. Thus, the dimension-

reduced uncertainty system can be considered in the

subsequent analysis, which will reduce the computational

effort.

The stiffness characteristics of the QZS unit cell are analyzed

based on the HOSPSCPE method. The interval range of the

geometric parameters is listed in Table 5, and the analysis results

are shown in Figure 6A. By comparing the stiffness characteristic

of the unit cell (Figure 6A) with that of the microstructure

(Figure 6B), the change in the boundaries of the interval can

be observed. Particularly, an enlarged range can be observed in

the unit cell’s result when the stiffness approaches zero. Two

cases are studied to demonstrate the more complex uncertainty

system of the unit cell when it is compared with the system of the

microstructure. In the first case, the upper and lower

microstructures are symmetric in the unit cell. Hence, the

upper and lower curved beams can reach the quasi-zero state

simultaneously, as shown in Figure 6B. In the figure, the

displacement-effective stiffness curve (the black line) of the

FIGURE 8
The QZS-LR metamaterial. (A) The embedded QZS-LR metastructure model. (B) The QZS-LR metamaterial model. (C) A simple model of the
QZS-LR metamaterial.

FIGURE 9
The band structure of the QZS locally resonant metamaterial
with introduced geometric uncertainty.
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unit cell has only one minimum stiffness. In the second case, the

geometric uncertainty from the manufacturing leads to

asymmetric upper and lower microstructures. As a result, two

local minimum points in the displacement-effective stiffness

curve appear in Figure 6C. The first local minimum point

appears when the curved beam with the smaller stiffness

reaches the quasi-zero state, while the second local minimum

point appears when the curved beam with the larger stiffness

comes to the quasi-zero state.

3.2 Dynamic uncertainty analysis of the
QZS metastructure for vibration isolation
performance

The QZS metastructure enables excellent vibration

isolation capability in the low-frequency range. However,

the geometric uncertainties introduced by the AM process

can cause the actual equilibrium point to deviate from the

designed equilibrium point, which prevents the stiffness from

achieving the perfect zero-stiffness state at the equilibrium

point. Such deviation can further affect the vibration isolation

performance of the metastructure. Here, we develop a finite

metastructure model consisting of six QZS unit cells as shown

in Figure 7A, where the gray color indicates the support mass.

In the dynamic simulations, the support mass is set to 13.5 kg,

which compresses the metastructure by 4.4 mm. By

acknowledging the compressed metastructure, harmonic

analysis is then performed by applying simple harmonic

displacement excitation at the bottom of the

metastructure. The transmittance can be defined as

20plog(Aout /Ain ), where Aout is the amplitude of

acceleration obtained at the support mass, while Ain is the

amplitude of acceleration obtained at the bottom of the

metastructure. The transmittance interval is obtained

based on the HOSPSCPE method, as shown in Figure 7B,

where the interval range of the vibration isolation frequency

can be identified as [3.66 Hz, 9.96 Hz]. Hence, it can be found

that the geometric uncertainty introduced by AM has a

significant impact on the dynamic characteristics of the

metastructure, which leads to an unignorable influence on

the vibration isolation performance.

4 Uncertainty analysis of the QZS
local resonance metastructure from
additive manufacturing

The QZS locally resonant metamaterials are designed with

beam segments and embedded QZS microstructures, as shown in

Figure 8. With the embedded QZS microstructures, lighter

weight and lower vibration isolation frequency can be

expected [37]. However, the geometric uncertainty from AM

can affect the bandgap properties of the metamaterial and,

therefore, downgrade the vibration isolation performance. To

quantify the influence of the geometric uncertainty on QZS

locally resonant metamaterials, we first calculate the band

structure of the metamaterial [46]. Then, the effective stiffness

interval of the QZS microstructure obtained by the HOSPSCEP

method is introduced into the band structure calculation, and

thus the bandgap properties of metamaterials with geometric

uncertainty are obtained.

