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Power line inspection plays a significant role in the normal operation of power systems.
Although there is much research on power line inspection, the question of how to balance
the working hours of each worker and minimize the total working hours, which is related to
social fairness and maximization of social benefits, is still challenging. Experience-based
assignment methods tend to lead to extremely uneven working hours among the working/
inspection teams. Therefore, it is of great significance to establish a theoretical framework
that minimizes the number of working teams and the total working hours as well as
balances the working hours of inspection teams. Based on two real power lines in Jinhua
city, we first provide the theoretical range of the minimum number of inspection teams and
also present a fast method to obtain the optimal solution. Second, we propose a transfer-
swap algorithm to balance working hours. Combined with an intelligent optimization
algorithm, we put forward a theoretical framework to balance the working hours and
minimize the total working hours. The results based on the two real power lines verify the
effectiveness of the proposed framework. Compared with the algorithm without swap, the
total working hours obtained by the transfer-swap algorithm are shorter. In addition, there
is an interesting finding: for our transfer-swap algorithm, the trivial greedy algorithm has
almost the same optimization results as the simulated annealing algorithm, but the greedy
algorithm has an extremely short running time.

Keywords: path planning, optimization algorithms, complex networks, balancing working hours, power line
inspection

1 INTRODUCTION

With the development of the society and smart grid, the demand for electricity is increasing, and the
range of power lines is also getting wider [1]. The safe operation and maintenance of power lines is
related to our high quality of life, but subtle disturbances in the power system may cause great harm
[2]. For example, on December 23, 2015, Ukraine reported a service outage [3, 4]. As a part of power
systems, the power line inspection is a very important step to ensure the normal operation and
maintenance of the power system. However, power lines are always exposed to the outside and are
vulnerable to earthquakes, floods, storms, building collapses, etc., so it is necessary to regularly
inspect power lines [5, 6]. The power line inspection includes tower inspection and wire inspection.
The traditional method of overhead power line inspection is to manually walk along the line or by
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vehicles and use telescopes and infrared thermal imagers to
conduct an inspection. The main problems of traditional
inspection are as follows: on the one hand, the distance of the
inspected power lines is long and the workload is heavy and the
efficiency is very slow. In the event of natural disasters such as
earthquakes and landslides, the inspection task will not be carried
out. On the other hand, inspection in mountainous areas is of
high risk, threatening the life safety of workers. Therefore, how to
efficiently complete power line inspection is a very important
issue. With the development of technology, unmanned aerial
vehicles (UAVs) can be used instead of a human in some cases.
Compared with traditional inspection, UAVs have the advantages
of strong adaptability, high accuracy, and high work efficiency in
power line inspection [7–10]. Workers can control UAVs to take
photos and then send them to the terminal. From the terminal, we
can find out where the problem is and then use robots to repair it.
At present, the robot can only do some simple repair work. If it
encounters complex problems, it still needs to be carried out
manually [11–14]. Usually, UAVs face limited battery life and
controllable distance. As we know, the target power lines are
usually far away from the office (work unit). Therefore, the
inspection task is implemented with the following two steps.
The first step is to drive from the office to the drop-off points of
the towers. The second step is to take photos by UAVs and repair
them with robots or workers once a problem is detected. At
present, the work office mainly relies on experience to assign
several inspection teams to inspect the corresponding power
lines, resulting in extremely uneven working hours among
inspection teams. What is worse is some inspection teams
work overtime for a long time. Thus, an efficient solution for
balancing the working hours of each inspection team can solve
this social fairness problem to a certain extent. With regard to the
second step of the inspection work, the inspection time for each
tower and the corresponding power line can be considered a
constant. This assumption is reasonable because we usually do
not know in advance whether these towers need to be repaired.
Thus, in order to balance the working hours and minimize the
total working hours, we only need to provide optimal power line
inspection path planning before performing the inspection task.

