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We present a method to compress the 2D transverse phase space projections

from a hadron accelerator and use that information to predict the beam

transmission. This method assumes that obtaining at least three projections

of the 4D transverse phase space is possible and that an accurate simulation

model is available for the beamline. Using a simulated model, we show that—a

computer can train a convolutional autoencoder to reduce phase-space

information which can later be used to predict the beam transmission.

Finally, we argue that although using projections from a realistic nonlinear

distribution produces less accurate results, the method still generalizes well.
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1 Introduction

A challenging problem in obtaining high beam power in hadron linacs, such as

ATLAS, SNS, and FRIB, is understanding and minimizing uncontrolled beam loss—a

significant unexpected loss of the beam within the beamline. [1]. In the low energy

beam transport lines (LEBT), the machine must carefully control the beam to

minimize downstream beam loss. The beam describes a collection of particles in

six-dimensional space; three positions and three momentum coordinates. For the DC

beam in the LEBT, the longitudinal coordinates are not involved in the dynamics but

appear as parameters. Therefore, each charged particle is described by its location in

the four-dimensional (4D) transverse phase space (x, x′, y, y′), where primed

coordinates are derivatives with respect to the longitudinal direction.

In the LEBT, multiple beam measurement devices such as Alison Scanners [2],

Pepper-Pot emittance meters [3], wire scanners [4], and viewers, are used to capture

one-dimensional (1D) or two-dimensional (2D) profile measurements. These are

projections of the four-dimensional (4D) transverse phase space. Inferring the 4D

distribution from this projected 1D and 2D information is referred to as 4D

tomography. Mathematical and physical methods, such as the maximum entropy
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principle [5, 6], have been successfully demonstrated to realize

the 4D tomography in accelerators. However, there are still

challenges in combining 1D or 2D information from different

locations. The optics deviation, when the machine deviates

from the model, for example, will affect the accuracy of the 4D

tomography.

In this paper, we tested a data-driven approach to predict the

beam loss using 4D phase space distribution information encoded in

a low-dimensional vector from 2D projection measurements. The

data was generated from virtual diagnostic instruments simulated

using the beam dynamics code TRACK. The simulation is of a test

lattice adopted from the LEBT of the ATLAS accelerator, which

consists of six quadrupoles and five virtual diagnostic instruments.

The simulation results were used to develop a convolutional

autoencoder to encode the data into a meaningful lower-

dimensional representation, which the model will then use to

relate the phase-space information to the beam loss.

2 Methods

2.1 ATLAS lattice

The presented study used data generated from the simulation

of ATLAS’s LEBT. The lattice consists mainly of a multi-

harmonic buncher, nine quadrupole magnets—six of which

are being used to tune the lattice—and five virtual diagnostic

instruments. The virtual diagnostic instruments capture the 4D

phase space of the beam, providing information on the 2D

projections and beam transmission for use later. This amount

of data is currently hard to achieve in an actual accelerator, but it

is used to study the method’s feasibility, giving the initial model a

higher chance to succeed.

Figure 1 shows the location of the virtual diagnostic

instruments. The measurements were recorded at five

locations: beginning, end, and after quadrupoles 2, 4, and 6.

2.2 Generating data using TRACK

TRACK is a ray-tracing or particle-tracking code that can:

1) represent external fields accurately within the aperture.

2) calculate the particle coordinate at any point in the space.

3) determine to calculate beam loss in both the ideal case and in

the presence of complex field errors and device

misalignments [7].

Since machine time is costly, the TRACK simulation was

used to gather data. It was generated on Michigan State

University’s high-performance computing cluster for a

week, producing over a million data points. As will be

covered in a later section, a significant amount of data will

be required for training autoencoders to high fidelity. The

model varied the parameters for these simulations according

to Table 1. The model chose these parameters within a small

range to interpolate well. Once the model collected the data, it

was filtered so that the initial beam distributions were

contained within the beam aperture, resulting in a final

data set of around 430,000 simulation points.

2D phase-space projections from the 4D phase space were

created by having all the particles deposited onto an n × n grid

using pairs of the coordinates axes, (x, x′, y, y′). This method

resulted in 6 independent projections.

2.2.1 Non-linear field
Another data set was created to test the model’s

generalizability, which will be explained later. This was done

with a perturbation to the initial distribution. The distribution

was created at the beginning of the simulation by using a

nonlinear magnetic field, such as a sextupole. All other

generative settings were kept the same. This simulates the

realistic case of ECR beams which experience a sextupole field

inside the source.