Figures 8A and B show the embedded QZS unit cell and the

metamaterial consisting of periodically arranged unit cells,

respectively. An equivalent mass–spring–beam model can be

introduced to calculate the band structure of metamaterial [46],

as shown in Figure 8C. When excited by transverse vibration, the

QZS locally resonant metamaterial can generate a transverse

polarization forbidden band due to the local resonance effect of

the embedded resonator and, therefore, attenuate the transverse

vibration. Since geometric uncertainty leads to the stiffness

uncertainty of the QZS microstructure at the ideal equilibrium

point of the nominal design (a stiffness range of [0.95 kN/m,

4.20 kN/m] being obtained based on the HOSPSCPE method as

shown in Figure 5), taking this range as the stiffness range of k1 and

k2, the metamaterial model can be obtained (the unit cell contains

two QZSmicrostructures). To quantify the geometric uncertainty of

the metamaterial, we take k1 and k2 as interval variables and use a

random sampling method to obtain 10,000 sampling points within

the range of the interval variable. By substituting the obtained

sampling points into the band structure calculation equation

[46], the interval characteristic of the band gap can be obtained.

Figure 9 shows the calculated band structure of the QZS locally

resonant metamaterial with introduced geometric uncertainty. In

the figure, q* = (qb/π) is the normalized wave number along the x

direction, the normalized frequency is defined as f* = (f/f0), where f0

TABLE 6 Geometrical and material parameters for the QZS locally resonant metamaterial.

Geometric parameter Material parameter

Lattice constant, a 70 mm Mass density of the beam, ρ 2600 kg/m3

Cross-section area, S 100 mm−3 Young’s modulus of the beam, E 70 GPa

Moment of inertia, I 833.33 mm−6 Shear modulus of the beam, G 27 GPa

Timoshenko shear coefficient, κ 0.925

Mass, m 0.01 kg
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is the resonance frequency of nominally designed metamaterial.

Table 6 lists the materials and geometric parameters utilized in the

calculation. In the figure, the cyan area represents the forbidden

band obtained at the upper boundary of the dispersion curve

interval, while the gray area represents the forbidden band

obtained at the lower boundary. The band gap frequency ranges

of theQZS locally resonantmetamaterial change from [0.64, 0.94] to

[1.35, 1.98] due to geometric uncertainties. The nominal design

needs to be changed if the bandgap frequency range obtained by

uncertainty analysis is not within the acceptable range of our

nominal design. Hence, it can be seen that the geometric

uncertainty has a great influence on the bandgap characteristics

of the metamaterial, and therefore, it is necessary to consider the

geometric uncertainty caused by addictive manufacturing in

practical engineering applications.

5 Conclusion and discussion

In this study, the HOSPSCPE method is utilized to accurately

evaluate the influence of AM-introduced geometric uncertainty. A

simplex format of polynomials and a sparse sequential sampling

scheme is introduced in the HOSPSCPE method in order to reduce

the sampling points and, therefore, improve the computational

efficiency by 470 times when compared to the MCM. In addition,

data mining is performed on the sample data response of the QZS

microstructure obtained by the HOSPSCPE method. It is concluded

that the influence of geometric uncertainty can be reduced when the

QZSmicrostructure is less loaded.Moreover, uncertainty analyses are

conducted for vibration isolation performance ofQZSmetastructures

and band gap properties of the QZS locally resonant metamaterials,

respectively. The numerical results demonstrate that the geometric

uncertainty analysis can provide useful guidance and

recommendations for the manufacturing-influenced design of

QZS metastructures and metamaterials.

In future work, the accuracy of the SLA 3D printing

technology can be considered in the experimental validation

of the uncertainty analysis. Multiple samples of the QZS

metastructure can first be printed, and interval variables of

each sample can be accurately measured. The distribution of

the samples can then be obtained in the sample space. Finally, by

performing the experimental analysis on each printed sample, we

can obtain the corresponding mechanical characteristic curve,

which can be compared with the interval characteristic obtained

by numerical calculation to verify the effectiveness of the method.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding authors.

