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This study reveals the extension of a mathematical model of heat and mass

transfer of fluid flow over a sheet by incorporating the effect of non-linear

mixed convection. The governing equations of flow phenomena are expressed

as partial differential equations (PDEs). Similarity transformations are employed

to get a dimensionless set of boundary value problems. Most of the existing

relevant literature employed some solver to solve a set of differential equations,

but this study implements the finite element method to tackle the boundary

value problems. The employed finite element method is based on the Galerkin

approach. For verifications of the obtained results, a set of linear and non-linear

boundary value problems is also solvedwithMatlab solver bvp4c. The results are

displayed in graphs by varying Grashof number, modified (solutal) Grashof

number, non-linear convection parameters in heat and mass transfer,

radiation parameter, Prandtl number, Schmidt number, and reaction rate

parameter. Also, numerical values for the friction at the wall and local

Nusselt and Sherwood numbers are given in tables. The problem in PDEs

form is also solved with software that implements the finite element method

to solve problems. The simulations are also provided, which is the outcome of

the software. It is shown that the velocity profile escalates by growing values of

thermal and solutal Grashof numbers. Problem-solving techniques from this

study may be used in future research to address other unsolved heat transfer

fluid physics issues.
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Introduction

Mathematical modeling of physical processes is substantial in engineering because

these are constructed to express the physical situation to its equivalent mathematical

form. Fluid mechanics is the field that utilizes mathematical modeling to convert a

physical problem to its corresponding mathematical expression. Additionally, it provides
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solutions to the models and the quantitative description for

which the model was constructed. These solutions explained

the behavior of different quantities when variable parameters

were used in the equation. The fluid’s velocity, pressure,

temperature, and concentration could be the quantities in

fluid dynamics.

Today, the study of Newtonian fluid’s fluid flow and energy

transfer has gravitated several mathematical researchers. The

fluid that obeys Newton’s viscosity law is termed Newtonian

fluid. This area of research in fluid mechanics has extensive

applications in hot rolling, wire drawing, the boundary layer,

liquid film, paper production, and polymeric industries. Hayat

et al. [1] studied the unsteady MHD flow over an exponentially

stretching surface. The boundary layer equations for this

phenomenon have been reduced into ordinary differential

equations using suitable transformations. Series solutions for

velocity and temperature have been obtained and analyzed

with respect to contained parameters. Mukhopadhyay [2]

studied the MHD boundary layer flow under the heat transfer

of viscous fluid over an exponentially stretching sheet.

Bhattacharyya et al. [3] discussed the problem of heat transfer

in stagnation point flow over an exponentially shrinking sheet.

The numerical investigation of time-dependent flow with the

characteristic of heat transfer under the effects of the magnetic

field, internal heat generation, or absorption has been carried out

by Elbashbeshy et al. [4].

One of the attractive fields in fluid mechanics is studying

forced situations, and free convection coincides, called mixed

convection. Mixed convection occurs when free convection is

significant under forced flow or forced convection under

buoyancy forces. Mixed convection has applications in

engineering fields such as heat exchangers, solar collectors,

contaminant particle deposition, electronic equipment

transport processes, and atmospheric boundary layer flows.

Bhattacharyya et al. [5] studied the mixed convective

boundary layer flow having slip effects over a flat plate. For

numerical solutions of the obtained non-linear equations,

Galerkin weighted residual method was employed. Shehzad

et al. [17] investigated three-dimensional mixed convective

flows of an Oldroyd-B fluid over the bidirectional stretching

surface under the effects of radiations using the Rosseland

approximation. Mukhopadhyay et al. [6] explored the

incompressible, laminar, viscous, axisymmetric boundary layer

flow towards a stretching cylinder. Hayat et al. [7] studied the

constant three-dimensional flow of viscoelastic fluid over an

exponentially stretched surface under convective boundary

conditions and heat radiation. An analytical method, namely

homotopy analysis, has been employed by Rashidi et al. [8] to

explore micropolar fluid’s mixed convective boundary layer flow

over a heated shrinking surface.

