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In quantum optics, nonclassicality in the sense of Glauber-Sudarshan is a valuable resource
related to the quantum aspect of photons. A desirable and intuitive requirement for a
consistent measure of nonclassicality is convexity: Classical mixing should not increase
nonclassicality. We show that the recently introduced nonclassicality measure [Phys. Rev.
Lett. 122, 080402 (2019)] is not convex. This nonclassicality measure is defined via operator
ordering sensitivity, which is an interesting and significant probe (witness) of nonclassicality
without convexity but can be intrinsically connected to the convex Wigner-Yanase skew
information [Proc. Nat. Acad. Sci. United States 49, 910 (1963)] via the square root operation
on quantum states. Motivated by the Wigner-Yanase skew information, we also propose a
faithful measure of nonclassicality, although it cannot be readily computed, it is convex.

Keywords: coherent states, nonclassicality, operator ordering sensitivity, convexity, Wigner-Yanase skew
information

1 INTRODUCTION

In the conventional scheme of Glauber-Sudarshan, nonclassicality of light refers to quantum optical
states that cannot be expressed as classical (probabilistic) mixtures of Glauber coherent states [1–7].
Its detection and quantification are of both theoretical and experimental importance in quantum
optics [8–17]. Recently, a remarkable and interesting nonclassicality measure is introduced in Ref.
[18]. This measure is well motivated and has operational significance stemmed from operator
ordering sensitivity [18], which is also known as squared quadrature coherence scale in measuring
quadrature coherence [19], and proved to be closely related to the entanglement [20]. Here we
demonstrate that this nonclassicality measure, as well as the operator ordering sensitivity, are not
convex. This means that classical (probabilistic) mixing of states can increase nonclassicality, as
quantified by this nonclassicality measure via the operator ordering sensitivity. Our result
complements the key contribution in Ref. [18].

By the way, we show that the operator ordering sensitivity, though not convex, can be connected
to a convex quantity via the very simple and straightforward operation of square root. The modified
quantity has both physical and information-theoretic significance, and is actually rooted in an
amazing quantity of Wigner and Yanase, introduced in 1963 [21]. Motivated by the Wigner-Yanase
skew information, we also propose a faithful measure of nonclassicality which is convex.

To be precise, let us first recall the basic idea and the key quantities in Ref. [18]. Consider a single-
mode bosonic field with annihilation operator a and creation operator a† satisfying the commutation
relation
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a, a†[ ] � 1.

Let D(α) � eαa
†−αpa be the Weyl displacement operators with

amplitudes α ∈ C, then |α〉 = D(α)|0〉 are the coherent states
[1–3]. For a bosonic field state ρ, consider the parameterized
phase space distributions [18]

Ws z( ) � 1
π2
∫

C

es|z|
2/2+αzp−αpztr ρD α( )( )d2α

on the phase space C, where s ∈ [−1, 1], d2α = dxdy with
α � x + iy, x, y ∈ R, and tr denotes operator trace. In
particular, for s = 1, 0, −1, the corresponding phase space
distributions are the Glauber-Sudarshan P functions, the
Wigner functions, and the Husimi functions, respectively.

Motivated by operator ordering due to noncommutativity and
in terms of the Hilbert-Schmidt norm, the quantity

So ρ( ) � − d

ds
ln π‖Ws||2( )|s�0

is introduced as a probe of nonclassicality of ρ in Ref. [18], and is
called operator ordering sensitivity. Here

‖Ws‖2 � ∫
C

|Ws z( )|2d2z.

It turns out that.

