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When we consider tipping points of political and social opinions in groups, we

often rely on a physics-based opinion dynamics approach. Despite the many

studies on simple models, studies on more realistic situations have yet to be

done. In this paper, we extend the basicmodel of opinion dynamics in twoways.

The first extension incorporates negative influence between individuals. The

second arranges individuals in a small-world network and fixes them in

neighborhoods to consider their relationships. Our results show that a

consensus tends to result with a higher positive trust ratio in the network, a

denser network, and a milder degree of trust between individuals. In a real

society, the development of consensus opinions depends on frequent

communication, reliable people, and mild opinions. Moreover, we explore

the conditions for merging the majority with a minority of individuals who

are strongly connected. Our dense city model shows that the opinions of two

parties connecting in dense interactions will gradually attract each other, and

when a certain threshold is exceeded, those opinions will be integrated at once

like a phase transition.
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1 Introduction

Opinion dynamics uses social physics techniques to explain how the distribution of

different opinions in a group of individuals changes over time. This simple and abstract

setting for capturing changing opinions provides a possible theoretical model for many of

the challenges facing modern society, from polarized political opinion mechanisms to

information diffusion mechanisms in the Internet age.

Research on opinion dynamics forms a major area of sociological research on social

influence. [1] mentioned that identifying consensus, diversity, and polarization

mechanisms in the dynamics of large-scale social impact is a major scientific issue

with a long tradition of lively debate. [2] also added the issue of group polarization and

diversification to their list of important open issues in sociology. Flasche et al.’s review

study [3] categorized social influence into three models. The first model considers
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assimilative social influence reproducing consensus, and the

second model considers similarity biased influence

reproducing clusters or fragmentation. The third one

considers repulsive influence showing bi-polarization. In

summary, a theoretical approach to social impact can be seen

as a journey of finding a turning point in the dynamics of

opinion.

There have been many theoretical studies on the dynamics of

opinion in recent decades [4–8]. Models of opinion expression

have ranged from simple binary models such as the voter model

[9–11] to a rich definition space using multi-dimensional

continuous approaches [12, 13]. Several features of dynamics

have been discovered, such as homogeneity, bipolarity, and

polymorphism [4]. [14] theoretically showed the emergent

properties of phase transitions and tipping points by focusing

on the phase diagram of the opinion dynamics model.

Connections with neighboring disciplines include

relationships with external information (mainly in the form of

mass media broadcasts) [15], influence and confirmation bias

[16], and social psychology topics such as conformity and

independence [17]. Although the importance of incorporating

real data has been pointed out, the research is still ongoing. For

example, a simulation study [18] revealed that filtering leads to

strengthening of the echo chamber, while keeping in mind the

reality of information society.

Some researchers have focused on the interaction structure

of a population in the dynamics of opinion. [19] showed that

the time to reach consensus depends on the moments of the

degree distribution using the non-conservative analytical

framework of the magnetization of a voter model. [20]

mentioned that a voter model for a small-world network

states that the opinion dynamics settles in a steady state

where opinions with different lifespans coexist depending

on the size of the system. Thus, their results support the

idea that important connection patterns lead to the

counter-intuitive conclusion that long-distance connections

impede the ordering process.

Under such circumstances, opinion dynamics analysis with

consideration of network structures has broken away from the

model that assume a complete graph, in which all individuals can

freely communicate with each other [21, 22]. These analyses have

shown that, unlike in the case of a complete graph, the opinion

dynamics operates differently depending on the network

structure. Although a simple analytical model of opinion

dynamics is sometimes quite important, it often requires

careful consideration for application to real-life situations. In

particular, when examining the opinion dynamics for people who

have various communication channels because of the

development of the Internet, it is essential to analyze spatial

opinion dynamics. [23] analyzed the effects of interaction

structures with a two-dimensional lattice model on

homogeneity, polarization, and deadlock via a differential

equation using the mean-field approximation, and the results

showed the effects of rearrangement and telephoning

(i.e., nonlocal interaction).