Models in fluid mechanics were formulated with or without

heat and mass transfer. Few models have converted partial

differential equations into ordinary differential equations

utilizing equivalent similarity transformation. This conversion

involved those fluids which have a similar flow. Modeling in fluid

mechanics was constructed using Navier Stock equations based

on Newton’s second law of motion. The study of small fluid

elements, control volume, and 3D force can be done using the

Navier stock equation. The mathematical form of Newton’s

second law of motion revealed the cluster of forces acting on

control volume.

Navier stokes equation consists of the sum of all forces acting

on a flow and the product of mass and acceleration. These forces

are gravitational, differential pressure, and force due to viscosity.

These can be considered small fluid elements. Applying the chain

rule to acceleration helps generate the convective components of

acceleration [9–12]. Have studied the energy andmass transfer in

mixed convection and elaborated the parameters (velocity,

temperature, and concentration profile) using a chemical

reaction.

Applications of fluid flow convection include chemical, food,

fire control, petroleum reservoirs, and extraction of metals from

their ores. In [13–15], Kh. Abdul Maleque worked on Arrhenius

activation energy by considering binary chemical reactions with

exothermic/endothermic properties. Natural convection was

converted into an ordinary differential equation using the

similarity technique. However, he introduced some non-

dimensional variables and achieved similarity by assumption.

In [16], the author used Oldroyd-B fluid to investigate three-

dimensional mixed convected flow in the presence of thermal

rays. Analytical issues were solved using the homotopy analysis

method.

Unsteady nanofluid flow over the wedge under the effects of

non-linear mixed convection has been studied in [17] using

Matlab solver bvp4c. The Buongiorno model com-prises the

effects of Brownian diffusion and thermophoresis. It was

concluded that the impact of the non-linear convection

parameter for temperature was more than that of

concentration. An inclined MHD flow of a Micropolar fluid

has been studied in [18] using the effects of the porous medium,

transportation of heat and mass, and thermal radiations. The

results reveal that the micropolar fluid flow depended on the

mentioned effects. An analytical study for heat transfer of MHD

flow over a stretching sheet has been given [19]. Two types of

temperature conditions have been discussed. One was prescribed

surface temperature, and another was named wall heat flux.

The exact solution for the non-linear ordinary differential

equation obtained by employing similarity transformations on

the momentum boundary layer equation was found. Other than

numerical and analytical approximate solutions, exact solutions

for some flow problems have been found in the literature. In [20],

an exact and analytical approximate solution of Axisymmetric

flow over a radially stretching sheet using the effects of heat

transfer has been found. The sheet was porous, and the flow was

generated due to the stretchiness of the sheet. The incomplete

Gamma function found the exact solutions of the system of
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equations obtained by employing similarity transformations on the

governing equations of the flow problem. Some flow problems

have dual solutions. Among them, dual solutions for an equation

for mixed convection in a porous medium have been considered

[21]. The lower branch of the solution was terminated with a

specified parameter value, and it also had essential singularity.

Both solutions were shown to be bifurcated from the single

solution. It was also shown that the upper branch of solutions

was stable while the lower branch of solutions was unstable. An

asymptotic solution was obtained in [22] for the natural

convection of a nanofluid in a porous enclosure under a

magnetic field and internal heating. This phenomenon has been

applied in a plethora of bioengineering and industrial applications.

This type of case was more physically realistic. Effects of some

parameters in a transformed set of ordinary differential equations

on fluid flow and heat transfer were graphically presented. For

certain ranges of parameters, dual solutions of the system of

ordinary differential equations were found.

The study of heat and mass transfer for the flow of three-

dimensional Oldroyd-B fluid under the influence of Soret and

Dufour over a bidirectional stretching sheet has been given in [23].

