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With the rise and large-scale applications of social networking service, the prediction of
information cascades has attracted extensive attention of researchers. User influence is an
important factor affecting the dissemination of posts in online social networks. However,
current studies usually take the number of users’ neighbors as their influence, and do not
accurately describe the role of participating users in information dissemination. In this
paper, a prediction model of information cascades in social networks is established based
on the Hawkes process, and the model considers three factors, i.e., post influence, user
influence and users’ response time, to describe the occurrence probability of forwarding
events. In order to utilize abundant information of local network topology, we present a new
method of calculating user influence, combining with semi-local centrality and local
clustering coefficients. Then, a regression tree algorithm is used to determine time
correction coefficients to reveal dynamic post influence, and the popularity prediction
of posts in social networks is realized. Comparison experiments of different models are
carried out on real-world datasets to evaluate the effectiveness and prediction
performance of the proposed model, and results show that our method outperforms
other counterparts.
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1 INTRODUCTION

With massive user-generated contents and closely intertwined user relationship networks, the
phenomena of information cascades become more and more common [1–3], and the work of
information cascade prediction has also received notable attention of researchers [4–6]. The cascade
prediction focuses on the cascade of social networks, which aims to estimate the future information
diffusion ways. The final size of an information cascade directly indicates the popularity and
influence depth of the information, and it is the reflection of information importance. That is, the
larger the final scale of an information cascade, the higher its popularity and the wider the influence.
Taking Twitter as an example, users can express their views and opinions on this platform. When a
user posts a tweet, some users who follow it may retweet the tweet because they like it or approve of it,
and then, the users who follow those retweeters have an opportunity to see the tweet [7–9]. After the
tweet is received, it may also be forwarded, and the retweeting process is repeated continuously,
forming a cascade of information in the network.

Existing work on information cascade prediction can be generally divided into two aspects:
prediction methods based on feature learning and those based onmodel generation. The basic idea of
feature learning is to use related algorithms of machine learning to formalize information cascade
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prediction as a classification or regression problem, and to extract
relevant features of user-generated contents and initial cascade
process, such as information disseminator [10, 11], information
contents [12–14], and network structure [15–17], etc. Then, this
kind of methods use different algorithms to mine the extracted
features, so as to establish a mapping relationship between
correlated characteristics and the future size of an information
cascade. Wang et al. [18] proposed a combined social media
popularity prediction framework based on multimodal feature
extraction, implemented feature generalization and temporal
modeling, and adopted a sliding window average to model
short-term dependency of each user among visual and textual
features. Kong et al. [19] focused on predicting multiple stages of
popularity such as outbreak, plateau, rise, and fall. They adopted a
pattern matching method to predict the future popularity stage by
extracting multiple dynamic factors such as the number of
retweets, the number of users, and network structure features
at the micro level, and extracting the overall evolution pattern of
the popularity stage at the macro level. Zhang et al. [20] extracted
the time, structure and content features from the diffusion
process of embedded web pages in WeChat moments and
predicted the growth of content popularity. The results
showed that the popularity scale was strongly correlated with
the initial network structure of the cascade. Due to the diversity of
features in the process of information cascades, it is very difficult
to extract the optimal feature set. How to minimize the
calculation and optimize the dynamic feature extraction
process is an urgent problem to be solved.

On the other side, the methods with model generation directly
simulate the process of information diffusion in a network, and
formalize the cascade process into a parameterized model by
analyzing the factors that affect the diffusion. After the diffusion
model is established, various parameters of the model are
estimated according to the cascade data observed in the initial
stage, so as to predict the future cascade [21–27]. Zhao et al. [28]
used the time-varying tweet influence to measure the forwarding
rate, and identified whether a cascade is in the supercritical state
or in the subcritical state. Chen et al. [29] proposed a marked self-
exciting point process model to capture the retweeting dynamics
and predict the tweet popularity. They selected the specific
parameter form of the function in the model by comparing
the goodness of fit of retweet cascades in the training data set.
Palmowski et al. [30] described moments method of estimation of
the parameters of Hawkes point process by using the generator
theory to analyze and model the cascade effect of forwarding in
social networks. Srivathsan et al. [31] presented a detailed
Bayesian model of the information by incorporating prior
knowledge of unobserved user information, which removed
the high influence of the first observed user behavior. The
results show that users make weighted choices between
adoption and rejection, but do not always choose the most
likely option, and adding prior user information will delay the
cascade effect. Due to various assumptions on many factors
affecting propagation process in the modeling, compared with
prediction methods based on feature learning, model generation
methods do not have the learning process of cascading features,
so their prediction performance may be limited to a certain

extent. Therefore, model generation methods should be
incorporated with feature learning to improve the expressions
of propagation details.