Author contributions

DW and RZ designed the research. DW wrote the code and

performed the simulations. DW, JZ, QM, and RZ analyzed the

data. RZ and DZ supervised the research. All authors wrote the

manuscript.

Acknowledgments

The authors are thankful for the financial support from the

National Natural Science Foundation of China (grant nos

U1837602, 11872112, and 11991033) and the National Key

Research and Development Program of China (grant nos

2021YFE0110900 and 2020YFF0304801).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater
(2012) 11:917–24. doi:10.1038/nmat3431

2. Srivastava A. Elastic metamaterials and dynamic homogenization: a
review. Int J Smart Nano Mater (2015) 6:41–60. doi:10.1080/19475411.2015.
1017779

3. Peiró-Torres MP, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez JV.
Interferences in locally resonant sonic metamaterials formed from helmholtz
resonators. Appl Phys Lett (2019) 114:171901. doi:10.1063/1.5092375

4. Li Y, Yan S, Li H.Wave propagation of 2d elastic metamaterial with rotating squares
and hinges. Int J Mech Sci (2022) 217:107037. doi:10.1016/j.ijmecsci.2021.107037

5. Chen Y, Hu G, Huang G. A hybrid elastic metamaterial with negative mass
density and tunable bending stiffness. J Mech Phys Sol (2017) 105:179–98. doi:10.
1016/j.jmps.2017.05.009

6. Zhuang X, Nguyen C, Nanthakumar S, Chamoin L, Jin Y, Rabczuk T. Inverse
design of reconfigurable piezoelectric topological phononic plates.Mater Des (2022)
219:110760. doi:10.1016/j.matdes.2022.110760

Frontiers in Physics frontiersin.org12

Wang et al. 10.3389/fphy.2022.957594

https://doi.org/10.1038/nmat3431
https://doi.org/10.1080/19475411.2015.1017779
https://doi.org/10.1080/19475411.2015.1017779
https://doi.org/10.1063/1.5092375
https://doi.org/10.1016/j.ijmecsci.2021.107037
https://doi.org/10.1016/j.jmps.2017.05.009
https://doi.org/10.1016/j.jmps.2017.05.009
https://doi.org/10.1016/j.matdes.2022.110760
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.957594


7. Yakovleva A, Movchan I, Misseroni D, Pugno N, Movchan A. Multi-physics of
dynamic elastic metamaterials and earthquake systems. Front Mater (2021) 7:
620701. doi:10.3389/fmats.2020.620701

8. Wu K, Hu H, Wang L. Optimization of a type of elastic metamaterial for
broadband wave suppression. Proc R Soc A (2021) 477:20210337. doi:10.1098/rspa.
2021.0337

9. Zhang M, Yang J, Zhu R. Origami-based bistable metastructures for low-
frequency vibration control. J Appl Mech (2021) 88. doi:10.1115/1.4049953

10. Yi K, Liu Z, Zhu R. Multi-resonant metamaterials based on self-sensing
piezoelectric patches and digital circuits for broadband isolation of elastic wave
transmission. Smart Mater Struct (2021) 31:015042. doi:10.1088/1361-665x/ac3b1f

11. Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al.
Additive manufacturing of metamaterials: A review.Additive Manufacturing (2020)
36:101562. doi:10.1016/j.addma.2020.101562

12. Al Rifaie M, Abdulhadi H, Mian A. Advances in mechanical metamaterials for
vibration isolation: A review. Adv Mech Eng (2022) 14:168781322210828. doi:10.
1177/16878132221082872

13. Monkova K, Vasina M, Zaludek M, Monka PP, Tkac J. Mechanical vibration
damping and compression properties of a lattice structure. Materials (2021) 14:
1502. doi:10.3390/ma14061502