Here we extend Baumgaertner’s idea to a more realistic

situation. We assume that he adopted a two-dimensional

lattice graph to imitate physical contact among people in their

daily lives. On the other hand, people also have non-physical

channels like the Internet to contact others. A random graph is a

suitable topology to model that kind of communication style. We

believe that real situations lie between these two extreme cases of

a lattice graph and a random graph [24]. While we think that a

comparison of the two extreme cases is worthwhile, an analysis of

the middle case is also important for consideration of more

realistic situations. Therefore, in this paper, we consider three

types of graphs: a random graph, a two-dimensional lattice

graph, and a beta model of a small-world network that was

developed by [25].

The degree of other individuals’ influence on one’s opinion is

also an important component in the analysis of opinion

dynamics. A typical example is the formulation by [26], which

simply normalizes the total effect of others on each person to

1 and determines an individual’s own opinion according to the

relative degree of influence and the opinions of others. However,

their theoretical bounded confidence model always converges

over an infinite amount of time, so an-other extension is needed

to capture the phenomenon of polarization and divergence [27].

In sociology, many theories have been developed on structures of

trust, including Haider’s balance theory [28], which considers not

only positive trust relationships but also the effects of negative

trust relationships. While traditional opinion dynamics has

primarily aimed to capture the dynamism of opinion

convergence, the incorporation of negative trust is also quite

important for capturing polarized opinions. The effects of

negative trust relationships on opinion dynamics have been

considered through both agent-based simulation [29] and

experimental approaches [30, 31]. [32] built the Trust-Distrust

Model to focus on this point and analyzed the effects of distrust

on opinion dynamics [33, 34].

In this study, we focus on some specific parameters to analyze

opinion dynamics. First, we assume that society involves frequent

communication between individuals, and we are thus interested

in the effects on opinion dynamics of increased opportunities to

communicate with others. Hence, we model a network density

parameter (γ) to capture this situation. Second, we also analyze a

trust structure characterized by two parameters (δ, θ), where δ

indicates the degree of trust and θ indicates the ratio of trustful

human relationships.

We adopted an agent-based approach, as in many previous

studies [4, 6, 7, 18, 24, 26, 27], because this approach can capture

rich network structures and obtain clear results.

As described above, many extensions have been applied to

simple theoretical opinion dynamics to handle real-world

situations. In this paper, we consider an ex-tended approach

to trust structures and spatial applications. Specifically, these two
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extensions enable analysis of the dynamics in a polarized opinion

space. We believe that this extension is essential for capturing

real-world phenomena of social divisions.

2 Models

Let us consider a finite number of individuals in a group and

let denote that set as N. At a discrete time t, an individual p ∈ N

has a one-dimensional opinion Ip(t). The opinion at t = 0 is called

the initial opinion. The initial distribution of opinions, I (0), is

homogeneous. That is, for all p ∈ N, Ip(0) is obtained from a

probability distribution consisting of a uniform finite interval set

[ − κ, κ].

Each individual’s opinion changes through interaction with

other people at each time. Accordingly, we model the

interaction structure between individuals. Let Lpq = 1

indicate that individual p is influenced by individual q,

whereas Lpq = 0 indicates no influence of q on p. Note that

the interaction structure does not guarantee the symmetry

property; that is, in our model, Lpq = Lqp does not always

hold for any p, q ∈ N [24]. In addition, let Lpp = 0. For the

individuals in N, their opinions change according to the degree

of trust between interacting individuals. The degree of trust

represents the strength of influence that changes an opinion,

and it is denoted as Tpq ∈ R for any p, q ∈ N. If Tpq > 0, then

individual p trusts individual q, and it is easier for p’s opinion to

approach q’s opinion. On the other hand, our model also

considers the case of Tpq < 0. In this case, individual p

distrusts individual q, and p’s opinion is more likely to

deviate from qes opinion. In this model, L = (Lpq) and T =

(Tpq) are invariant through time. The values of Tpq are

independently and identically distributed. For all p, q ∈ N,

Tpq denotes the degree to which p trusts q, and it is obtained

from a probability distribution consisting of a uniform finite

interval set [0, δ] with probability θ or [ − δ, 0] with probability

1 − θ. In our approach, we investigate the existence of distrust

and the effect of the interaction structure on the system by

comparing models with different definitions of T and L.