The Runge–Kutta-Fehlberg scheme has been employed to solve

the differential equations. The results revealed that rising Deborah

number values positively impact the temperature rate. The study of

Maxwell liquid over a stretching sheet under the effects of

magnetic dipole and thermophoretic particle has been provided

in [24]. Later, suitable transformations have been employed to

transform the dimensional partial differential equations into

dimensionless ordinary differential equations. This shooting

technique is based on Runge-Kutta Fehlberg 45 approach for

solving the ordinary differential equation. It was concluded that

the velocity gradient deteriorated by the increasing ferromagnetic

interaction parameter. The Koo and Kleinstreuer-Li (KKL)

nanofluid model has been studied in [25]. The mathematical

model of ferromagnetic nanofluid flow was established under

the effect of the chemical reaction and porous medium. The

shooting method was adopted to solve dimensionless ordinary

differential equations. The results revealed that velocity gradient

decayed by rising values of ferromagnetic interaction parameter.

The domains of engineering, manufacturing, and

biomedicine are just some of the many applications that make

extensive use of hybrid nanofluids. For these applications [26],

addressed the non-Fourier heat flux model for the flow of

AA7072/AA7075/water-based hybrid nanofluids over curved

stretching sheets. More work on fluid flow in the form of

PDEs can be seen in [27–29].

Due to FEM’s great precision, it is a necessary numerical

method for solving the non-linear system of ordinary differential

equations (ODEs) that depicts heat transport from a thin liquid

film accompanied by thermal radiations and a magnetic field.

Here, the heat and mass transportation model of chemically

reactive fluid flow over the sheet is extended by considering a

non-linear mixed convection effect. The model is further reduced

to ordinary differential equations with boundary conditions.

Various solution methodologies exist for these kinds of linear

and non-linear differential equations. But the current approach

uses the modified finite element method to study the effect of

parameters on velocity, temperature, and concentration profiles.

The obtained equations are also tackled with Matlab solver

bvp4c. This Matlab solver provides high-order accurate

solutions for boundary values problems. Since the Matlab

solver must use only first-order differential equations, all the

second-order equations are reduced into a set of first-order

equations. The main advantage of using a solver is to handle

boundary value problems. The Galerkin-based approach

modified finite element method is employed using first-degree

polynomial interpolation. Rather than strong formulations, weak

formulations are considered. Afterward, a matrix-vector

equation is obtained containing the stiffness matrix. The

stiffness matrix contains matrices obtained by finding integrals

of some expressions. For getting quick results, a numerical

integration approach is considered. This numerical approach

is based on Gauss quadrature that uses points obtained from

Legendre’s third-degree polynomial. For non-linear terms, an

iterative procedure is adopted that stops when stopping criteria

are met. So, in this manner, the system of a linear and non-linear

set of boundary value problems is solved by employing the

modified finite element method and Matlab solver bvp4c.

Problem formulation

Consider unsteady, incompressible, laminar, unsteady and

Newtonian flow over a stretching sheet. Let the sheet be stretched

with velocity u0. Let x-axis be kept along the plate, whereas y-axis

be placed perpendicular to x-axis. The stretchiness of the sheet

generates the flow. Consider the non-linear mixed convection

flow, and under the assumption of boundary layer theory that

considers Reynolds number to fall in some particular range, the

governing equations of the flow can be expressed as:

zv

zy
� 0 (Continuity equation for this case) (1)

zu

zt
+ v

zu

zy
� ]

z2u

zy2
+ g( Λ1(T − T∞)

+Λ2(T − T∞)2 )
+ g( Λ3(C − C∞)

+Λ4(C − C∞)2 )(x −Momentum equation)
(2)

zT

zt
+ v

zT

zy
� α

z2T

zy2
− 1
ecp

zqr
zy

(Energy equation) (3)

zC

zt
+ v

zC

zy
� D

z2C

zy2
− k1(C − C∞) (Concentration equation)

(4)
In Eqs 1–4, the effects of thermal radiations and chemical

reactions are also considered where it is assumed that all
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derivatives with respect to x are ignored [14]. The geometry of

the problem is shown in Figure 1. Figure 1 shows three boundary

layers, the flow direction and temperature and concentration at

the wall and free stream.