So ρ( ) � − 1
2tr ρ2( ) tr ρ, Q[ ]2( ) + tr ρ, P[ ]2( )( ), (1)

where [X, Y] = XY − YX denotes operator commutator, and

Q � a + a†

2

√ , P � a − a†

2

√
i

are the conjugate quadrature operators. Simple manipulation
shows that

So ρ( ) � 1
tr ρ2( ) tr ρ, a[ ] ρ, a[ ]†( ). (2)

Moreover, the following nonclassicality measure

N ρ( ) � inf
σ∈C

|||~ρ − ~σ||| (3)

is introduced as a key result [18]. Here C is the set of classical
states (i.e., mixtures of coherent states), ~ρ � ρ/







tr(ρ2)√

,
~σ � σ/







tr(σ2)√

, and the norm |||·||| is defined as∣∣∣∣∣∣∣∣∣∣∣∣X∣∣∣∣∣∣∣∣∣∣∣∣2 � 1
2
tr X†, Q[ ] Q,X[ ] + X†, P[ ] P,X[ ]( ).

In particular, ∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣2 � So ρ( )
is precisely the operator ordering sensitivity.

The purpose of this work is to demonstrate that the
nonclassicality measure N (·) defined by Eq. 3 is not
convex. Consequently, this quantity cannot be a consistent
measure of nonclassicality if one imposes the fundamental
rationale that classical mixing of quantum states should not
increase nonclassicality, which resembles the idea that

classical mixing of quantum states should not increase
entanglement. By the way, we also demonstrate that the
operator ordering sensitivity So(·) defined by Eq. 2 is not
convex either.

The structure of the remainder of the paper is as follows. In
Section 2, we demonstrate that the nonclassicality measure N (·) is
not convex through counterexamples. In Section 3, we show that
although the operator ordering sensitivity So(·) is not convex, it can be
directly connected to a convex quantity related to the celebrated
Wigner-Yanase skew information. By the way, we also present a
simple proof of the fact that So(ρ)≤ 1 for any classical state. In Section
4, we bring up a convex measure of nonclassicality based on the
Wigner-Yanase skew information. Finally, a summary is presented in
Section 5.

2 NON-CONVEXITY OF THE
NONCLASSICALITY MEASURE N (ρ)
In this section, we show that N (ρ) defined by Eq. 3, the
nonclassicality measure introduced in Ref. [18], is not convex.
First recall that by the triangle inequality for norm and the fact
that the set ~C, the image of C under the map ρ → ~ρ � ρ/







tr(ρ2)√

, is
contained inside the unit ball, it is shown that [18]∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ − 1≤N ρ( )≤ ∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ (4)
with

∣∣∣∣∣∣∣∣∣∣∣∣~ρ∣∣∣∣∣∣∣∣∣∣∣∣ � 





So(ρ)

√
.

Now we give a family of counterexamples to show thatN (ρ) is
not convex with respect to ρ. Considering the mixture

ρ � 1
2
ρ1 +

1
2
ρ2

of the vacuum state ρ1 = |0〉〈0| (which is classical) and the
Fock state ρ2 = |n〉〈n| with n > 1, then by direct calculation, we
have

So ρ1( ) � 1, So ρ2( ) � 1 + 2n.

To evaluate So(ρ), noting that

So ρ( ) � 1 + 2
tr ρ2( ) tr aρ2a†( ) − tr ρa†ρa( )( ),

we have, by direct calculation, that

tr ρ2( ) � 1
2
, tr aρ2a†( ) � n

4
, tr ρa†ρa( ) � 0,

from which we obtain

So ρ( ) � 1 + n.

It follows from the inequality chain (4) that

N ρ1( )≤ 






So ρ1( )√

� 1,

N ρ2( )≤ 






So ρ2( )√

� 





1 + 2n

√
,

while

N ρ( )≥ 





So ρ( )√

− 1 � 





1 + n

√ − 1.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9557862

Fu et al. Convexity of the Nonclassicality Measure

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Consequently,

1
2
N ρ1( ) + 1

2
N ρ2( )≤ 1 + 






1 + 2n
√
2

.

Since when n > 24, the following inequality holds





1 + n

√ − 1> 1 + 





1 + 2n

√
2

,

it follows that

N ρ( )≥ 





1 + n

√ − 1> 1 + 





1 + 2n

√
2

≥
1
2
N ρ1( ) + 1

2
N ρ2( ).

This implies thatN (·) is not convex. In this sense,N (·) cannot be a
consistent measure of nonclassicality because classical mixing should
not increase nonclassicality. Of course, N (·) still captures certain
features of nonclassicality and can be used as a probe of nonclassicality.