Given a target power line, the optimal path planning problem
can be transformed into a traveling salesman problem (TSP) or
vehicle routing problem (VRP). That is, the inspection team starts
from the office and finally returns to the original starting location.
Here, all the target towers and the corresponding power lines
should be inspected and can only be inspected once. Therefore,
the problem belongs to the NP-hard problem encountered in
combinatorial optimization [15, 16]. The TSP or VRP is a very old
and classic problem in graph theory, and many research methods
for optimal path planning were proposed [17], such as integer
programming [18], dynamic programming [19], and branch and
bound algorithm [20, 21]. However, the high computational
complexity of those exact algorithms prevents them from
being applied to large-scale networks. To improve
computational efficiency, agent-based or multi-agent-based
heuristic intelligent optimization algorithms were successively
proposed. For example, genetic algorithms [22], ant colony
algorithms [23], simulated annealing algorithms [24, 25],

particle swarm algorithms [26], and some derivative
algorithms, or hybrid algorithms [17, 27, 28]. Recently, some
optimization methods by machine learning were presented [29],
such as graph neural network [30] and reinforcement
learning [31].

If there are toomany power lines to be inspected, it is not practical
to assign one inspection team to complete the inspection task. The
problem can be transformed into classicalmultiple traveling salesman
problems (MTSP), which is also NP-hard [32, 33]. The constraint
conditions are 1) all the inspection teams should start from the same
location (office) and return to the office. 2) Each inspection team
must inspect at least one tower. 3) Each tower and the corresponding
power line can only be inspected once. Despite this problem seeming
difficult, it can still be solved by the abovementioned method [17, 34,
35]. For example, based on k-means clustering, the optimal path
planning was carried out in each cluster [36–38]. However, those
works did not take into account the balanced workload of each
cluster. As workload can reflect social fairness, and the MTSP
associated with balancing workload has attracted increasing
attention [39–41]. For example, Alves et al. minimized the
distance and balanced the routes for the MTSP by genetic
algorithms [39]. Xu et al. proposed a two-phase heuristic
algorithm to balance the number of destinations of travel agents
[40]. Compared with balancing the routes or the number of traveling
destinations, it is fairer to balance theworking hours. Lee et al. studied
the balance of the traveling time for MTSP, but the traveling time
among each pair of destinations is linear with the distance [42].
Recently, Vandermeulen et al. investigated the balanced working
hours for MTSP by translating the task assignment problem into the
minimum Hamiltonian partition problem; however, the traveling/
cost time was obtained by simulation [43]. Hu et al. proposed a
transfer method to balance the working time with the minimum
number of inspection teams with two real power lines [6]. But, there
is no need to consider the walking time because the task of taking
photos can be implemented by the UAVs.

In this article, considering both driving time and inspection time,
we give the theoretical solution for the minimum number of
inspection teams. In addition, we propose a transfer-swap
algorithm to balance the working hours among inspection teams
and minimize to total working hours. Combined with the minimum
number of inspection teams and intelligent optimization algorithms,
a framework for optimal path planning is presented. Concretely,
based on the latitude and longitude of the power grid (line-5876 and
line-5803) in Jinhua City and the latitude and longitude of the drop-
off points of towers of the two power lines, we obtain both the
driving time from the office to all the towers and the driving time
among each pair of towers through the web crawler [6]. Compared
with the real driving time from the office to each tower, it is found
that the driving time obtained by the crawler is not much different
from that of the real one. Using the crawled driving time, we can
construct a fully connected network of driving time between the
office and all towers. Simulations verify the provided theoretical
solution for the minimum number of inspection teams, and results
from four optimization algorithms prove that the proposed transfer-
swap algorithm can well-balance the working hours.

The article is organized as follows. In Section 2, first, we
describe our model. Second, we present the theoretical analysis
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for the minimum number of inspection teams. Third, we provide
the transfer-swap algorithm to balance the working hours among
inspection teams, which is the key to the general framework for
optimal path planning. In Section 3, we analyze two real power
lines and verify the framework of optimal path planning with the
minimum inspection teams and balancing the working hours.
Finally, we conclude and discuss this article in Section 4.