Eqs 1–4 are considered subject to the boundary conditions

u(t, y) � U0, v � vw(t), T � Tw, C � Cw when y � 0, t> 0
u(t, y) → 0, T → T∞, C → C∞ when y → ∞ t> 0 }

(5)
In Eqs 1–4, u& v represent the horizontal and vertical velocity

of the flow, respectively, T represents the temperature of the fluid,C

denotes concentration, Tw &Cw are respectively temperatures and

concentration at the sheet,T∞ &C∞ are respectively temperature of

the fluid and concentration at the free stream, ] denotes kinematic

viscosity, g be the gravity, Λ1 &Λ2 denote linear and non-linear

thermal expansion coefficients, Λ3 &Λ4 denote linear and non-

linear solutal expansion coefficients, qr be the radiative flux, α be the

thermal diffusivity, ρ be the density, cp is the specific heat capacity,D

is the thermal diffusivity and k1 is the reaction rate. Let the linearized

Rosseland [30] radiative flux qr is expressed as:

qr � −16σ
pT3

∞
3kp

zT

zy

where σp is Stefan Boltzmann constant and k* is mean absorption

coefficient.The following transformations are considered [14]:

η � y

δ(t), u � U0f(η), θ � T − T∞
Tw − T∞

, ϕ � C − C∞
Cw − C∞

(6)

It is given in [14] that the solution of Eq. 1 can be

expressed as:

v � v0]
δ(t) (7)

where v0 � −vwδ
] is dimensionless suction/injection velocity of the

plate.

Substituting transformations Eq. 6 into Eqs 2–5 yields

f″ + (ηδδ′
]

+ v0)f′ + Gr(θ + β1θ
2) + Gm(ϕ + β1ϕ

2) � 0 (8)

1
Pr

(1 + 4
3
Rd)θ″ + θ′(η δδ′

]
+ v0) � 0 (9)

1
Sc
ϕ″ + ϕ′(η δδ′

]
+ v0) − γϕ � 0 (10)

Subject to the boundary conditions

f(η) � 1, θ(η) � 1, ϕ(η) � 1when η � 0
f(η) → 0, θ(η) → 0, ϕ(η) → 0when η → ∞} (11)

where Gr � gΛ1(Tw−T∞)δ2
]U0

, Gm �
gΛ3(Cw

−C∞)δ2
]U0 , β1�Λ2

Λ1
(Tw−T∞), β2�Λ4

Λ3
(Cw−C∞),Pr�]

γ, Rd�4σ*T3∞
kk* , γ�k1δ

2

] , SC� ]
D

Denotes the Grashof number, the modified (solutal) Grashof

number, non-linear thermal convection variable, Prandtl

number, radiation parameter, non-dimensional reaction rate,

and Schmidt number, respectively. In Rd denotes the thermal

conductivity. Since Eqs 8–10 contains the term δδ′
] which will be

treated as constant [14] for the requirement of the similarity

conditions. Therefore,

δδ′
]

� A (12)

So, Re-write Eqs 8–10 as

f″ + (ηA + v0)f′ + Gr(θ + β1θ
2) + Gm(ϕ + β1ϕ

2) � 0 (13)
1
Pr

(1 + 4
3
Rd)θ″ + θ′(ηA + v0) � 0 (14)

1
Sc
ϕ″ + ϕ′(ηA + v0) − γϕ � 0 (15)

Under the same boundary conditions as those specified in Eq. 11.

The coefficient of skin friction, the local Nusselt number,

and the local Sherwood number are defined as follows: Cf �
τ

2ρU2
+
where τ � −μ(zuzy)y�0 � −μU0

δ f′(η)Nu � qwδ
k(Tw−T∞) and Sh �

Mwδ
D(Cw−C∞) where qw � −(k + 16σ*T3∞

3k* )(zTzy)y�0 � −(k + 16σ*T3∞
3k* )

(Tw−T∞)
δt

θ′(0) and Mw � −D(zCzy)y�0 � −(Cw−C)
δt

ϕ′(0)Thus
1
2
ReCf � −f′(0) (16)

Nu � −(1 + 4
3
Rd)θ′(0) (17)

Sh � −ϕ′(0) (18)

where Re � U0δ
] denotes the Reynolds numbers.

Finite element method

The dimensionless system of boundary value problems (13)-

(15) using boundary condition (11) are solved by the numerical

FIGURE 1
Geometry of the problem with streamwise and cross-
streamwise coordinates.