3 RELATING THE OPERATOR ORDERING
SENSITIVITY SO(ρ) TO THE
WIGNER-YANASE SKEW INFORMATION
As a side issue, in this section, we show that although the operator
ordering sensitivity So(ρ) is not convex either with respect to ρ, it
can be intrinsically related to the celebrated Wigner-Yanase skew
information, which is convex.

First, we illustrate non-convexity of So(ρ) through the
following counterexamples. Take

ρ1 �
1
2

|0〉〈0| + |1〉〈1|( ), ρ2 � |2〉〈2|, p1 � 1
4
, p2 � 3

4
,

where |n〉 are the Fock (number) states with

a|0〉 � 0, a|n〉 � 

n

√ |n − 1〉, n � 1, 2, . . . ,

and

a†|n〉 � 





n + 1

√ |n + 1〉, n � 0, 1,/ .

Now direct evaluation yields

ρ1, a[ ] � 1

2

√ |1〉〈2|, ρ2, a[ ] � 

3

√ |2〉〈3| − 

2

√ |1〉〈2|,
and

p1ρ1 + p2ρ2, a[ ] � −5


2

√
8

|1〉〈2| + 3


3

√
4

|2〉〈3|.

Substituting the above into Eq. 2, we obtain

So ρ1( ) � 1, So ρ2( ) � 5,

and

So p1ρ1 + p2ρ2( ) � 79
19

>p1So ρ1( ) + p2So ρ2( ) � 4.

This implies that So(ρ) is not convex.
In the above counterexamples showing non-convexity of So(ρ),

both the constituent states ρ1 and ρ2 are nonclassical in the sense that
they cannot be represented as probabilistic mixtures of coherent
states [1–3]. The following counterexamples illustrates that even the

mixture of a classical thermal state and a nonclassical state can
demonstrate non-convexity. Considering the thermal state

τ1 � 1 − λ( )∑∞
n�0

λn|n〉〈n|, λ ∈ 0, 1( ), (5)

which is classical and the Fock state τ2 = |1〉〈1|, and their mixture

τ � 1
2

τ1 + τ2( ),
then by direct calculation, we have

So τ1( ) � 1 − λ

1 + λ
, So τ2( ) � 3.

To evaluate So(τ), noting that from Eq. 2, we have

So τ( ) � 1 + 2
tr τ2( ) tr aτ2a†( ) − tr aτa†τ( )( ).

Now direct calculation leads to

tr τ2( ) � 1 + λ 1 − λ2( )
2 1 + λ( ) ,

tr aτ2a†( ) � 1 + 4λ + 4λ2 − 2λ3 − 2λ4

4 1 + λ( )2 ,

tr aτa†τ( ) � λ + 1 − λ( ) 1 + 2λ2( ) 1 + λ( )2
4 1 + λ( )2 ,

from which we obtain

So τ( ) � 1 + λ 2 + 3λ − 3λ2 + 2λ4( )
1 + λ − λ3( ) 1 + λ( ) , λ ∈ 0, 1( ).

Clearly

lim
λ→1

So τ( ) � 3> 1
2
lim
λ→1

So τ1( ) + 1
2
lim
λ→1

So τ2( ) � 3
2
.

By continuity, this implies that So(·) is not convex for λ close to 1.
More explicitly, for λ = 0.9, we have

So τ( ) ≈ 2.45> 1
2

So τ1( ) + So τ2( )( ) ≈ 1.53,

which explicitly shows that So(·) is not convex.
The non-convex quantity So(ρ) can bemodified to a convex one

if we formally replace ρ by the square root


ρ

√
in Eq. 1 and define

Ŝo ρ( ) � −1
2

tr


ρ

√
, Q[ ]2( ) + tr



ρ

√
, P[ ]2( )( ), (6)

which is precisely the sum of the Wigner-Yanase skew
information [21]

I ρ, Q( ) � −1
2
tr



ρ

√
, Q[ ]2( ), I ρ, P( ) � −1

2
tr



ρ

√
, P[ ]2( ).