FIGURE 1
Cartoon of accelerator and beam measurements. The image shows where the model collected each beam measurement.
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2.3 Autoencoder

An autoencoder is a nonlinear data reduction algorithm used in

machine learning. It is composed of two parts, an encoder and a

decoder. The encoder takes a significant input and reduces it into a

lower dimension, known as a latent dimension, while the decoder

attempts to reconstruct the latent dimension back into the original

input. The error, which is the difference between the original and

reconstructed data, quantifies how well the latent dimension

explains the initial input. The advantage of compressing the data

into a meaningful representation [8] makes it more efficient to train

a neural network model on the reduced data.

In the model, a convolutional autoencoder was implemented

in PyTorch [9] to reduce the dimension of the 2D projections of

the phase space. A convolutional autoencoder uses a

convolutional neural network as the encoder and decoder. A

convolutional neural network is a type of neural network used to

analyze visual information [10, 11]. This network has the

TABLE 1 Inputs: Parameter range used to generate a dataset of the initial beam distributions and quadrupole settings. Architecture: Description of
some blocks used in the architecture. Each projection was given a separate encoder and decoder block where the latent dimension differ for the
$(x, x9)$ and $(y, y9)$ projections.

Dataset

Inputs

Voltages on Quadrupoles 1, 3, 5 uniform random number from [0,8] V

Voltages on Quadrupoles 2, 4, 6 uniform random number from [-8,0] V

Initial Distribution random distribution from 9 built-in distributions

ϵx,y 0.12 + Normal (μ = 0, σ = 0.012) cm*mrad

αx,y Normal (μ = 0, σ = 1) unitless

βx,y 100 + Normal (μ = 0, σ = 10) cm/rad

Outputs

Number of particles left 0-10,000 particles. Taken at 4 different points

Position of all particles Taken at 5 different points

Architecture

Encoder

Conv 1 channel-out: 1, channel-in: 64, kernel: 3, stride: 3

Conv 2 channel-out: 64, channel-in: 128, kernel: 3, stride: 3

Linear in: 6,272, out: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16

Decoder

Linear in: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16, out: 6,272

ConvTranspose 1 channel-in: 128, channel-out: 128, kernel: 3, stride: 2

ConvTranspose 2 channel-in: 128, channel-out: 64, kernel: 3, stride: 2

ConvTranspose 3 channel-in: 64, channel-out: 1, kernel: 3, stride: 1

Latent Dimension

Linear in: 134, out: 134

NN 1–4

Linear in & out: (x, x′), (y, y′) → 32, (x, y) (x, y′) (y, x′) (x′, y′) → 16

LossP

Linear 1 in: 134, out: 134 * 4

Linear 2 in: 134 * 4, out: 134 * 4

Linear 3 in: 134 * 4, out: 1
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advantage over principal component analysis [12], another data

reduction algorithm, in that it includes spatial information and

can account for nonlinear effects by using nonlinear activation

functions in the network. Activation functions take the summed

weighted inputs of a layer inputs of a layer and map it onto a set

range. It was found that the ReLU activation function and the

ELU activation function were the best activation functions to use

[13] in this case, it helps the model to train fast and be less likely

to fail during training.

Each of the six 2D projections was given its own autoencoder.

The decoder reproduces all the original projections reasonably,

verifying that the model effectively encoded the projections into a

latent dimension. The latent dimensions sizes used for this paper

were 32 for the (x, x′), and (y, y′) projection, and 16 for the rest.

Given that the code made the original images to be 33 × 33, the

model significantly reduced the inputs.

2.4 Modeling

A neural network was used to create a surrogate model of the

ATLAS front-end, as shown in Figure 2. Amore detailed description

of each block is described in Table 1, and the full detail can be seen in

the code1. The architecture is composed of an encoder-decoder

block to reduce each of the six phase-space projections into lower

latent dimensions and then concatenate them together. The quad

settings were also joined onto this vector and processed through fully

connected layers. Each fully connected layer attempts to model the

phase space changes by transforming the latent variables into a

different set of latent variables describing the new 4D phase space.

This new vector would be the input into the next fully connected

layer to model the following transformation, a decoder block to

reconstruct the distribution as 2D phase-space projections at that

location, and another fully connected layer to predict the beam

transmission represented by the number of particles left.