Frontiers in Physics frontiersin.org04

Arif et al. 10.3389/fphy.2022.952787

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.952787


technique finite element method. Solving problems using this

whole method domain that is infinitely long is considered the

finite domain. Let it be divided into an equal subdomain called

the element. Let h be the length of each element, and every

element is constructed on two nodes at its left and right endpoint.

Let the solution be approximated by the interpolation of linear

polynomials of the forms

f � a0 + a1η, θ � b0 + b1η1, ϕ � c0 + c1η (19)

Where a0, a1, b0, b1, c0 & c1are unknowns which will be

determined by considering the values of f, θ&ϕ at two

nodes of ithelement, the values of the unknown in Eq. 19

can be found and so solving approximation for f, θ& ϕ can

be obtained as:

f � ψ1(η)fi + ψ2(η)fi+1
θ � ψ1(η)θi + ψ2(η)θi+1
ϕ � ψ1(η)ϕi + ψ2(η)ϕi+1

⎫⎪⎬⎪⎭ (20)

where

ψ1(η) � ηi+1 − η

ηi+1 − ηi
, ψ2(η) � η − ηi

ηi+1 − ηi
forηi ≤ η≤ ηi+1 (21)

where ψ1(η) and ψ2(η) are called shape functions, and f, θ&ϕ

are called trail functions.

Using the Galerkin finite element method, weighted residuals

of Eqs 13–15 are constructed as

∫η∞

0
ψ(d2f

dη2
+ (Aη + v0) df

dη
+ GγLθ + β1GγLθ

�θ + GγCϕ

+ β2GγCϕ
�ϕ)dη � 0

(22)

∫η∞

0
ψ( 1

Pr
(1 + 4

3
Rd) d2θ

dη2
+ dθ

dη
(ηA + v0) )dη � 0 (23)

∫η∞

0
ψ( 1

Sc

d2ϕ

dη2
+ dϕ

dη
(ηA + v0) − γϕ)dη � 0 (24)

The trial function in Eqs 22–24 will be considered by

using Eq. 20, and the test function is the vector of the form

ψ � [ψ1(η), ψ2(η)]t. Eqs 22–24 are strong formulations. For

getting weak formulations, integration by parts will be

carried out. Therefore, weal formulations can be

expressed as:

∫η∞

0
− dψ

dη

df

dη
+ ψ

⎧⎪⎪⎨⎪⎪⎩
(Aη + v+)df

dη
+ GγLθ + β1GγLθ

�θ

+GγCϕ + β2GγCϕ
�ϕ

⎫⎪⎪⎬⎪⎪⎭dη

� (ψ df

dη
)η∞

0

(25)

∫η∞

0
− 1
Pr

(1 + 4
3
Rd) dψ

dη

dθ

dη
+ ψ{dθ

dη
(ηA + v+) }dη

� (ψ dθ

dη
)η∞

0

1
Pr

(1 + 4
3
Rd) (26)

∫η∞

0
− 1
Sc

dψ

dη

dϕ

dη
+ ψ{dϕ

dη
(ηA + v+) − γϕ}dη � (ψ dϕ

dη
)η∞

0

1
SC

(27)
The weak formulations Eqs 25–27 are constructed on the

whole domain. For their construction on a single element ″i″ the
following equations can be constructed.

∫ηi+1

ηi

− dψ

dη

df

dη
+ ψ

⎧⎪⎪⎨⎪⎪⎩
(Aη + v0) df

dη
+ GγLθ+

β1GγLθ
�θ + GγCϕ + β2GγCϕ

�ϕ

⎫⎪⎪⎬⎪⎪⎭dη

� (ψ df

dη
)ηi+1

ηi

(28)

∫ηi+1

ηi

− 1
Pr

(1 + 4
3
Rd) dψ

dη

dθ

dη
+ ψ{dθ

dη
(ηA + v0) }dη

� (ψ dθ

dη
)ηi+1

ηi

1
Pr

(1 + 4
3
Rd) (29)