2 MODEL AND METHODS

2.1 Optimal Inspection Path Planning Model
Because the location of the office is fixed, we can construct a fully
connected network once the target towers are identified. The fully
connected network can be described by G = (V, E, T). Here, V is
the node-set V = {v0, v1, . . ., vN}. v0 represents the office and the

FIGURE 1 | (color online) A simple example about path planning with one office and seven towers. (A) Optimal path for one inspection team to complete a given
inspection task. The total working hours (spending time) is the driving time of the path plus the inspection time by UAVs, robots, or workers, that is, td + 7tins. (B)Optimal
path that balances the working hours between the two inspection teams. The working hours is t1wh and t2wh for the two inspection teams. The difference of working hours
between the tow inspection teams is tdiff �| t1wh − t2wh |, where | ·| is the absolute value of ·.

FIGURE 2 | (color online) (A,B) Longitudes and latitudes of towers for line-5876 and line-5803. Only the first two towers and the last two towers, as well as the
location of the office, are marked. (C,D) Real driving time and the crawled driving time from the office to each tower for line-5876 and line-5803, and the red star curve
stands for the difference. There are 48 towers in line-5876 and 72 towers in line-5803.
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others are the number of the N target towers, see Figure 1. The
edge set E � {evivj � (vi, vj) | vi, vj ∈ V, i ≠ j} stands for the edges
among nodes. The term T ∈ R(N+1)×(N+1) is the driving time
matrix, and the entry tvivj in T is the driving time from vi to vj. The
other related variables are defined as follows:

td, the driving time for one single inspection team to visit all
the target towers and return to the office.
tins, the inspection time for inspecting each tower and the
corresponding power line, which can be completed by UAVs,
robots, or workers. The term can be set to a constant, say 15 min.
Thus, the total working hours (i.e., spending time) for one single
inspection team to complete the task is td + tinsN.
tmax, the maximum working hours on workday for every
inspection team. Generally, let us define tmax = 8 h or 28,800 s.
trwh, the working hours of rth inspection team, which includes both
driving time and inspection time over the assigned power lines.
Here, r= 1, 2, . . ., k and k are the total number of inspection teams.
In general, the working hours for each inspection team should
satisfy trwh ≤ tmax.
tdiff, the maximum difference of the working hours among
inspection teams, quantified by max(tr1wh) −min(tr2wh) with r1,
r2 = 1, 2, . . ., k. Here, max (·) and min (·) stand for the maximum
and minimum of ·, respectively. The smaller the indicator tdiff is,
the fairer it is.

The objective is to balance the working hours of each
inspection team and minimize the total working hours, see
Figure 1. The system model can be written by

min Z � ∑N
i�0

∑N
j�0

tvivjxvivj. (1)

Subject to

∑N
j�1

xv0vj � k, (2)

∑N
i�1

xviv0 � k, (3)

∑N
i�0,i≠j

xvivj � 1,∀j � 1, 2, . . . , N, (4)

∑N
j�0,i≠j

xvivj � 1,∀i � 1, 2, . . . , N, (5)

uvi − uvj + pxvivj ≤p − 1,∀i, j � 1, 2, . . . , N, i ≠ j, (6)
1≤ uvi ≤p,∀i � 1, 2, . . . , N, (7)
trwh ≤ tmax,∀r � 1, 2, . . . , k, (8)

tdiff ≤ ϵ, (9)

FIGURE 3 | (color online) Under the four algorithms (greedy, antcol, SA, and GA-EO); (A,C) the cumulative driving time for a single inspection team to complete the
task; (B,D) the optimal inspection path. 0 in tower NO. represents the office, and tower NO means the tower number is to be inspected at that step. (A,B) line-5876.
(C,D) Line-5803. The perturbation parameter p = 0.05 for the greedy algorithm.
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where

xvivj � 1, if the tower vi precedes tower vj on a travel.
0, others.