The encoder-decoder block uses a convolutional autoencoder, as

described in the previous section. The decoder was built similarly to

the encoder, the only difference being that some adjustments were

made to match the original dimensions. A decoder was not trained

for every location but was combined for each projection. This

method saves limited GPU memory and produces a more

generalized decoder.

The model used a two-layer, fully connected network to

calculate the number of particles left. Again, the model did not

train the network at every location, but it was combined to make a

generalized particle loss predictor for the same reasons stated above.

2.5 Training

Overall, the model encodes each initial phase-space projection

into separate latent dimensions, then attempts to recreate the phase-

space forecast and predict the beam transmissions at the other

FIGURE 2
Cartoon of architecture. During training, the model takes all the 2D projections and loss value as input into the training. Only the initial 2D
projections were given during testing, and the model predicts the loss values and 2D projections in addition.

1 The code is available upon request.
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4 locations, and then compares them to the ground truth from the

dataset. Using both results in a training loop, the model will update

itself using gradient descent [10] to recreate the image in the next

iteration better. Gradient descent is performed using

backpropagation on PyTorch computational map. The basic idea

is that parameters in the network will be adjusted using the gradient

information in the direction that will result in the final output closer

to the actual values. The size of the step taken is related to the

learning rate.

The model used a loss function to quantify the difference

between the predicted and ground truth results. Commonly,

mean square error loss is used because it punishes large

deviations; however, this results in an overflow—an error that

occurs when a computer produces a number more significant

than it can represent, in the gradient calculation during training.

This could have be resolved by normalizing the inputs and outputs,

but a non-normalized dataset was used since that gave a better

convergence. The model used absolute loss (L1 Loss) in these cases.

This could also have been resolved by using a double or a long float,

but this would use up valuable memory on the GPU.

To also aid in training, frozen layers were implemented to

decrease training time and prevent gradient overflow. Frozen layers

are layers where the gradient information was disconnected, thus

preventing changes to that layer during training. This method was

implemented in the following three-step training procedure:

1. LossP blocks were frozen and trained with a learning rate of

0.01. Everything else was trained for 20 epochs.

2. LossP blocks were unfrozen, and everything else was frozen; thus,

only LossP was trained for 10 epochs. The learning rate was

also 0.01

3. Everything was unfrozen and trained for 5 epochs at a lower

learning rate of 0.001.

A problem that arises from using simulation is overfitting,

which is a state where the model memorizes the training data

FIGURE 3
(A) Histogram of original data set using six projections (B) and same model but using three projections. (C) Histogram of original data set using
six projections, (D) and same model but using three projections.
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rather than generalizing it. Because simulation generally differs

from the actual machine due to installation and operation errors,

if the model is not generalized or adjusted enough, it will perform

poorly on the actual device.

The model used the last step of the training procedure to

better merge the LossP block with the whole model. This also

helps to prevent overfitting. A lower learning rate than the

previous two steps discourages radical changes that may

destroy the learned model in the first two steps.

2.6 Results

The model was tested on a newly generated dataset using the

original parameters and a nonlinear dataset generated using a

sextupole. Only the initial distributions were given, but the model

would still predict the 2D projections and beam transmission at

the other locations downstream. Then, to test the model’s

generalization, a nonlinear field in the form of a sextupole

[14] was added to the beginning of the simulation to generate

a distinct subset of inputs.

An error of less than 1% for results within two standard

deviations from the mean would be sufficiently good for

predicting the loss on ATLAS since it is a low-power

machine. For the rest of the paper, the percentage refers to a

two standard deviation bound. The error is defined as the

absolute difference between the ground truth and the

predicted values divided by the total number of particles. The

obtained values were plotted as a correlation graph in Figure 3A.

If there were no errors, there would be a straight line. Given that

we have 104 particles, the error for the original data set using six

projections would be 3%.

This was then tested on the nonlinear sextupole distribution

with fair results, an error of 5.5% as shown in Figure 3C. The

model was able to generalize reasonably well; however, it is still

far from the ideal case. In this case, a machine learning model

mainly interpolates the results, so the accuracy of a model

depends on how much training data it is given. The more

data points a model has, the better the interpolation.