∫ηi+1

ηi

− 1
Sc

dψ

dη

dϕ

dη
+ ψ{dϕ

dη
(ηA + v0) − γϕ}dη � (ψ dϕ

dη
)ηi+1

ηi

1
SC

(30)
The stiffness matrix for the ithelement can be expressed as:

Ki � ⎡⎢⎢⎢⎢⎢⎣ [k11] [k12] [k13][k21] [k22] [k23][k31] [k32] [k33]
⎤⎥⎥⎥⎥⎥⎦ (31)

Where

k11ij � ∫ηi+1

ηi

( − dψi

dη

dfj

dη
) + ψi

dfi

dη
(A(i − 1)h + v+)dη (32)

k12ij � ∫ηi+1

ηi

ψi(GγLθj + β1GγLθj
�θ)dη (33)

k13ij � ∫ηi+1

ηi

ψi(GγCϕj + β2GγCϕj
�ϕ)dη (34)

k22ij � ∫ηi+1

ηi

( − 1
Pr

(1 + 4
3
Rd) dψi

dη

dθj
dη

+ψi

dθj
dη

(A(i − 1)h + v+))dη (35)

k33ij � ∫ηi+1

ηi

( − 1
Sc

dψi

dη

dϕj

dη
+ ψ

dϕj

dη
(A(i − 1)h + v+) − γϕjdη)dη

(36)
And remaining kstij, s, t � 1, 2 are zero matrices. The term with

bar notations is held fixed. So these are approximated by using an

iterative procedure. Their values under the iterative scheme are

expressed as:

θ � ψ1
�θi + ψ2

�θi+1, ϕ � ψ1
�ϕi + ψ2

�ϕi+1 (37)

Since analytical integration consumes time to evaluate

integral, so to avoid this deficiency, numerical integration is

considered based on the Gauss Quadrature rule. For this study,

the roots of Legendre polynomial are used, which are expressed
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as {−
�
3
5

√
, 0,

�
3
5

√
} with weights {59, 89, 59}. The shape function ψ1 and

ψ2 are converted on the interval [−1, 1], which are expressed as

ψ1(s) �
1 − s

2
, ψ2(s) �

1 + s

2
.

For validation of the obtained results computed by the finite

element method, a Matlab solver bvp4c is employed to solve the

boundary value problems Eqs 13–15 with boundary conditions

(Eq. 11). The results are compared in Table 1. The Matlab solver

provides high accurate solution because it employs the fourth or

fifth accurate numerical method. The agreement between results

obtained by the two approaches validates the code and results

computed by the finite element method. Also, an iterative

method is adopted for convergence in solving non-linear

differential equations that stop when given stopping criteria

are met. So, these approaches can verify solutions to getting

the converged solution.

Results and discussions

The modified finite element approach handles boundary value

problems, which is very effective. To check the validity of the

obtained results, a set of obtained non-dimensional boundary

values problems is also solved by employing Matlab solver

bvp4c. In implementing the modified finite element method,

linear first-degree interpolation polynomials are considered to

vanish when their second-order derivatives are found. But in

the present application of the modified finite element method,

weak formulations are constructed, which are obtained by finding

the integration of parts to the strong formulations. So, in this

manner, all derivatives that appear in the weak formulations are

first order. So, one of the advantages of using weak formulations

rather than strong formulations is to provide freedom for choosing

linear interpolating polynomials. The second important advantage

of using the present implementation of the modified finite element

method is to provide faster integration based on the numerical

Gauss Quadrature rule. Since exact analytical integration

consumes time in the modified finite element method’s

framework, numerical integration is carried out.

Figures 2–9 are drawn using the Matlab code of the modified

finite element method. The impact of different involved

parameters on velocity, temperature, and concentration

profiles can be seen in these Figures 2–9. Figure 2 shows the

impact of the Grashof number on the velocity profile. Velocity

profile escalates by enhancing Grashof number in heat transfer.

This happened due to an increment in the buoyancy force by

rising values of Grashof number in heat transfer. The increased

buoyancy force generates a force in the flow that augments the

velocity profile. Figure 3 deliberates the impact of modified

(Solutal) Grashof number on the velocity profile.

