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Ultracold quantum gases in the superfluid regime exhibit solitons, localized

excitations that require nonlinearity of the underlying field equation in order to

preserve their shape as they propagate. Here, we investigate the behavior of

solitons at an inhomogeneity: an interface that separates two different

interaction regimes of a superfluid Fermi gas. It is known that the soliton

properties depend on the interaction regime, but what happens as a soliton

impinges on such an interface is not clear. Using an effective field theory to

describe the superfluid Fermi gas, we reveal the nontrivial dynamics of such a

collision. Whether the original soliton makes it through the interface depends on

the amplitude of the soliton. Regardless of whether the original soliton is

transmitted or not, there will always be a shock wave with a phonon train

created behind the interface and reflected secondary solitons. The details of

this dynamics depends strongly on the equation of state corresponding to

underlying microscopic theory describing the superfluid Fermi gas, and we

argue that these collisions are realistic experimental probes to test microscopic

theories of pairing in ultracold Fermi gases.
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1 Introduction

Ultracold quantum gases are highly tunable systems that allow to study quantum

phenomena on a macroscopic scale. By controlling many parameters, such as the

geometry, the interaction strength, the dimensionality, and the number of particles,

ultracold atomic gases have been used to quantum simulate condensed matter models

under circumstances and in regimes not accessible in solids [1, 2]. With the advent of

box potentials for quantum gases [3], uniform systems can be studied experimentally, allowing

for a more direct comparison to many theoretical models. Using acousto-optic modulators

these potentials can be customized in shape andmade time-dependent [4]. This has opened up

the path to explore non-equilibrium dynamics of (typically nonlinear) quantum field theories

[5]. A recent example is the study of analog Hawking radiation in Bose-Einstein condensates

[6, 7]: by creating regions where the background flow velocity is higher than the speed of

sound, a sonic black hole can be created and observed to emit phonons analogous to Hawking

radiation. In order to create the horizon, a step-like potential is added to the uniform box
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potential, and this step creates an interface that is moved at speeds

intermediate to the speed of sound left and right of the interface [6].

Not only Bose gases but also fermionic quantum gases have

been trapped in uniform, tunable box potentials [8]. Atomic

Fermi gases can also be brought in the superfluid regime [9]. This

requires pairing between fermionic atoms, and the experimental

tunability of the interaction strength between the atoms (via a

Feshbach resonance) allows to explore the superfluidity from the

regime of strongly bound pairs forming a Bose-Einstein

condensate (BEC) to the regime of weakly bound pairs

forming a Bardeen–Cooper–Schrieffer (BCS) superfluid.

Superfluid Fermi gases can be described by an effective field

theory, valid for excitations with energy below twice the

superfluid gap [10]. These include Anderson-Bogoliubov

phonons as well as vortices and solitons. Whereas the

phonons are small amplitude oscillations suitably described by

a linearization of the field equation, solitons rely intrinsically on

the nonlinearity of the full field equation [11].

Dark solitons -dips in the density which preserve their shapes

whilemoving-are the subject of intense investigation, in particular in

superfluid atomic gases [12–22]. Dark solitons in fermionic

superfluids behave differenty in the BCS regime and in the BEC

regime [20]. For strongly bound pairs, the solitons behave as in a

regular Bose-Einstein condensate: they collide with each other

without losing energy and pass through each other without

changing shape. In the BCS regime, the proximity of the pair-

breaking continuum changes the dynamics and in a collision energy

is lost in the form of a train of Anderson-Bogoliubov phonons [22].

This raises the question of how solitons will behave when impinging

on an interface between two Fermi superfluids that are in a different

interaction regime. Such systems have now become experimentally

realizable as described in the previous paragraph, making the above

question of experimental interest. In this contribution, we use the

effective field theory for superfluid Fermi gases to describe

theoretically the dynamics of a soliton meeting an interface to a

region where the pairs are bound at different interaction strength.

We will show that this leads to a scattering event with both

transmitted and reflected solitons, depending on the parameters

left and right of the interface. In Section 2, we start with reviewing

the framework of the effective field theory and the description of

solitons in this approach. Section 3 discusses the creation of an the

interface between regions with different interaction strength. In

Section 4, we discuss how to introduce a dark soliton to the left of the

interface, moving towards the interface. In Section 5 the results of

our simulation are presented and discussed. Finally, in Section 6 we

draw conclusion.