The opinion dynamics of individual p at time t + 1 is

expressed by

Ip t + 1( ) � Ip t( ) + ΔIp t( ), (1)
where

ΔIp t( ) � ΣLpqRpq t( ),
Rpq t( ) � TpqΘ Iq t( ) − Ip t( )( ) Iq t( ) − Ip t( )( ), and
Θ x( ) � 1/ 1 + exp α |x| − β( ){ }( ).

(2)

The sigmoid function Θ is used here to eliminate the effect of

an opinion gap that is too large [19, 26]. The parameters α and β

must be positive. The parameter β is related to the magnitude of

the distance between opinions: the larger this value is, the more

distant opinions can influence each other.

First, we consider the following three graphs for the

interaction structure.

Lr(γ): A random graph, in which Prob (Lpq = 1) = γ for all

p, q ∈ N.

L2: A two-dimensional lattice graph, in which individuals are

fixedly arranged on a torus-shaped two-dimensional lattice such

that Lpq = 1 between individuals in a Von Neumann

neighborhood and Lpq = 0 otherwise.

Ls(βSW): A small-world network that is initially equivalent to

L2. Then, for each link in the graph, its end node is changed

randomly with a probability of βSW.

Note that the third graph effectively includes the other two

graphs, because Ls (0) corresponds to L2 and Ls (1) almost

corresponds to Lr (4/(N − 1)). Precisely, each node of Ls (1)

has four outbound links, while the expected number of outbound

links for each node in Lr (4/(n − 1)) is four. By analyzing a small-

world network, we may obtain results that apply to more realistic

situations, as well as the two extreme cases of a random graph and

a lattice graph.

FIGURE 1
Two examples of changes in an opinion distribution: (A)
opinions diverge and a consensus is not built, and (B) opinions
converge and a consensus is built. Each panel shows the changes
in the values of all individuals’ opinions in a particular
simulation result using the Lr type (random graph) of interaction
structure. The horizontal axis indicates the simulation time, and the
vertical axis indicates the opinion value. Here, we set the
parameters as (|N|, α, β, δ, γ, κ) = (1,600, 1, 10, 0.002, 0.1, 10), with
θ = 0.3 in (A) and θ = 0.8 in (B).
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The analysis of behavior in polarized systems is very

interesting because a spatial structure is introduced into

opinion dynamics. Here, we analyze the opinion dynamics

when a majority having larger opinion distributions is mixed

with a minority that is spatially strongly connected. Let us

consider the following dense city model.

Lc: A dense city model with a group consisting of

individuals (i.e., inhabitants on the city) that are fixedly

arranged in a square two-dimensional lattice, along with

other individuals (i.e., those outside the city). Let N′ be the

set of inhabitants on the city. For any individuals p, q ∈ N′
between individuals in a Von Neumann neighborhood, Prob

(Lpq = 1) = 1 and Tpq = δ′; otherwise, Prob (Lpq = 1) = γ and the

confidence structure is T (θ, δ), which is of the Lr type. The

initial opinion distribution, I (0) follows a probability

distribution consisting of a uniform finite interval set of

[κ1, κ2] when p ∈ N′, or [ − κ, κ] otherwise.

3 Results

In opinion dynamics, the notion of whether various initial

distributions of opinions converge or diverge is an important,

basic indicator. Accordingly, we consider the transition of the

degree of convergence, Ct = ΣΣ|Ip(t) − Iq(t)|/ΣΣ|Ip(0) − Iq (0)|, at

time t.