Existing models of cascade prediction only consider the
number of followers for each forwarding user, that is, the in-
degree of a node, when modeling the arrival intensity of
forwarding events. The number of user’s followers can indeed
represent the influence of a user to a certain extent, but this
measurement also has certain shortcomings. Users with more
followers do not necessarily have higher activity. Higher activity
of a user in social networks means that the user may frequently
post or repost a message, contributing to the growth of the
forwarding cascade. In addition, fake online users are often
used to construct fake popularity of influencers. If a user has a
large number of fake fans, its influence will be overestimated
when only measured by the number of fans.

We mainly focus on the problem of information cascades
formed by the diffusion of posts (tweets on Twitter) after the
posts are published in social networks, and investigate the
prediction method based on model generation. We analyze the
factors which affect the spreading of posts, and take the final
number of reposts to measure the size of a cascade. Then, we
construct the cascade prediction model based on the Hawkes
process (also known as a self-exciting point process) to explore
the final scale and influence range of an information cascade. In
addition, we integrate the model with feature learning by
introducing a cascading parameter to reflect the timeliness of
posts. The main work of this paper is as follows:

1) Wemodel the forwarding times of posts as a counting process,
and characterize the arrival intensity of forwarding events by
three factors, i.e., the influence of posts themselves, the
influence of forwarding users, and the response time of
users. Finally, the prediction model of the final forwarding
number is obtained by integrating the theory of a branching
process.

2) We propose a method of calculating the influence of
forwarding users and predict the influence of posts. Then,
we use a regression tree algorithm to train the cascading
parameter, and a prediction algorithm is realized to obtain the
final forwarding numbers of posts.

3) We conduct performance evaluation and comparative
analysis of the cascade prediction model on two datasets
from real social networks, and confirm the effectiveness of
our model.

The rest of the paper is structured as follows. Our cascade
prediction method is presented in Section 2. Section 3 provides
experiments and empirical results of the model. Our conclusions
are presented in Section 4.

2 METHODS

In this section, firstly, we describe the specific problem discussed
in this paper, and introduce the goal of information cascade
prediction. Then, in terms of the theory of a counting process, we
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model the arrival intensity of post forwarding events based on the
Hawkes process. Finally, we combine our generative model with
intergenerational characteristics of a branching process, and
obtain the predicted value of the final forwarding number.
Figure 1 illustrates the overview of our proposed model.

2.1 Problem Definition
We assume that the publishing time for a post is t0. According to
forwarding events of the post in the time period [t0, t] which
include forwarding time and relevant information of forwarding
users, we arrange these forwarding events in the order of
forwarding time. The occurrence time of the i-th forwarding
event is defined as ti, and ui is used to represent the
corresponding forwarding user. Then, the relevant information
chain {(t1, u1), (t2, u2), . . . , (ti, ui), . . .} at the initial stage of the
post forwarding cascade is obtained as known information. It is
worth noting here that the relevant information of forwarding
users is reflected by the user relationship network, and it is mainly
used to extract the influence of users in the network. The
influence determines the size of the user group that may take
further forwarding behaviors. The counting process R(t) as a

representative of point process is used to describe the cumulative
number of forwards obtained by the post in the time period [t0, t].
Then, the task of information cascade prediction is to predict the
final number of forwards R̂(∞ ) obtained by the post at the time t
according to the information chain
{(t1, u1), (t2, u2), . . . , (ti, ui), . . .}. Table 1 shows the notations
involved in this paper.

2.2 Forwarding Probability Modeling
Apparently, in the study of a counting process, how to
characterize event arrival intensities in the process is a key
problem. According to the features and growth mechanism of
a forwarding cascade, each time a post is forwarded by a user, it
may gain the attention of more users. Therefore, the number of
potential users that may take forwarding behaviors increases due
to forwarding events, and then more subsequent forwards are
stimulated.