{ , (10)

Here, vi, vj ∈ V and uvi are the visiting rank of tower vi in order,
∀i = 1, 2, . . ., N, and 2 ≤ p ≤ N + 1 − k represents the maximum
number of towers that can be inspected by any inspection team r.
In the interest of fairness, we introduce one threshold ϵ. If tdiff > ϵ,
the working hours among inspection teams are not balanced. For
example, let us set ϵ = 1/4 h, which means the maximum
difference in working hours among all inspection teams
should not be larger than 15 min.

Constraints 2) and 3) ensure all the k inspection teams starting
from the office and returning to the office. Constraint sets 4) and
5) are the assignment constraints to make sure that each tower
should be preceded by and precedes exactly one another tower.
Constraint sets 6) and 7) are the Miller–Tucker–Zemlin sub-tour
elimination constraints [18]. Constraints 8) and 9) are weak and
are also our optimization objectives.

In this article, we introduce three artificial intelligence
algorithms to optimize the inspection path for a given k, tmax,,
and ϵ. The three algorithms are the ant colony algorithm (antcol),
simulated annealing algorithm (SA), and one hybrid algorithm
made up of the genetic algorithm and extremal optimization
(GA-EO). The genetic algorithm (GA) has poor local search
ability, large computation, poor adaptability to large search space,
and easy convergence to a local minimum. The GA-EO algorithm

is adopted by combining the EO algorithm with the traditional
genetic algorithm [44].

In order to compare with the abovementioned three
optimal algorithms, we also present a greedy algorithm.
The greedy algorithm is described as follows: For each step,
with probability 1 − p, the tower with the shortest driving time
is selected as the next inspection target. Otherwise, one
unselected tower is randomly selected as the next
inspection target with the probability p. If p = 0, it is
equivalent to the pure greedy algorithm, so p can be seen
as a perturbation parameter. Concretely, it is assumed that the
currently visited tower is vi and the tower set containing all the
towers that has been visited is defined as Vc. The next tower vj
that will be selected to visit with a probability 1 − p should
satisfy the condition minvj∈V\Vctvivj. Here, V \ Vc is the tower set
in V but not in Vc.

2.2 Theoretical Analysis of Minimum
Number of Inspection Teams
The minimum number of inspection teams is denoted as the
capacitated vehicle routing problem (CVRP) [45]. Several general
algorithms were proposed for a minimum number of vehicles,
such as greedy algorithm [46], and integer programming [47].
Here, we show a theoretical solution to the minimum number of
inspection teams. For one single inspection team to inspect the
power line, the working hours are td + Ntins. Here, td is the total
driving time on the path and tins is the inspection time to inspect

FIGURE 4 | (color online) (A,B) Under the four algorithms (greedy, antcol, SA, and GA-EO), the optimal driving time for a single inspection team to perform the
inspection task with 20 times of independent running. (C,D) For different perturbation parameters p of the greedy algorithm, the optimal driving time for a single
inspection team to perform the inspection task with 20 times running independently. (A,C) Line-5876. (B,D) Line-5803.
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one tower and the power line between the tower and the next
tower, which can be set to a constant, such as 15 min. If td +
Ntins > tmax, more than one inspection team is required. The
required number of inspection teams k satisfies

k≥ td +Ntins( )/tmax. (11)
The equal sign holds if k is equal to 1. If (td + Ntins) > tmax,
then k > 1.

Because tv0vi is the driving time from the office to tower vi, then
we have

td +Ntins + k − 1( )max tv0vi( )≥ k tmax −max tv0vi( )[ ], vi ∈ V\v0
td +Ntins + k − 1( )min tv0vi( )≤ k tmax −min tv0vi( )[ ], vi ∈ V\v0.

{ .