2 Effective field theory for superfluid
Fermi gases

We consider a system of fermionic atoms with mass m,

interacting through an s-wave contact potential with

scattering length as. As identical fermions cannot interact

in the s-wave channel, two different hyperfine states need to be

trapped, and pairs will form between atoms with different spin

state. We restrict ourselves to the case where there are an equal

number of fermions in both spin states. Below the superfluid

critical temperature, these pairs form a pair condensate, that

can be described by a macroscopic wave function Ψ(r, t). This
“pair wavefunction” has a straightforward hydrodynamic

interpretation: its modulus squared represents the density

of condensed pairs, and the velocity field is proportional to

the gradient of the phase of the pair wave function. It obeys the

following field equation [10, 21]:

i
z |Ψ|2D |Ψ|2( )( )

z|Ψ|2
zΨ
zt

� −C∇2
rΨ + Q

z2Ψ
zt2

+ A |Ψ|2( ) + 2E∇2
r |Ψ|2 − 2R

z2|Ψ|2
zt2

( )Ψ.
(1)

The coefficients in this equation are fixed by the

chemical potential μ, the global superfluid gap Δ (which

we choose real), and the temperature T. The nonlinearity

arises to a lesser extent from the dependence of the coefficient

D on Ψ. The more important source of nonlinearity stems

from

A |Ψ|2( ) � −∫ dk

2π( )3
1
β
log 2 cosh βEk( )[ ] − ξk − Ψ| |2

2k2
( )

− Ψ| |2
8πkFas

. (2)

Here kF = (3πn)1/3, with n the density of particles. We will use

units such that Z = kF = 2m = 1. In these units ξk = k2 − μ, and

Ek �
								
ξ2k + |Ψ|2

√
. The other coefficients in Eq. 1 can be expressed

in terms of the thermal function

f1 ε( ) � tanh βε( )
2ε

(3)

with β = 1/(kBT), and its derivatives

fn+1 ε( ) � − 1
2nε

zfn

zε
. (4)

The main dynamics is governed by

C � ∫ dk

2π( )3
2k2

3
f2

~Ek( ), (5)

D � ∫ dk

2π( )3
ξk
|Ψ|2 f1 ξk( ) − f1 Ek( )[ ], (6)

E � ∫ dk

2π( )3
4k2ξk
3

f4
~Ek( ), (7)

and in general smaller corrections to it are provided by the terms

with coefficients

Q � ∫ dk

2π( )3
1

2Δ2 f1
~Ek( ) − ~E

2

k + ξ2k( )f2
~Ek( )[ ] (8)
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R � ∫ dk

2π( )3
1

2Δ2

1
3Δ2 f1

~Ek( ) + ~E
2

k − 3ξ2k( )f2
~Ek( )[ ]{

+
4 ξ2k − 2~E

2

k( )
3

f3
~Ek( ) + 2~E

2

kΔ2f4
~Ek( )⎫⎬⎭. (9)

Here ~Ek �
						
ξ2k + Δ2

√
, where Δ is the superfluid gap for a uniform

Fermi superfluid at temperature T and density n. That means that

in a Fermi superfluid in a box potential, far away from any vortex

or soliton, |Ψ| = Δ. Closer to the vortex or the soliton, the pair

density varies; a reduced density will locally reduce |Ψ| to values

smaller than Δ.
The derivation Eq. 1 and its coefficients has been presented

elsewhere [11]. It relies on a gradient expansion of the action for

the pair field. At temperatures close to the critical temperature

this description is valid, and in the BEC interaction regime it is

valid at all temperatures, as has been verified by comparison with

Bogoliubov-de Gennes theory [11]. The coefficients C, Q, E, and

R are already of second order in the dertivatives of the pair

wavefunction, such that no additional dependence on |Ψ| needs
to be taken into account, and ~Ek can be used instead of Ek.