We characterize the probability of post forwarding events
based on the intensity function of the Hawkes process. The
intensity function of an event arrival in the classical Hawkes
process is expressed as follows [32]:

FIGURE 1 | Overview of the proposed framework.

TABLE 1 | Notations.

Symbol Description

i the ith forward, i � 0 indicating the original post
t the time to make a prediction
ti the time of ith forwarding event
ui the influence of ith forwarding user
|N(i)| number of nearest neighbor nodes of user i
|Γ(i)| sum of the numbers of nearest neighbor and next nearest neighbor nodes of user i
ci local clustering coefficient of user i
β the parameter to balance user influence
R(t) cumulative number of forwards up to time t

R̂(∞ ) the predicted value of the final number of forwards

R(∞ ) the real final number of post forwards
Ut sum of influence of forwarding users up to time t
Ue
t sum of effective values of forwarding user influence up to time t

λ(t) arrival intensity of forwarding events for R(t)
p(t) influence of the post at time t
Φ(t) memory kernel function
μt correction coefficient of predicted results
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λ(t,Ηt) � ν + ∫t
−∞
γ(t − u)dR(t) (1)

where Ηt represents the historical data in the counting process
R(t) up to time t. ] indicates the external incentive intensity,
which describes the impact of the post background on subsequent
forwarding cascade. For instance, in the process of information
dissemination, some emergencies in real world affect information
cascades in the social network, and the influence belongs to
external factors other than forwarding events themselves. γ(t)
is a self-excited kernel function, which characterizes the self-
excited effect of historical forwarding events on the current event,
i.e., the self-excited effect of the current event on subsequent
forwarding cascade. In order to quantify the growth mechanism
of an information cascade, the original Hawkes process is
simplified to exclude the influence of external incentive
factors, and the function of event arrival intensity in the
cascade process is expressed as the linear sum of self-excited
kernel functions over time. The intensity function is given as
follows:

λ(t) � ∑
ti ≤ t

γ(t − ti) (2)

We refine the self-excited effect and decompose the self-
excited kernel function in the intensity function λ(t). Then,
we obtain

λ(t) � p(t)∑
ti ≤ t

uipΦ(t − ti), t ≥ t0 (3)
where p(t) represents the influence of the post itself, which
quantifies the possibility of being forwarded for the post when
it is observed by users at time t. p(t) is time-dependent. For
example, a post always gets more attention when it is just released.
With the time elapsed, the attraction of the post decreases, and it
will be crowded out by a large number of newly released
information on the platform. In addition to the factor of
timeliness, the influence of the post is also related to its
content, release time and geographical location of the author.
We synthesize all the relevant influencing factors of a post by
p(t). ui is the influence of forwarding user i, which quantifies the
probability that the post will be forwarded when it is seen by users
at time t from the perspective of network topology. In another
word, ui represents the set of users that may take forwarding
behaviors in the future, and therefore, we should give more
weights to nodes with greater influence. Φ(t) is a memory
kernel which indicates users’ reaction time. After a post is
published, it will appear in the information flow of continuous
post generation. After users see the post, they may wait for a

certain time to decide whether to forward it. Therefore, Φ(t) is
just the function of quantifying the probability density
distribution obeyed by this time interval.

Eq. 3 is the expression of the arrival intensity of post forwarding
events in the information cascade, and λ(t) describes the rate at
which the post is forwarded. We have the following additional
explanations of λ(t). After the post is forwarded for the i time,
users are affected by the influence of antecedent spreaders to
consider participating in the diffusion. These users see the post
in turn and decide whether to take forwarding behaviors according
to Φ(t) which characterizes a certain response time. Therefore,∑
ti ≤ t

uipΦ(t − ti) refers to the arrival intensity of the users who see
the post in the subsequent user groups and may take forwarding
behaviors when influenced by the cascade events until time t, and
then, we can multiply the intensity of users by p(t) to obtain the
arrival intensity of forwarding events at time t. The arrival intensity
means the probability of a forwarding event occurring in an
infinitesimal time interval.

The arrival intensity of forwarded events λ(t) includes three
factors: the influence of the post itself, the influence of forwarding
users and the response time of forwarding. The quantification and
parameter estimation of these three factors will be introduced in
detail below.