14. Rice H, Kennedy J, Göransson P, Dowling L, Trimble D. Design of a kelvin cell
acoustic metamaterial. J Sound Vibration (2020) 472:115167. doi:10.1016/j.jsv.2019.
115167

15. Amendola A, Hernández-Nava E, Goodall R, Todd I, Skelton R, Fraternali F.
On the additive manufacturing, post-tensioning and testing of bi-material
tensegrity structures. Compos Structures (2015) 131:66–71. doi:10.1016/j.
compstruct.2015.04.038

16. Zhou D, Huang X, Du Z. Analysis and design of multilayered broadband radar
absorbing metamaterial using the 3-d printing technology-based method. IEEE
Antennas Wirel Propag Lett (2016) 16:133–6. doi:10.1109/LAWP.2016.2560904

17. Sadeqi A, Rezaei Nejad H, Owyeung RE, Sonkusale S. Three dimensional
printing of metamaterial embedded geometrical optics (mego). Microsyst Nanoeng
(2019) 5:16. doi:10.1038/s41378-019-0053-6

18. Dalela S, Balaji P, Jena D. A review on application of mechanical
metamaterials for vibration control. Mech Adv Mater structures (2021) 1–26.
doi:10.1080/15376494.2021.1892244

19. Yan B, Yu N, Wang Z, Wu C, Wang S, Zhang W. Lever-type quasi-zero
stiffness vibration isolator with magnetic spring. J Sound Vibration (2022) 527:
116865. doi:10.1016/j.jsv.2022.116865

20. Valeev A, Zotov A, Kharisov S. Designing of compact low frequency vibration
isolator with quasi-zero-stiffness. J low frequency noise, vibration active Control
(2015) 34:459–73. doi:10.1260/0263-0923.34.4.459

21. Wang Q, Zhou J, Xu D, Ouyang H. Design and experimental investigation of
ultra-low frequency vibration isolation during neonatal transport.Mech Syst Signal
Process (2020) 139:106633. doi:10.1016/j.ymssp.2020.106633

22. Li Y, Zi H, Wu X, Zhu L. Flexural wave propagation and vibration isolation
characteristics of sandwich plate-type elastic metamaterials. J Vibration Control
(2021) 27:1443–52. doi:10.1177/1077546320942689

23. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan CT, et al. Locally resonant sonic
materials. science (2000) 289:1734–6. doi:10.1126/science.289.5485.1734

24. Jin Y, Pennec Y, Bonello B, Honarvar H, Dobrzynski L, Djafari-Rouhani B,
et al. Physics of surface vibrational resonances: Pillared phononic crystals,
metamaterials, and metasurfaces. Rep Prog Phys (2021) 84:086502. doi:10.1088/
1361-6633/abdab8

25. Liu H, Xiao K, Lv Q, Ma Y. Analysis and experimental study on dynamic
characteristics of an integrated quasi-zero stiffness isolator. J Vib Acoust (2022) 144.
doi:10.1115/1.4051549

26. Alabuzhev P. Vibration protection and measuring systems with quasi-zero
stiffness. New York: CRC Press (1989).

27. Zhou J, Pan H, Cai C, Xu D. Tunable ultralow frequency wave attenuations in
one-dimensional quasi-zero-stiffness metamaterial. Int J Mech Mater Des (2021) 17:
285–300. doi:10.1007/s10999-020-09525-7

28. Dalela S, Balaji P, Jena D. Design of a metastructure for vibration isolation
with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn
(2022) 108:1931–71. doi:10.1007/s11071-022-07301-0

29. Zhou J, Wang X, Xu D, Bishop S. Nonlinear dynamic characteristics of a
quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J Sound
Vibration (2015) 346:53–69. doi:10.1016/j.jsv.2015.02.005