(12)
From the previousequation, the minimum number of inspection
teams satisfies

td +Ntins −min tv0vi( )
tmin −min tv0vi( ) ≤ k≤

td +Ntins −max tv0vi( )
tmax −min tv0vi( ) . (13)

To find the exact minimum number of inspection teams as
quickly as possible, here, we present one alternative approach to
estimate the value of k by using the average driving time from the
office to all the towers. Specifically, the round-trip time of k inspection

teams can be approximately computed by the average round-trip
time from the office to all towers, which can be expressed as

tave � ∑vi∈V tv0vi + tviv0( )
N

. (14)

Thus, the total working hours for all teams is td + N × tins + (k −
1) × tave. Because there is one round-trip time in td, so we use (k −
1) × tave instead of k × tave. Therefore, the minimum number of
inspection teams should satisfy

td + tinsN − tave
tmax − tave

≤ k. (15)

Here, k is the smallest integer and is not less than td+tinsN−tave
tmax−tave . In

general, because of the round-trip time, so the total working
hours of completing the task for multiple inspection teams is
larger than that for one single inspection team. As the round-trip
time is obtained by the estimated value tave, so we relax the
conditions to compute the minimum k, which leads to

k ∈ ⌈td + tinsN − tave
tmax − tave

⌉ − 1,⌈td + tinsN − tave
tmax − tave

⌉,⌈td + tinsN − tave
tmax − tave

⌉ + 1{ }, ,
(16)

where �·� represents the smallest integer not less than ·.

FIGURE 5 | (color online) Working hours twh for different numbers of inspection teams by using our framework without swap. (A,B) Line-5876 with k = 2 and k = 3
and (C,D) line-5803 with k = 4, k = 5. The perturbation parameter p is set to 0.05 for the greedy algorithm. Because the working hours are not well-balanced for line-5803
when k = 4, so the result of k = 3 for line-5803 is not shown in this figure.
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In conclusion, the minimum k can be obtained by Eqn. 13;
however, we can use Eqs. 11, 16 to estimate it. Without loss of
generality, in this article, we assume that the maximum working
hours tmax = 8 h of each inspection team on a workday and the
tins = 15 min.

2.3 One Framework For Optimal Inspection
Path With Balancing Working Hours By the
Transfer-Swap Algorithm
Based on the minimum number of inspection teams k in the last
section, we propose a new algorithm to balance the working hours
and minimum the total working hours by the transfer-swap
algorithm and provide the framework for optimal inspection path
with several intelligent optimization algorithms.

To be a concert, we first randomly select k towers as center
nodes and obtain the k set by K-means based on the driving time
matrix T. For example, let us set node vi to be one center node. For
non-central node vj ∈ V, add vj to the set of vi if the driving time
from vj to vi is minimum among all the center nodes.

Second, based on the optimization algorithms, we can get the
optimal path and compute the working hours for each set trwh with r=
1, 2, . . ., k and add them to obtain the total working hours ∑k

r�1trwh.
Third, if max(trwh) −min(trwh)≤ ϵ and

trwh ≤ tmax,∀r ∈ {1, 2, . . . , k} and the total working hours ∑k
r�1trwh

is smaller than that of the previous value, then we get the final
optimization result.

Fourth, if the condition in the third step is not satisfied, we
transfer one tower in the tower set with max(trwh) to the tower set
with min(trwh) by random. Implement the third step with given
iterations. If the condition in the third step is still not satisfied, we
select one tower in each tower set by random and swap them.
Implement the last two steps with given iterations. The detail of
this algorithm is shown in Algorithm 1.

Algorithm 1. Optimal inspection path planning with the
transfer-swap algorithm.

3 RESULTS

3.1 The Analysis of Two Real Power Lines
In this section, we analyze the driving time of two real power
lines, line-5876 and line-5803, in Jinhua City, Zhejiang Province.

The real data contain the following details [4]:

FIGURE 6 | (color online) Working hours twh for the minimum number of inspection teams with our framework and transfer-swap algorithm. (A) k = 3 for line-5876
and (B) k = 5 for line-5803. p = 0.05 for the greedy algorithm.
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i) Longitudes and latitudes of all towers for the two power lines
and the office. As shown in Figures 2A,B.

ii) Longitudes and latitudes of drop-off points of each tower.
iii) The driving times tv0vi from the office to drop off points of

each tower.