As shown in Figure 1, depending on the parameters, our

model captures both (a) the case of diverging opinions and (b)

the case of converging opinions, in which a consensus is formed.

Figure 2 shows the degree of convergence of opinions in the

random graph. Basically, it can be seen that the higher the ratio of

positive trust (favorability) relationships in the trust structure, the

easier it is for opinions to converge and a consensus to be reached.

Simply put, the divergence or convergence of opinions can almost be

predicted by whether the value of C100 exceeds or falls below 1,

respectively. In other words, if the value is below 1, the opinion

dynamics converge eventually, and they diverge otherwise. We thus

regard the value of 1 as a tipping point or critical point of the system.

Figure 2 shows that opinion convergence depends on the

interaction effect of the network density and the initial opinion

distribution. When the initial opinion distribution is mild (δ =

0.002), a denser network (higher γ) makes it easier for opinions to

converge. This tendency keeps the case with extreme initial

opinion distribution (δ = 0.02). Additionally, in a constant-

density network, a milder initial opinion distribution (smaller

δ) makes it easier for opinions to converge. To summarize these

features, we can extract two conditions for convergence and

consensus formation: 1) a high proportion of positive trust

relationships in the trust structure, 2) a denser network, and

3) a mild initial opinion distribution. Regarding the reasons for

these conditions, if the initial opinion distribution is mild,

opinions between any two individuals are close, and

FIGURE 2
Effects of the network density (γ) and trust structure (θ, δ) on the convergence of opinions in the Lr type (random graph) of interaction structure.
Here, the parameters were (|N|, α, β, κ) = (1,600, 1, 10, 10), and the four cases of (γ, δ) = (0.01, 0.002) (0.3, 0.002) (0.01, 0.02), and (0.3,0.02) are shown.
The horizontal axis indicates the value of θ, while the vertical axis indicates the average value of C100 for 10 trials with different random seeds.
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convergence is easy. Moreover, if the network is dense,

individuals promote more active exchange of opinions, which

may increase the likelihood of convergence.

Next, we observe the effect on convergence of increasing or

decreasing the level of positive trust relationships in the trust

structure. By focusing on the slope of each case shown in Figure 2,

it can be seen that the denser the network, the greater the

influence of a slight increase or decrease in the level of trust

relationships on the degree of convergence. Interestingly, the

convergence lines for denser networks (the blue and yellow plots

in Figure 2) cut across the tipping point (= 1.0) on the smaller

value of the rate of positive trust relationships (σ) at a steep angle.

Concretely, in the case of δ = 0.002, the values across the tipping

point are about 0.57 and 0.53 for γ = 0.01 and 0.3, respectively.

Moreover, in the latter case, the convergence degree drastically

declines to below 0.7 when σ changes to 0.54 from 0.53. These

results show that it is easier for a denser network to reach opinion

convergence even with a low rate of positive trust relationships, if

a small number of relationships can be made positive.

As in the above discussion, it can be inferred that a dense

network structure tends to cause attraction between people with

similar opinions and repulsion between people with

disagreements. From this result, we obtain a fourth condition

for opinion convergence: 4) the denser the network structure, the

greater the impact that a slight change in positive trust

relationships in the trust structure has on whether the system

saturates or diverges. Accordingly, the level of positive trust

relationships has a strong influence on whether opinions

converge.

Next, we analyze the effect of the interaction structure on

the degree of opinion convergence. Figure 3 shows the degree

of opinion convergence in two graphs having almost the same

expected number of links but different topologies. When the

initial opinion distribution is mild (δ = 0.002), the results are

almost the same between the random graph and the two-

dimensional lattice graph. This indicates that the degree effect

(the number of interactions between individuals) has a greater

effect than the network structure on opinion convergence.