The velocity profile grows by rising modified Grashof number.

Figure 4 shows the impact of non-linear thermal convection

parameters on the velocity profile. Rising values of non-linear

convection parameters enhance the velocity profile. Since

increment in the non-linear thermal convection variable leads to

an increase in temperature difference between the wall and ambient

temperatures, the velocity profile escalates. Figure 5 deliberates the

velocity profile by varying non-linear solutal convection variables. An

increment in the non-linear solutal convection variable leads to

growth in the velocity profile. A higher solutal variable leads to a

rise in the concentration difference between wall and ambient

concentrations. This increase in the concentration difference

produces a rise in the velocity profile. Figure 6 shows the

temperature profile by varying radiation parameters. Figure 6

shows that temperature grows by increment in the radiation

parameter. The enhancement in the temperature profile results

from rising surface heat flux that rises by incoming radiations, so

the fluid temperature escalates. Figure 7 deliberates the impact of the

Prandtl number on the temperature profile. The temperature de-

escalates by growing values of the Prandtl number. It happens due to

decay in the thermal diffusivity when the Prandtl number grows,

leading to a fall in thermal conductivity and, subsequently, the

temperature profile de-escalates. Figure 8 deliberates the impact of

Schmidt number on concentration profile. Figure 8 shows that

concentration decreases by enhancing the Schmidt number.

The decrease in molecular diffusivity resulted in a slower

concentration profile. Figure 9 displays the impact of reaction

rate parameters on concentration profile. The concentration

profile decreases by rising values of the reaction rate

TABLE 1 Comparison of finite element method with Matlab solver bvp4c using Gr � 1, Gm � 0.9, β1 � 0.3, β2 � 0.9, Rd � 0.1, Pr � 0.9, Sc � 0.9, γ � 0.1

v0 A Matlab solver bvp4c Finite element method

1
2ReCf Nu Sh Time(s) 1

2ReCf Nu Sh Time(s)

1 0.1 −1.0284 1.0114 1.0660 0.7220 −1.0288 1.0114 1.0661 0.3553

5 4.4489 4.5224 4.5395 0.5882 4.4553 4.5268 4.5448 0.3664

10 9.7213 9.0113 9.0199 0.6479 9.7523 9.0332 9.0444 0.3436

0.1 1 −0.6281 0.8642 0.8654 0.4125 −0.6283 0.8642 0.8655 0.3365

5 1.1660 1.8596 1.7734 0.4705 1.1657 1.8598 1.7737 0.3428

10 2.1027 2.6059 2.4677 0.4373 2.1028 2.6065 2.4685 0.3284
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parameter. The decay in the concentration profile is the

consequence of either a rising impurity level or an increase in

making new substances. Figure 10 is drawn using software that

can be used to solve a set of partial differential equations. This

problem requires some inputs in the forms of partial differential

equations, boundary conditions at the walls, and an additional

non-linear source as a force is added. Its output can be seen in

different types of graphs.

The values for the skin friction coefficient, the local Nusselt

number, and the local Sherwood number are listed in Table 1.

Skin friction coefficient decreases by increasing Grashof

numbers in heat and mass transfer, non-linear thermal

solutal convection parameters, and radiation parameters. An

increase in thermal and solutal Grashof numbers produces a

lower skin friction coefficient, and mathematically it is the

consequence of escalation in slopes of tangents of the

velocity profile at η � 0 when velocity escalates and negative

sign with f′(0) changes the increase of slopes of tangents to

decrease in the slope of tangents. By increasing thermal and

solutal Grashof number, the velocity of the flow grows due to a

decrease in kinematic viscosity that leads to slower down

friction at the wall and, therefore, skin friction coefficient

decreases. It is also escalated by enhancing the Prandtl

number, Schmidt number, and reaction rate parameters. The

TABLE 2 By adjusting various dimensionless factors, we may obtain numerical values for the skin friction coefficient, the local Nusselt number, and
the local Sherwood number as A � 1, v0 � 1