For our question, the optimal path should start from the
office, after inspecting all the target towers and power lines and
finally returns to the office. Although data contain the driving
time from the office to the drop-off point of each tower, it does
not contain the driving time tvivj between the drop-off point of
each pair of towers. The incomplete data prevent us from using
the framework immediately. Here, we provide an alternative
solution. By using the API interface of Baidu Map, we can get
the driving times between the drop-off of each pair of towers
with a web crawler. In order to test the validity of the data
obtained by the web crawler, we also crawl the driving time of
the office to the drop-off point of each tower, as shown in
Figures 2C,D. We find that the crawled data of the two power
lines are not much different from the real data. The crawled
data are slightly larger, but the difference is generally located
near 0, as shown by the red star curve in Figures 2C,D.
Therefore, we can optimize the path by our proposed
framework with the crawled data.

3.2 Optimize Inspection Path With One
Single Inspection Team

In this section, we test our framework with two real power lines.
The configuration of our computer is Intel Core (TM) i7-7700
CPU, 16 GB RAM, and 3.6 GHz processing speed. First, we study
the inspection path planning for one single inspection team by
antcol, SA, GA-EO, and the greedy algorithm. Because the
inspection time of each tower and its corresponding power
line, tins is considered to be 900s, and it is only necessary to
optimize the driving time when assigning a single inspection
team. As can be seen from Figures 3A,C, when all targets are
inspected, the SA algorithm takes the shortest driving time,
followed by the GA-EO algorithm. The greedy algorithm in
line 5876 has the longest driving time, while the total driving
time of antcol and the greedy algorithm in line 5803 is nearly the
same. Figures 3B,D shows the inspection sequence of the two
power lines under the four algorithms.

The result in Figure 3 is from a single simulation. In order to
reduce the randomness of the four algorithms, we analyze the
results from running independently on 20 times, see Figures
4A,B. It can be seen that the optimal driving time calculated by
the SA algorithm is the most stable, and the other three
algorithms have a large fluctuation, among which the

FIGURE 7 | (color online) Optimal inspection paths with our framework with (A) greedy, (B) antcol, (C) SA and (D) GA-EO. k = 3 for line-5876. p = 0.05 for the
greedy algorithm. Here, the coordinate (0, 0) is the starting point, namely, the office.
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fluctuation of the greedy algorithm is the largest. In addition, we
also find that the driving time by using the SA algorithm is always
the shortest, which suggests that SA performs the best path
planning. Considering the perturbation parameter p in our
greedy algorithm, we further study the driving time with
different p for the greedy algorithm in Figures 4C,D. When
p = 0, the probability of jumping out of the local optimal value is
0, so the driving time is a constant. When p = 0.1, the result is
slightly worse than of p = 0.05. As we can give the optimal path
before executing the task, we can simulate it several independent
times to find out the inspection path associated with the shortest
driving time.

In general, the working hours for everyone is not more than
8 h on a workday, namely, tmax = 28800s. Let us assume that the
inspection time for each tower is 15 min, that is, tins = 900s. From
Figure 3 and Figure 4, we can find that when assigning one single
inspection team to perform the inspection task, the working
hours of the four algorithms for line-5876 are about 59914s,
58403s, 54918s, and 57409s. For line-5803, the corresponding
working hours are about 91433s, 87623s, 84507s, and 87396s. All
the working hours exceed the maximum working hours tmax;
therefore, more inspection teams are needed. For line-5876, there
are 48 towers and the average driving time from the office to each
tower is 2221s. For line-5803, there are 72 towers, and the average

driving time from the office to each tower is 3252s. From Eqn. 16,
the minimum number of inspection teams is one of the elements
in the set {2, 3, 4} for line-5876, and the minimum number of
inspection teams is one of the elements in {3, 4, 5} for line-5803.

3.3 Optimize Path With the Minimum
Number of Inspection Teams
In this section, we analyze and verify the theory of a minimum
number of inspection teams and further study and verify our
framework for the optimal path planning with the two power lines.