This tendency does not change if the initial opinion

distribution becomes larger, unless it becomes extreme (δ =

0.02, 0.04), in which case the interaction structure’s effect

becomes non negligible. Specifically, the two-dimensional

lattice graph tends to have stricter conditions for

convergence (ratio of positive trust relationships) in the

extreme cases. In this graph, interaction relationships exist

only between adjacent individuals, so the distance between

two individuals strongly depends on their positional

relationship in the graph. Accordingly, the distance

between any two individuals is likely to be shorter in a

random graph than in a two-dimensional lattice graph and

FIGURE 3
Effect of the confidence structure (θ, δ) on the convergence of opinions in the L2 (two-dimensional lattice graph) and Lr (random graph) types of
interaction structure. Because the degree of each individual in the L2 graph is 4, the parameters were adjusted so that the expected degree in the Lr
was also 4. Here, the parameters were (|N|, α, β, κ, γ) = (1,600, 1, 10, 10, 0.0025). The cases of δ = 0.002, 0.02, and 0.04 are shown for each structure
type. The horizontal axis indicates the value of θ, and the vertical axis indicates the average value ofC100 for 10 trials with different random seeds.
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we can infer that the latter graph is a disadvantageous

environment for opinion convergence.

For application to more realistic situations, we analyze a

small-world network. Figure 4 shows boxplots of C100 with

different values of βSW, indicating that the degree of

convergence monotonically decreases with βSW. This result

suggests that the effects of the small-world topology lie

between those of a random graph and a lattice graph. Note

that the influence of the random seeds in the simulation was

nonnegligible. The parameter settings were carefully tuned

around the tipping point (= 1.0), and thus a slight change in

either the trust relationship or the initial opinion distribution

may have an essential influence on the opinion dynamics.

Figure 5 shows the simulation results for the dense city

model, which show how consensus building occurs when the

size of the city and the minority opinion distribution are fixed. If

the effect of the random network is low ((a), γ = 0.01), the

opinions of the majority outside the city do not converge but

instead diverge, while the opinions of the minority on the city do

not change. The behavior varies with the effect of the random

network. When the effect is moderate ((b), γ = 0.2 and (c), γ =

0.5), the majority gradually becomes closer to the minority while

remaining diverged, and the minority also becomes closer to the

majority. Because our master equation uses a sigmoid function,

when the cutoff effect due to the dissociation of opinions is

canceled, it can be seen that the opinions converge at once like a

phase transition. For example, consider the performance at time

from around 200 to 300 in the left graph of panel (b): the

opinions of several citizens outside the island become close to

those of the island’s inhabitants. This mechanism is a key factor

to understand. When the effect of the random network is high

((c), γ = 0.5), the majority opinions converge first, but the

majority and the minority are attracted to each other over a

long period of time and eventually converge. This result reveals

interesting insights into the case of a consensus reached between

polarized populations. If there is a trust structure or interaction

structure that attracts the opinions of both parties to some extent,

the centers of gravity of each party will gradually attract each

other, and when a certain threshold is exceeded, the opinions of

the group will be integrated at once like a phase transition.

It is trivial that a group’s opinions converge after an infinite

amount of time, even in a polarized, if the group has a trust

relationship in which opinions are attracted to each other. This

has been pointed out since the study of the bounded confidential

model [26], but it is not always obvious what kind of dynamics

will appear until the opinions converge. Hence, Figure 6 shows

the effect of a particular parameter (β) on the convergence time.

Basically, when the opinions of both parties are too far apart, they

have little effect on each other regardless of the trust relationship,

but the influence is not zero. As the tolerance becomes smaller

FIGURE 4
Boxplots of the degree of convergence, C100 for different values of βSW. Each boxplot represents 100 trials with different random seeds. Here,
the parameters were (|N|, α, β, κ, θ, δ) = (400, 1, 10, 5, 0.86, 0.04). For the difference between the population means with βSW = 0 and βSW = 1, the level
of significance from Student’s t-test was 0.001243, indicating 1% significance.
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FIGURE 5
Opinion dynamics in the dense city model. Each panel shows the result of a simulation trial. The panels on the left show the changes in the
opinions of all individuals over the 300 periods. The opinions of the city inhabitants are plotted in blue, while those of the individuals are plotted in
pink. The panels on the right show snapshots of the opinions of individuals mapped in a two-dimensional grid at the 300th period. Here, the
parameters were (|N|, α, β, θ, δ) = (400, 1, 10, 0.7, 0.002) and (|N′|, κ, κ1, κ2, δ′) = (100, 5, 15, 16, 0.04), with (A) γ = 0.01, (B) γ = 0.2, and (C) γ = 0.5.