Due to the nature of hadron accelerators, many quadrupole

configurations would produce a high particle loss because only a

few configurations would allowmost particles to pass. Thus, most

of the dataset would be skewed towards high loss, resulting in

higher accuracy since there is more data in those cases. The

dataset was split into bins, and as expected, the bin of particle loss

between 9,000–10,000 has an error around 2.5%, and for the bin

of particle loss between 0–1,000, the error was as high as 5%.

2.6.1 Testing on a smaller data set
The same model was tested again, but with the (x, y′) (x′, y′),

and (y, x′) projections removed. In Figure 3B, the error predictions

from the original data set show an improvement in the accuracy for

“Loss: 0”, while it has around the same error for the other losses. This

difference in error is likely due to overfitting as the predictions from

the nonlinear data set show a loss of accuracy overall, as seen in

Figure 3D; however, the model was shown to work with half the

image data used, making this model more practical.

3 Discussion

A proof-of-principle machine learning-based model has been

reported to test anML-based 4D tomography using its 2D projections

and the capability to predict beam transmission. The result shows that

if given only three projections of the 4D phase space, the model can

reduce the projections into a smaller latent dimension that contains

the core information, which the model can then use to predict the

beam transmission downstream. If the model used fewer projections,

the model would not have enough information to describe the entire

4D phase space. The latent dimension was verified to have contained

the core information through a decoder that correctly reconstructed

the encoded images. Thismethod generalizes reasonablywell to initial

beam distributions with nonlinear perturbations, showing robustness

and the potential for modeling the real machine.

Before bringing this to a real machine, it should be noted that

this is a simplified model of an actual accelerator, with

considerable differences to consider. This model assumes that

a single parameter can model the accelerator elements; therefore,

more complicated effects, such as misalignment of the magnets

and the longitudinal overlapping of transverse magnets, are not

considered. The model also assumes no space charge, neglects the

profile’s beam-to-beam fluctuation, and overlooks the

longitudinal components of the beam distribution.

It requires at least three projections to make the prediction, but

this is not always available. In addition, it assumes perfect accuracy

in the measurements. The prediction accuracy will also depend on

the accuracy of the projections and beam loss monitors, but one

method to reduce measurement error at various locations can be to

use multiple measurements with different optics. The current model

cannot predict fractional beam loss over the entire length of the

accelerator at the level of 1e-06 to 1e-08 per meter, which would be

desirable for future works, but methods such as adaptive tuning and

physics-informed learning may prove helpful to make the model

more robust and accurate and eventually reach that goal.

The beam loss value is represented by the percentage of the

total beam intensity. Accuracy of a few percent beam loss has

been demonstrated with this simplified model; however,

characterizing the beam loss with a certain percentage of the

total power results in a very different threshold for accelerators

with another goal of beam power. Therefore, the absolute power

loss should be used in later applications for real accelerators.

The traditional approach to evaluating beam loss would be to use

simulations or beam loss monitors. The simulation requires an

accurate lattice model with boundary data information where
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beam halo information is usually absent. Other methods, such as

beam loss monitors, are physical devices used to measure beam loss,

whereas some standard devices are ion chambers and

photomultipliers. In choosing the suitable machine, there are

various considerations such as sensitivity, cost, size, dynamic range,

and radiation hardness [15].

The model could be trained using data from a real machine,

but collecting a large amount of data is expensive and time-

consuming. Thus, models will have to be introduced on realistic

simulation models and then transferred to the actual machine.

Methods known as “transfer learning” allow knowledge learned

from the source dataset to be transferred to a target dataset [10].

This could be done, for example, by freezing the model, adding

another layer to the encoder and decoder, and training that layer

on the distribution from the machine to adapt the model to the

machine. Then, the rest of the model can be unfrozen and trained

with a much lower learning rate to fine-tune the model. Further

studies will allow models to be trained first with simulations and

then transferred to machines.

Machine learning has various advantages and disadvantages.

Machine learning has an advantage since it can make a data-

driven model with no lattice information at the expense of a large

data set. Two disadvantages are that the model will need high-

fidelity data to reach high accuracy and that the model will

constantly need to be calibrated to the current machine. Future

research will study ways to combine machine learning with

physics to make a more sample-efficient and robust model.

One way this could be done is by encoding constraints in the

loss function during model training or by incorporating domain

knowledge by including the transfer matrices in the calculation.

The positive results of this work give hope that incorporating this

knowledge may increase sample efficiency and further reduce the

beam transmission error.
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