First, we study the optimal path planning with our framework
without the swap strategy. From Figure 5, it can be found that
when k = 2 and k = 4 for line-5876 and line-5803, respectively, the
working hours are not well-balanced, and the working hours of
some inspection teams exceed the given tmax = 28800s. For line-
5876 with k = 3 and line-5803 with k = 5, the working hours of all
inspection teams are within 28800s, and at the same time, the
working hours are well-balanced, which is coincided with the
theoretical results. Furthermore, we can find that the optimal
inspection path of SA has the shortest working hours, while the
results of the other three algorithms are almost the same.

To compare with the method without a swap strategy, here we
embed the swap strategy to optimize the inspection path. From

FIGURE 8 | (color online) Optimal inspection paths with our framework with (A) greedy, (B) antcol, (C) SA and (D) GA-EO. k = 5 for line-5803. p = 0.05 for the
greedy algorithm. Here, the coordinate (0, 0) is the starting point, namely, the office.
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Figures 5B,D) and Figure 6, we can find that the working hours
are shorter when combining the transfer and swap strategy for
line-5876 and line-5803, which verifies the validity of our
proposed transfer-swap algorithm for balancing working hours
and minimizing the total working hours. A very interesting result
is that with the transfer-swap algorithm, the working hours for
the greedy algorithm and SA are very close and work the best,
while the working hours for antcol are relatively long. The
optimal inspection paths of the k inspection teams with our
framework for line-5876 and line-5803 are shown in Figure 7 and
Figure 8.

Furthermore, we analyze the number of iterations and time-
consuming converging to the optimal solution to quantify the
performance of our framework under the four algorithms, see
Figure 9. It can be found that for line-5876, the number of
iterations to converge to the optimal solution is about 15 times.
For line-5803, the number of iterations is about 25 times. Figures
9C,D show that the greedy algorithm is very fast and only takes a
few seconds, but SA is the slowest and requires about 200s for
line-5876 and 500s for line-5803. Therefore, combined with the
time-consuming and the working hours, the greedy algorithm
performs better than SA, which is a counter-intuitive result. The
reason may be that the swap strategy and the perturbation
parameter are helpful in avoiding locally optimal solutions.

4 CONCLUSION AND DISCUSSION

Taking both driving time and inspection time into
consideration, in this study, we study the optimal path

planning with the balanced working hours of each
inspection team. In order to study the working hours, we
have analyzed two real power lines in Jinhua city. In addition,
we have provided a range of theoretical solutions for the
minimum number of working teams and further have
presented a fast method to estimate the theoretical solution,
which is the first contribution. In addition, we have proposed a
path optimization framework for balancing working hours and
minimizing the total working hours based on the minimum
number of inspection teams. The key to the proposed
framework lies in the transfer-swap algorithm, and it is the
second contribution. The simulation results showed that the
minimum number of working teams was consistent with our
theoretical solution and also verified our framework could
balance the working hours and minimize the total working
hours. Compared with the optimal results without a swap
strategy, the total working hours are shorter when using our
proposed transfer-swap algorithm. An interesting finding is
that the simulated annealing algorithm (SA) had the shortest
total working hours among the four algorithms when the swap
strategy is absent. However, when using the transfer-swap
algorithm, the working hours obtained by the greedy
algorithm were close to those obtained by SA, but the
greedy algorithm has the shortest computation time. Thus,
with integrated optimization results and running time, it is
more efficient to use the greedy algorithm.

In this article, we studied the perturbation parameter p = 0.05
for the greedy algorithm with our framework and did not analyze
the pure greedy algorithm with p = 0. This is because the
optimization result remains the same for p = 0, so it is easy to

FIGURE 9 | (color online) (A,B) Number of iterations converging to the optimal solution with our framework under the four algorithms. The results are obtained by
20 independent simulations. (C,D) Time-consuming (seconds) of converging to the optimal solution with our framework under the four algorithms.
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fall into a locally optimal solution. In our work, we assumed that
the inspection time of each tower was the same. Therefore, there
may be some fluctuations in the optimal results when using our
framework. A better way to deal with this question is to predict
the inspection time of each tower based on historical data. In
addition, in our framework, we can use some other optimal
algorithms to replace the four methods (greedy, SA, antcol,
and EO-GA), such as reinforcement learning or deep learning
algorithms.
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