Gr Gm β1 β2 Pr Sc Rd γ 1
2ReCf Nu Sh

0.1 1 0.7 0.4 0.7 0.9 0.1 0.5 0.9175 1.2085 1.6016

10 −7.0510 1.2085 1.6016

0.5 5 −1.5136 1.2085 1.6016

10 −4.1500 1.2085 1.6016

1.5 1 0.2805 1.2085 1.6016

10 −1.2624 1.2085 1.6016

0.7 1 0.1075 1.2085 1.6016

10 −3.2593 1.2085 1.6016

1.5 1 −0.0061 1.5723 1.6016

7 0.2387 7.9332 1.6016

1.7 1 0.1577 2.3713 1.7268

7 1.0016 2.3713 8.2101

1.5 1 0.2771 2.8069 2.3266

5 1.9724 4.1640 2.3266

1 1 0.3291 2.8069 2.5356

5 0.5486 2.8069 3.7565

FIGURE 2
Effect of thermal Grashof number on velocity profile using
A � 1, v0 � 0.7, Gm � 1, β1 � 0.4, β2 � 0.4, Pr � 0.7, Rd � 1. Sc �
0.9, γ � 0.7, N � 120.

FIGURE 3
Effect of modified (solutal) Grashof number on velocity
profile using A � 1, v0 � 0.7, Gr � 1, β1 � 0.4, β2 � 0.4, Pr �
0.7, Rd � 1, Sc � 0.9, γ � 0.7, N � 120.
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FIGURE 4
Effect of non-linear thermal convection parameter on
velocity profile using A � 1, v0 � 0.7, Gm � 1, Gr � 1, β2 � 0.4, Pr �
0.7, Rd � 1, Sc � 0.9, γ � 0.7, N � 120.

FIGURE 5
Effect of non-linear solutal convection parameter on velocity
profile using A � 1, v0 � 0.7, Gm � 1, β1 � 0.4, Gr � 1, Pr �
0.7, Rd � 1. Sc � 0.9, γ � 0.7, N � 120.

FIGURE 6
Effect of radiation parameter on temperature profile using
A � 1, v0 � 0.7, Gm � 1, β1 � 0.4, β2 � 0.4, Pr � 0.7, Gr � 1, Sc �
0.9, γ � 0.7, N � 120.

FIGURE 7
Effect of Prandtl number on temperature profile using A �
1, v0 � 0.7, Gm � 1, β1 � 0.4, β2 � 0.4, Rd � 1, Gr � 1, Sc � 0.9, γ �
0.7, N � 120.

FIGURE 8
Effect of Schmidt number on concentration profile using A �
1, v0 � 0.7, Gm � 1, β1 � 0.4, β2 � 0.4, Gr � 1, Rd � 1.Pr � 0.7, γ �
0.7, N � 120.

FIGURE 9
Effect of reaction rate parameter on concentration profile
using A � 1, v0 � 0.7, Gm � 1, β1 � 0.4, β2 � 0.4, Gr � 1, Rd �
1, Pr � 0.7, Sc � 0.9, N � 120.
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local Nusselt number is escalated by rising Prandtl number and

radiation parameter. Increased conductive heat transport in the

sheet due to increased radiation entrance increases the local

Nusselt number. The Schmidt number and reaction rate

parameters grow the local Sherwood number.

Conclusion

The mathematical model for the flow over the sheet has been

modified by considering the effects of non-linear mixed

convection. The linear and non-linear sets of PDEs were

reduced to ordinary differential equations using similarity

transformations. The dimensionless equations have been

solved using the modified finite element method and Matlab

solver bvp4c. The effect of different dimensionless parameters on

velocity, temperature, and concentration profiles has been given

in graphs. The main concluded results are described as

• Velocity profile escalated by rising values of non-linear

thermal and solutal convection parameters.

• Temperature profile escalated and de-escalated by

increment in radiation parameter and Prandtl number.

• The concentration profile was de-escalated by increasing

the Schmidt number and reaction rate parameter.

• Skin friction coefficient de-escalated by growth in thermal

and Grashof numbers.
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FIGURE 10
Surfaces for velocity, streamlines, temperature, and isothermal contours using non-linear thermal convection.
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