3 Interface between interaction
regimes

In this paper we consider system with an interface

(perpendicular to the x-axis), separating two regions with

different scattering lengths. In the left half-space the scattering

length is denoted by aL, whereas in the right half space the

scattering length is aR. This could be created using a position

dependent magnetic field and a Feshbach resonance.

Alternatively, in a confined, quasi-1D system the effective

interaction strength can be tuned by the strength of the

confinement. In either case, it is probably not possible to make

the interface infinitely sharp and thus we consider a spatially

dependent profile for the interaction strength 1/[kFas(x)]:

1
as x( ) �

1
2

a−1R + a−1L( ) + 1
2

a−1R − a−1L( ) tanh x/λ( ). (10)

The parameter λ determines the sharpness of the interface. Here

we choose λ � 0.5k−1F . This choice makes the interface sharper

than the healing length of the pair condensate, but smooth

enough to allow for numerical stability when performing a

finite element simulation of Eq. 1. Furthermore, we choose

interactions strengths in the crossover regime between BEC

and BCS: 1/(kFaL) = 0.4 and 1/(kFaR) = 0.2. In these regimes,

the effective field theory is still valid for all temperatures, as the

pair correlation length is smaller than the healing length [11].

Some care should be taken, as we work in units kF �
(3π2�n)1/3 where �n is the average density in the system.

Introducing regions with different interaction strength will

however lead to changes in the density away from this

average, as discussed below. Nevertheless, we will keep

defining our units, i.e. kF and EF, in terms of this average

density. Note that in our units (kF = 1), the average density is
�n � 1/(3π2).

For a uniform system, the chemical potential depends on the

density, the interaction strength, and the temperature. In the BEC

limit, the mean-field chemical potential is no longer equal to the

Fermi energy at low temperature, as it would be in the BCS limit.

It must be calculated from the coupled gap and number

equations of the superfluid. The mean-field gap and number

equations for 1/(kFaL) = 0.4 lead to μL/EF = 0.420, whereas 1/

(kFaR) = 0.2 corresponds to μR/EF = 0.203. If two such uniform

systems are brought into contact, such that they can exchange

particles, then they will do so until the balance in chemical

potentials is restored, at μ/EF = 0.312. This will lead in turn to a

difference in density, nL � 1.38�n and nR � 0.7�n. Note that to keep

the average density at �n, in an experimental realization the left

and right containers should have appropriate sizes. Also, as

expected, the pair binding energies will also be different in the

left and right half-spaces: ΔL/EF = 1.1442 and ΔR/EF = 0.6568.

From the density difference alone one can already conclude that

not all dark solitons will retain their shape when propagating

through the interface. A dark soliton where the density dip equals
�n can exist in the left-half space, but not in the right one. In the

next section, we explore the propagation in more details.

Before introducing the solitons, the system is relaxed using

Eq. 1, in order to find the correct profile of Ψ(x) at the interface.
Indeed, Ψ(x) will relax back to ΔL for x → −∞ over a distance

given by the healing length ξL in the left pair condensate.

Similarly, on the right side of the interface the pair

condensate heals to its background value over a length scale

ξR. These length scales depend on temperature and also on the

scattering length, so they will be different left from right. They

will also be different from λ, the width of the “step” in the

scattering length, which is chosen as the shortest length scale.

4 Dark solitons in a uniform pair
condensate

The goal of our numerical experiment is to send in a soliton

from the left half-space towards the interface, and observe

dynamics that follow from Eq. 1. In order to do this, we

consider an essentially one-dimensional problem (along the

x-direction), with the interface at x = 0. Equation 1 is solved

using a fourth-order Runga-Kutta method on a grid with step size

about an order of magnitude smaller than the healing length of

the pair condensate.