Remarkably, Ŝo(ρ) defined by Eq. 6 can be more succinctly
expressed as

Ŝo ρ( ) � tr


ρ

√
, a[ ] 


ρ
√

, a[ ]†( ), (7)

which is essentially (up to a constant factor 1/2) an extension
of the Wigner-Yanase skew information, as can be readily
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seen if we recast the original Wigner-Yanase skew
information [21]

I ρ, K( ) � −1
2
tr



ρ

√
, K[ ]2( )

of the quantum state ρ with respect to (skew to) the observable
(Hermitian operator) K as

I ρ, K( ) � 1
2
tr



ρ

√
, K[ ] 


ρ
√

, K[ ]†( ),
and formally replace the Hermitian operator K by the non-Hermitian
annihilation operator a. An apparent interpretation of Ŝo(ρ) is the
quantumuncertainty of the conjugate pair (Q,P) in the state ρ [22–24].

Due to the convexity of theWigner-Yanase skew information [21],
Ŝo(ρ) is convex with respect to ρ, in sharp contrast to So(ρ). Moreover,
Ŝo(ρ) has many nice features as guaranteed by the fundamental
properties of the Wigner-Yanase skew information and its various
physical and information-theoretic interpretations [24].

It is amusing to note the analogy between the passing from classical
probability distributions to quantum mechanical amplitudes and that
from So(ρ) to Ŝo(ρ): Both involve the square root of states.

By the way, we present an alternative and simple proof of the
interesting fact that [18]

So ρ( )≤ 1
for any classical state ρ, which implies that So(·) is convex when the
component states are restricted to coherent states (noting that
So(|α〉〈α|) = 1 for any coherent state |α〉), though it is not
convex in the whole state space. To this end, let the Glauber-
Sudarhsan P representation of ρ be

ρ � ∫P α( )|α〉〈α|d2α,

then

tr aρ2a†( ) � ∫P α( )P β( )αpβe−|α−β|2d2αd2β � ∫P α( )P β( )βpαe−|α−β|2d2αd2β,

tr aρa†ρ( ) � ∫P α( )P β( )|α|2e−|α−β|2d2αd2β � ∫P α( )P β( )|β|2e−|α−β|2d2αd2β,

from which we obtain

So ρ( ) � 1 + 2

tr ρ2( ) tr aρ2a†( ) − tr aρa†ρ( )( )
� 1 − 2

tr ρ2( )∫P α( )P β( )|α − β|2e−|α−β|2d2αd2β.

In particular, if ρ is a classical state, then P(α) ≥ 0, and this implies
that So(ρ) ≤ 1 for any classical state ρ. In contrast, the fact that

Ŝo ρ( )≤ 1 (8)
for any classical state follows readily from the convexity of Ŝo(ρ)
and Ŝo(|α〉〈α|) � 1 for any coherent state |α〉.

4 A CONVEX MEASURE OF
NONCLASSICALITY

Motivated by theWigner-Yanase skew information, we propose a
measure of nonclassicality defined as

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

� inf
σ∈C

tr






|ρ − σ|√

, a[ ] 






|ρ − σ|

√
, a[ ]†( ).

Here |A| � 




A†A

√
is the square root of A†A, and C is the set of

classical states.

It is clear that N̂ (ρ) is a faithful measure of nonclassicality,
N̂ (ρ)> 0 for all nonclassical states and N̂ (ρ) � 0 for all
classical states. Compared with the nonclassicality measure
N (ρ) which is not convex, we prove below that N̂ (ρ) is
convex.

Considering the convex combination of quantum states ρ1 and
ρ2 with probabilities p1 = p and p2 = 1 − p respectively, the mixed
state is denoted by

ρ � p1ρ1 + p2ρ2.