30. Liu Y, Xu L, Song C, Gu H, Ji W. Dynamic characteristics of a quasi-zero
stiffness vibration isolator with nonlinear stiffness and damping. Arch Appl Mech
(2019) 89:1743–59. doi:10.1007/s00419-019-01541-0

31. Wen G, He J, Liu J, Lin Y. Design, analysis and semi-active control of a quasi-
zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn
(2021) 106:309–21. doi:10.1007/s11071-021-06835-z

32. Chai Y, Jing X, Chao X. X-shaped mechanism based enhanced tunable qzs
property for passive vibration isolation. Int J Mech Sci (2022) 218:107077. doi:10.
1016/j.ijmecsci.2022.107077

33. Deng T, Wen G, Ding H, Lu ZQ, Chen LQ. A bio-inspired isolator based on
characteristics of quasi-zero stiffness and bird multi-layer neck. Mech Syst Signal
Process (2020) 145:106967. doi:10.1016/j.ymssp.2020.106967

34. Oyelade AO. Experiment study on nonlinear oscillator containing magnetic
spring with negative stiffness. Int J Non-Linear Mech (2020) 120:103396. doi:10.
1016/j.ijnonlinmec.2019.103396

35. Cai C, Zhou J, Wu L, Wang K, Xu D, Ouyang H. Design and numerical
validation of quasi-zero-stiffness metamaterials for very low-frequency band
gaps. Compos structures (2020) 236:111862. doi:10.1016/j.compstruct.2020.
111862

36. Zhang Q, Guo D, Hu G. Tailored mechanical metamaterials with
programmable quasi-zero-stiffness features for full-band vibration isolation. Adv
Funct Mater (2021) 31:2101428. doi:10.1002/adfm.202101428

37. Zhao W, Wang Y, Huang G, Zhu R. Isolating vibrations with different
polarizations via lightweight embeddedmetastructure.Health Monit Struct Biol Syst
XIII (Spie) (2019) 10972:89–96. doi:10.1117/12.2514295

38. Zhang H, Mullen RL, Muhanna RL. Interval Monte Carlo methods for
structural reliability. Struct Saf (2010) 32:183–90. doi:10.1016/j.strusafe.2010.01.001

39. Wu J, Luo Z, Zheng J, Jiang C. Incremental modeling of a new high-order
polynomial surrogate model. Appl Math Model (2016) 40:4681–99. doi:10.1016/j.
apm.2015.12.002

40. Li C, Chen B, Peng H, Zhang S. Sparse regression chebyshev polynomial
interval method for nonlinear dynamic systems under uncertainty. Appl Math
Model (2017) 51:505–25. doi:10.1016/j.apm.2017.06.008

41. Chen J, Xia B, Liu J. A sparse polynomial surrogate model for phononic
crystals with uncertain parameters. Comp Methods Appl Mech Eng (2018) 339:
681–703. doi:10.1016/j.cma.2018.05.001

42. Xie L, Liu J, Huang G, ZhuW, Xia B. A polynomial-based method for topology
optimization of phononic crystals with unknown-but-bounded parameters. Int
J Numer Methods Eng (2018) 114:777–800. doi:10.1002/nme.5765

43. Eslahchi M, Dehghan M, Masjed-Jamei M. On numerical improvement of the
first kind gauss–chebyshev quadrature rules. Appl Math Comput (2005) 165:5–21.
doi:10.1016/j.amc.2004.06.102

44. Johnson ME, Moore LM, Ylvisaker D. Minimax and maximin distance
designs. J Stat Plann inference (1990) 26:131–48. doi:10.1016/0378-3758(90)
90122-B

45. Morris MD, Mitchell TJ. Exploratory designs for computational experiments.
J Stat Plann inference (1995) 43:381–402. doi:10.1016/0378-3758(94)00035-t

46. Zhu R, Liu X, Hu G, Sun C, Huang G. A chiral elastic metamaterial beam for
broadband vibration suppression. J Sound Vibration (2014) 333:2759–73. doi:10.
1016/j.jsv.2014.01.009