For the initial stateΨ0 we choose a right-moving dark soliton

some distance from the interface, in the left half-space. A soliton

in a uniform pair condensate is described by

Ψ0 x, t( ) � ΔLa x − vst( ) exp iθ x − vst( )[ ], (11)
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for x < 0. Far away from the soliton, |Ψ(x)| = ΔL. The factor a is

smaller than or equal to unity: it suppresses the pair density divided

by the background value ΔL. Indeed, dark solitons are characterized

by a dip in the density, whereas bright solitons (not studied here)

would have a bump in the density. The phase θ exhibites a step

across the soliton, leading to the velocity field that makes the soliton

move. For a uniform condensate, there exist analytical solutions for

both a and θ [20, 22]. Note that both the amplitude and the phase are

not independent functions of position and time, but only functions

of x − vst where vs is the soliton velocity. This expresses the fact that

as the soliton moves in a uniform condensate, it does not change its

shape. The soliton shape and velocity profile are determined [22] in

terms of the superfluid density

ρsf a( ) � 2C|aΔL|2 − 2Q|aΔL|2v2s , (12)

the quantum pressure

ρqp a( ) � 2 C − 4E( )|aΔL|2 − 2 Q − 4R|aΔL|2( )v2s , (13)
and the phase stiffness

κ a( ) � D |Ψ0 x( )|( )Δ2
L (14)

These depend only on the amplitude function a, and not on the

phase. Note that far away from the solition, the phase stiffness

goes to κ∞ � D(ΔL)Δ2
L. With these derived quantities, the

amplitude a(x) can be computed from inverting the relation

x � ±
1	
2

√ ∫a
a0

																																					
ρqp a′( )

A a′2( ) −A Δ2
L( ) − v2s κ a′( )a′2 − κ∞[ ]/ρsf a′( )

√√
da′.

(15)

FIGURE 1
The time evolution of a soliton colliding with an interface in the pair condensate is shown. The interface at x =0 separates regions with different
interaction strength and hence pair density. The red dotted line shows the background value of the pair condensate order parameter |Ψ(x)| when no
soliton is present, before relaxation. The various curves and panels show the profile with a soliton at different times during the evolution. In panel (A)
the soliton is still far from the interface, reaching it in panel (B). Panel (C) shows the situation shortly after the collision, whereas panel (D), with a
different scale on the x-axis, shows the long-time evolution.
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Here a0 is the amplitude at the center of the soliton. It is

found by setting the denominator in (15) equal to zero and

solving with respect to the amplitude. The faster the dark soliton,

the smaller the dip in the condensate and the closer a0 equals

unity. For a soliton at zero velocity, vs = 0, a(x) is obtained from

this relation, the phase profile is computed from

θ x( ) � vs ∫x
−∞

κ a x′( )[ ]a x′( )2 − κ∞
ρsf a x′( )( ) dx′. (16)

This is the exact solution for a soliton in a uniform condensate

[11]. Here, we use it as the initial condition, to the left of the

interface. The soliton’s core is placed far enough from the

interface so that a(x) is exponentially close to unity near the

interface, and given an initial velocity. Below, we will investigate

different initial velocities. The higher the initial velocity, the

shallower the soliton.

5 Solitons colliding on the interface

The result of the simulation for a0 = 0.5 is shown in Figure 1.

This corresponds with a soliton propagating at vs/vF ≈ 0.35 The red

dotted line shows the initial, unrelaxed, background value of |Ψ(x)|
when no solitons are present. The black curve in panel (a) shows the

state a small time after the start of the simulation. The order

parameter at the interface has relaxed to its equilibrium value,

showing a slower healing to the background values ΔL and ΔR.

To the left of the interface, at kFx = −19.0, the soliton is present. The

remaining curve show the soliton at slightly later times, expressed in

units of tF � 2m/(Zk2F). In this panel, the soliton is still far enough

from the interface so as not to be influenced by it: it moves at a fixed

velocity towards the interface, without changing its shape.

In panel (b) the soliton reaches the interface. The different curves

again show |Ψ(x, t)| at different times. The decrease in the background

density to the right of the interface causes the soliton to become

FIGURE 2
The time evolution of a soliton colliding with an interface in the pair condensate is shown, as in the previous figure. The various curves and
panels show the profile with a soliton at different times during the evolution. In panel (A) the soliton moves to the interface, colliding with it in panel
(B). Panel (C) shows the situation shortly after the collision, whereas panel (D), with a different scale on the x-axis, shows the long-time evolution.
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“darker”, i.e. the central pair density in the soliton core decreases,

reaching zero (a “black soliton”) around t = 46tF. Also the shape of the

solitary wave is affected by the interface, it becomes asymmetric and

sharpens (even though it still remains wider than the healing lengths).