FIGURE 6
Effect of the distance of opinions on the opinion dynamics in the dense city model. Each panel shows the result of a simulated time series of the
opinions of all individuals during the simulation period. The opinions of the city inhabitants are plotted in blue, while those of the individuals outside
the city are plotted in pink. Note that the simulation period is different for each panel. Here, the parameters were (|N|, α, θ, δ, γ) = (400, 1, 0.7, 0.002,
0.5) and (|N′|, κ, κ1, κ2, δ′) = (100, 5, 15, 16, 0.04), with (A) β = 10, (B) β = 8, and (C) β = 6.
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(β), it takes exponentially longer for the system to reach

convergence. This suggests that even a polarized population

may be in a pseudo-stable state in the middle of a long

convergence process. Of course, we must note that this result

a consequence of the simple assumptions of our theoretical

model; in reality, it might be natural that an event causes the

parameter value to change over a long simulation time.

4 Discussion

In this paper, we relaxed the basic assumptions of opinion

dynamics and conducted an analysis closed to real-world social

structures like the internet society. For this analysis, we extended

from an interaction structure such as a simple complete graph

and examined a two-dimensional lattice graph and a small-world

network. We also extended the trust structure from a model

dealing only with positive trust to allow negative trust, as well.

Through simulation with themodels, we gained the following

insights. First, we extracted the basic conditions under which

consensus building is likely to occur. A consensus tends to result

with a higher positive trust ratio in the network (θ), a denser

network (γ), and a milder degree of trust between individuals (δ).

Equivalently, in a real society, the development of consensus

opinions depends on reliable people, frequent communication,

and mild opinions. These findings make intuitive sense and are

supported by empirical and theoretical evidence. For example,

the social influence theory of ([35]) assumed that the degree of

social influence corresponds to the number of other influencers.

[36] showed that the participants in his experiment were more

susceptible to the influence of more trusted advisors, and that the

weight of the advice decreased with increasing distance from the

initial opinion. The experiment of [37] showed the effect of social

influences in promoting convergence of opinion.

It is important to distinguish whether a system of opinion

dynamics converges and forms a consensus or diverges. In that

regard, for a complete graph, [32] hypothesized that the

proportion of positive trust relationships in a trust structure

converges when a threshold is exceeded and diverges otherwise.

They estimated a threshold of 55%. In our simulation analysis, we

could systematically understand what parameters are required

and how the threshold changes in various networks including a

random graph, a lattice graph, and a graph of a small-world

network.

Compared with the two extreme cases of a random graph and

a lattice graph, the topology of the small-world network seems to

reflect a realistic situation. People communicate both within their

neighborhoods and with more distant people. However, Figure 4

shows that the degree of convergence of the opinion dynamics is

estimated to lie between the two extreme cases, regardless of the

value of βSW in a real situation.

By using the spatial opinion dynamics model, it is possible to

perform dynamic analysis of groups whose opinions are

polarized. Here, we assumed that a minority group was

located on a dense city and had a lattice structure with

opinions that were far from those of the majority then, we

simulated how that group and the majority changed their

opinions. Our results show that if there is a trust structure or

interaction structure that attracts the opinions of both parties to

some extent, then the centers of gravity of each group’s opinions

will gradually attract each other; furthermore, when a certain

threshold is exceeded, the groups’ opinions will be drastically

integrated like a phase transition.