Frontiers in Physics frontiersin.org13

Wang et al. 10.3389/fphy.2022.957594

https://doi.org/10.3389/fmats.2020.620701
https://doi.org/10.1098/rspa.2021.0337
https://doi.org/10.1098/rspa.2021.0337
https://doi.org/10.1115/1.4049953
https://doi.org/10.1088/1361-665x/ac3b1f
https://doi.org/10.1016/j.addma.2020.101562
https://doi.org/10.1177/16878132221082872
https://doi.org/10.1177/16878132221082872
https://doi.org/10.3390/ma14061502
https://doi.org/10.1016/j.jsv.2019.115167
https://doi.org/10.1016/j.jsv.2019.115167
https://doi.org/10.1016/j.compstruct.2015.04.038
https://doi.org/10.1016/j.compstruct.2015.04.038
https://doi.org/10.1109/LAWP.2016.2560904
https://doi.org/10.1038/s41378-019-0053-6
https://doi.org/10.1080/15376494.2021.1892244
https://doi.org/10.1016/j.jsv.2022.116865
https://doi.org/10.1260/0263-0923.34.4.459
https://doi.org/10.1016/j.ymssp.2020.106633
https://doi.org/10.1177/1077546320942689
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1088/1361-6633/abdab8
https://doi.org/10.1088/1361-6633/abdab8
https://doi.org/10.1115/1.4051549
https://doi.org/10.1007/s10999-020-09525-7
https://doi.org/10.1007/s11071-022-07301-0
https://doi.org/10.1016/j.jsv.2015.02.005
https://doi.org/10.1007/s00419-019-01541-0
https://doi.org/10.1007/s11071-021-06835-z
https://doi.org/10.1016/j.ijmecsci.2022.107077
https://doi.org/10.1016/j.ijmecsci.2022.107077
https://doi.org/10.1016/j.ymssp.2020.106967
https://doi.org/10.1016/j.ijnonlinmec.2019.103396
https://doi.org/10.1016/j.ijnonlinmec.2019.103396
https://doi.org/10.1016/j.compstruct.2020.111862
https://doi.org/10.1016/j.compstruct.2020.111862
https://doi.org/10.1002/adfm.202101428
https://doi.org/10.1117/12.2514295
https://doi.org/10.1016/j.strusafe.2010.01.001
https://doi.org/10.1016/j.apm.2015.12.002
https://doi.org/10.1016/j.apm.2015.12.002
https://doi.org/10.1016/j.apm.2017.06.008
https://doi.org/10.1016/j.cma.2018.05.001
https://doi.org/10.1002/nme.5765
https://doi.org/10.1016/j.amc.2004.06.102
https://doi.org/10.1016/0378-3758(90)90122-B
https://doi.org/10.1016/0378-3758(90)90122-B
https://doi.org/10.1016/0378-3758(94)00035-t
https://doi.org/10.1016/j.jsv.2014.01.009
https://doi.org/10.1016/j.jsv.2014.01.009
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.957594

	Uncertainty analysis of quasi-zero stiffness metastructure for vibration isolation performance
	1 Introduction
	2 Uncertainty analysis of QZS microstructure via the HOSPSCPE method
	2.1 The QZS microstructure
	2.2 The HOSPSCPE method
	2.2.1 Surrogate model
	2.2.2 Sparse point sampling scheme
	2.2.3 Uncertainty analysis of the QZS microstructure

	2.3 Sample interval density analysis under different sample distributions

	3 Uncertainty analysis of the QZS metastructure from additive manufacturing
	3.1 Static uncertainty analysis of the QZS unit cell
	3.2 Dynamic uncertainty analysis of the QZS metastructure for vibration isolation performance

	4 Uncertainty analysis of the QZS local resonance metastructure from additive manufacturing
	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