Panel (c) continues the series of time frames. Density dips are

reflected back to the left, and a bump in the density propagates to the

left. The soliton was unable to cross into the right region, even though

it created a shock wave, taking away some energy from the original

soliton. To identify this bump as a shock wave, panel (d) shows the

longer time evolution after the collision (note that the scale on the x-

axis has changed too). The propagation of the bump, and the presence

of a train of phonons in front of it, is characteristic for a shockwave in

a Fermi superfluid [23]. Fermi gases with 1/(kFaR) = 0.2 exhibit a

supersonic dispersion relation for the Anderson-Bogoliubovmode, so

that a dispersive wave pattern will appear in front of the shock wave.

Still in panel (d), the nature of the reflected dips in the density

is clear: these represent a sequence (here, three) solitons moving

back. We checked that the phase steps also match those of

solitons. Their characteristic velocities match the depth of the

soliton core, and they preserve their shape as they move farther

away from the interface. The soliton was unable to penetrate the

interface, but it was clearly not reflected as a whole. Energy was

lost in the form of a shock wave, and the reflected soliton

fractures in three different solitons. Energy is conserved

overall, but it is not clear what constraints lead to the

fracturing of the initial soliton into three reflected ones.

In order for a soliton to cross the interface, it should be shallow

enough (and hence, fast enough) not to become a black soliton during

the crossing of the interface. To investigate this, we raise the central

density to a0 = 0.7 (so a 30% suppression of the background density at

the soliton core). The results are shown in Figure 2. Panel (a) shows

the initial stage of the time evolution, with the faster soliton in the

region to the left of the interface. In panel (b), the |Ψ(x, t)| profiles are
shown for times right before reaching the interface (now at t ≈ 36tF).

The soliton shape is less deformed, and seems to simply shift down

along with the background density. However, from panel (c) it is clear

that there is no simple transmission from one to the other region.

Indeed, apart from the transmitted soliton, which becomes darker and

hence slower, there is still a partial reflection, and the creation of a

shock wave (with a phonon train in front of it) to the right of the

transmitted soliton. These different features remain visible at later

times in panel (d). Note that there is a second, very shallow reflected

soliton: again the reflected wave is fractured into multiple solitons.

Varying the depth of the initial soliton, we found that a critical value of

a0 ≈ 0.67 exists such that shallower solitons can pass the interface,

whereas deeper solitons cannot. However, there is always a reflected

part consisting of several solitons, and a transmitted shock wave.

6 Conclusion

We investigated solitons impinging on an interface in a Fermi

superfluid, separating regions with different interaction strength and

density, in the unitary regime. To do this, we use an effective field

theory that describes the superfluid through the order parameter for

the pair condensate. This allows for solutions in the form of dark

solitons, propagating without changing their shape in a uniform

superfluid. When such a soliton reaches the interface, it can only

pass the interface to the region with lower density when its velocity is

high enough, and the dip in the pair density of the soliton core is

shallow enough. However, in all cases we find that the impact of the

soliton on the interface leads to the formation of a shock wave on the

other side of the interface and to several reflected solitonsmoving back.

Advances in experimental techniques to taylor the trapping

potential for ultracold atomic gases both spatially and temporally

allowed to create such interfaces [3, 6]. Solitons have been created in a

Bose-Einstein condensed gas [24]. Solitons are more difficult to create

in a three-dimensional superfluid Fermi gas [25], as they decay in

solitonic vortices. However, confining the system in a cigar-shaped

trap allows to stabilize the solitons [21]. The behavior of solitons at an

interface, as described above, will constitute a good test for

microscopic theories of pairing in superfluid Fermi gases. In

particular, at unitarity, different theories will result in different

equations of state leading to small changes in the values of the

parameters of the effective field theory. The reflected soliton train and

the shock wave, as well as the critical value for transmission of the

original soliton will depend strongly on these parameters so that a

future experimental realization of the soliton-interface collision can be

used to shed light on themicroscopic description of Fermi superfluids

near unitarity.
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