As several studies have shown, a positive-negative influence

model may promote so-called bipolarization [38, 39]. In our

current analysis, we sought to show more fundamental

phenomena with respect to opinion dynamics by introducing

negative influence and structural situations; thus, analysis of

bipolarization will be a future extension.

Here, however, we mention several important aspects that point

to that future work. [38] revealed that the introduction of negative

interactions eventually facilitates balance as taught by balance

theory, after an initial unbalanced state. Negative relationships

are not favored in sustainable interactions, and thus, such

interactions may be drastically diminished sooner or later by

disconnecting a relationship or reaching a far distance of

opinion. In our model, the trust relationship between agents is

set randomly and then fixed, making it hard for our simulation to

reproduce a bipolarization phenomenon. Generally, however, a trust

relationship between people may change, especially when it strongly

depends on the frequency of interactions. If we extend our model in

such a direction, we will find a bipolarization that is implied by the

current model, as shown in Figure 6. In addition, as [39] mentioned,

the formalization of bi-polarization during opinion evolution will

require a novel model for networks of agents with bi-directional

bounded thresholds for studying the evolution of opinion dynamics.

Because our analysis was based on a specific parameter set, a

more systematic study will be an important research topic in the

future. Moreover, some of the time-invariant model parameter

settings will provide meaningful extensions. Figure 6 shows the

effect of changes in a certain parameter on the convergence time,

but it will be necessary to consider other parameter changes, as

well. For example, the variable T = (Tpq) indicating the trust

structure was given as a constant in this paper. However, it may

be natural that interactions and changes in opinion are affected

by certain events, and it would thus be useful to analyze the

coevolution of trust dynamics as well as opinion dynamics.

We analyze small-world networks to apply them to more

realistic situations, but these networks have some limitations.

One is that each node has essentially the same number of links.

We estimate that heterogeneity of link size has a significant

impact on simulation performance. We do not apply flexibility in

this regard because our focus is on the mobility of real people’s

links, like in a small-world network. In the real world, however,

influencers form hubs with many links, while others are isolated

in the network. To address this issue, we will need to consider
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other topologies, including a scale-free network, and future

extensions will be welcome.

In this study, we use a simple opinion space to ensure that we

can analyze the mechanisms of our simulation results. Whereas

this model covers the convergence and divergence of two

different opinions, real opinions that emerge in society result

from integration of multifaceted value judgments which often

causes two or more opinions to become divided. In this model,

however, opinion is polarized in one dimension, which is too

simplistic to reflect reality. This point will also require expansion

in the future.

Analysis of the same model with a differential equation

system will be another future extension. Because we adopted

an agent-based approach, our model used a difference equation

system. However, human opinion dynamics is asynchronous in

real cases. Although we think that this asynchronicity is not

crucial, it will be necessary to confirm this point.

Because we do not perform sensitivity analysis here, we have

shown just a few cases with specific parameters. However, this is an

abstract model, so the numbers themselves are not especially

meaningful. Accordingly, we show the results for general

characteristics such as the slope of the graph, and we think that

the current version is sufficient for testing such general findings. Of

course, a more rigorous analysis will be welcome in the future.

The objective of this paper was to explore conditions with

respect on convergence and divergence using an extended

opinion dynamics model considering the effects of untrustful

human relationship and spatial interaction structure. To do so,

we introduced several parameters including a network density

parameter (γ), two trust structure parameters (δ: the degree of

trust, θ: the ratio of trustful human relationships), and an

interaction structure parameter (βSW). According to our agent-

based simulations, a consensus tends to result with a higher

positive trust ratio in the network, a denser network, and a milder

degree of trust between individuals. Especially, the degree of

consensus is highly sensitively affected by the degree of trust.

Moreover, we show that the opinions of two parties connecting in

dense interactions will gradually attract each other, and when a

certain threshold is exceeded, those opinions will be integrated at

once like a phase transition. We conclude that our extended

model is a useful tool for exploring convergence conditions on

opinion dynamics.
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