Supposing that

N̂ ρ1( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ1 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ1 − σ1

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2,
N̂ ρ2( ) � inf

σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ2 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ2 − σ2

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2,
due to the fact that the convex combination of classical states is
also a classical state, we have σc � p1σ1 + p2σ2 ∈ C, therefore

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 




∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤
∣∣∣∣∣∣∣∣∣∣∣∣ 













∣∣∣∣p1ρ1 + p2ρ2 − σc

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 





















∣∣∣∣p1 ρ1 − σ1( ) + p2 ρ2 − σ2( )∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 



















p1|ρ1 − σ| + p2

∣∣∣∣ρ2 − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤p1

∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ1 − σ1
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + p2

∣∣∣∣∣∣∣∣∣∣∣∣ 






∣∣∣∣ρ2 − σ2
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � p1N̂ ρ1( ) + p2N̂ ρ2( ).

Here the second inequality holds due to

|A + B|≤ |A| + |B|, (10)
which can be obtained from the fact that |A+ λB|2 ≥ 0 for all real λ.
While the third inequality follows from the convexity of the
celebratedWigner-Yanase skew information, the convexity of the
measure N̂ (ρ) is easily proved. We point out here that similar to
other measures involving optimization, this nonclassicality
measure N̂ (ρ) can not be readily computed. It would be
desirable if tight bounds of this quantity can be given.

Similarly from inequality (10) and the convexity of the
Wigner-Yanase skew information, we have

N̂ ρ( ) � inf
σ∈C

∣∣∣∣∣∣∣∣∣∣∣∣ 




∣∣∣∣ρ − σ
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − τ1
∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2

≤ inf
τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 







|ρ| + ∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � 2 inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 









1
2
|ρ| + 1

2

∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + inf

τ1∈T

∣∣∣∣∣∣∣∣∣∣∣∣ 


∣∣∣∣τ1∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � ∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � Ŝo ρ( ),
where T is the set of thermal states as defined in Eq. 5, the first
inequality follows from the fact that thermal states are classical
states (that is, T ⊆ C), and the last inequality holds since
inf τ1‖|




|τ1|
√ ‖|2 � inf τ1∈T Ŝo(τ1) � inf λ∈(0,1)(1 −



λ

√ )/(2 + 2


λ

√ ) � 0,
as shown in Ref. [24]. Analogously, we notice that
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Ŝo ρ( ) � ∣∣∣∣∣∣∣∣∣∣∣∣ 

∣∣∣∣ρ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 











|ρ − σ| + ∣∣∣∣σ∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 � 2
∣∣∣∣∣∣∣∣∣∣∣∣ 













1
2
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|σ|√ ∣∣∣∣∣∣∣∣∣∣∣∣2
≤
∣∣∣∣∣∣∣∣∣∣∣∣ 





∣∣∣∣ρ − σ

∣∣∣∣√ ∣∣∣∣∣∣∣∣∣∣∣∣2 + 1,

where σ is a classical state, and the last inequality can be directly
obtained from inequality (8). So we have

Ŝo ρ( ) − 1≤ N̂ ρ( )≤ Ŝo ρ( ).
In other words, N̂ (ρ) may be well estimated by the convex
nonclassicality quantifier Ŝo(ρ) for highly nonclassical states.

5. CONCLUSION

We have demonstrated thatN (·), a recently introduced significant
nonclassicality measure based on the operator ordering sensitivity,
is not convex, and thus cannot be a consistent measure of the
conventional nonclassicality of light in the sense of Glauber-
Sudarshan. This non-convexity should be borne in mind
whenever one wants to employ N (·) to quantify nonclassicality
in quantum optics in the customary fashion. We have proposed a
faithful measure of nonclassicality N̂ (·) which is convex. One
obstacle of applying this measure is that it can not be readily
computed due to the optimization over the set of classical states.

By the way, we have also demonstrated that although the
important operator ordering sensitivity So(·) is not convex
either, it can be simply connected to the convex Wigner-
Yanase skew information via the square root operation on
quantum states, which is reminiscent of the passing from

probabilities to amplitudes via square roots, so fundamental
in going from classical to quantum.

Due to the remarkable properties and information-theoretic
significance of the Wigner-Yanase skew information, it is
desirable to employ this quantity to study nonclassicality of
light in particular, and nonclassicality of arbitrary quantum
states in general.
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