2.3 Tweet Attraction
The influence p(t) of a post comprehensively involves many
factors affecting the forwarding related to the post itself, but the
forms of parameters in p(t) are not determined in the modeling.
Instead, we model the influence p(t) in a nonparametric form,
and then, and estimate the value of p(t) according to the observed
information chain at the initial stage of the forwarding cascade.

Firstly, we consider the case that p(t) does not change with
time, that is, p(t) � p is a constant. The sample density of
forwarding cascade process based on the intensity function
λ(t) is

P{R(t) � r; t1, . . . , tr} � ΠR(t)
i�1 λ(ti) exp( − ∫t

t0

λ(τ)dτ) (4)

In order to explain the process more clearly and concisely, the
graphical expression of the model for the arrival process is shown
in Figure 2. To simplify the representation of
P{R(t) � r; t1, . . . , tr}, we roughly use variable P with
subscripts to denote the sample density at different times
during the forwarding cascade process. The yellow area shows
the initial cascading information chain, where the sample density
at each moment is marked by P. P1 indicates the density at the

TABLE 2 | Statistics of datasets.

Dataset Description Detailed Information

Dataset 1 Twitter without relationship information between
users

The dataset contains information of each post includes its ID, publishing time, the ID and number of fans of
the publisher, a series of forwarding time and the forwarding users

Dataset 2 Twitter with relationship information between
users

The dataset contains related forwarding information of 3,553 posts, and 1,731,658 relationships between
71,367 users
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initial moment. The blue area indicates the sample density PT to
be calculated of the current time T with known historical
information.

Eq. 4 also represents the likelihood function of p(t) when the
initial cascading information chain is given. Taking the derivative
of the logarithmic function for Eq. 4 and combining with Eq. 2,
the maximum likelihood estimation of p(t) is

Ue
t � ∑R(t)

i�0 ui ∫
t

ti

Φ(τ − ti)dτ (5)

p̂(t) � R(t)
Ue

t

(6)

Here, Ue
t can be understood as the sum of effective values for

the influence of forwarding users until time t. It represents the
users who have seen the post up to time t among the users who are
influenced and may take forwarding behaviors. Then, the
estimated value of the influence of the post itself p̂(t) can be
explained as the proportion of the cumulative forwarding number
of the post until time t in the users who have seen the post.

In order to consider the time-varying characteristic of p(t),
the unilateral kernel function Kt(s), s> 0 is introduced here to
smooth p(t) and weight different forwarding cascades. The
weighted estimation value of p(t) is obtained by using the
observation information chain closer to time t [28]:

p̂(t) �
∫t

t0
Kt(t − s)dR(s)

∫t

t0
Kt(t − s)dUe

s

� ∑R(t)
i�0 Kt(t − ti)∑R(t)

i�0 ui∫t

ti
Kt(t − s)Φ(s − ti)ds

(7)

where the unilateral kernel function Kt(s) is defined as
Kt(s) � max{1 − s/L, 0}, s> 0. L is the interval between the
observation point and the prediction time, that is, the size of
the observation cascade window. The data in the window is used
for the prediction of the final cascade size. Here, we heuristically
set L to 0.5, and the latter half of the information chain in the
initial stage of the forwarding cascade is used as the observation
interval. In this way, the forwards earlier than t/2 will be ignored
by the kernel function. The function gives more weights to the
events closer to the prediction time t in the window, and gradually
reduces the weights of old forwarding events, so as to make the
estimated value p̂(t) closer to the real dynamic post influence.

In social networks, users’ forwarding behaviors have a certain
delay time. After a post is published, users need a period of
response time to notice the post and decide whether to forward it.
The probability density distribution of response time is
determined by the memory kernel function Φ(t) in the
Hawkes model, which characterizes the relaxation response of
the system. In social networks, the probability density
distribution of users’ response time obeys the heavy-tailed
distribution [28], and therefore, the power-law memory kernel
function is used here, as shown below:

Φ(t) � { c, 0< t ≤ t0
c(t/t0)−(1+θ), t ≥ t0

(8)

where t0 � 300s, because it is observed that the memory kernel
function remains unchanged for the first 5 min, and then it shows
the characteristic of power-law attenuation. The deceleration rate
is obtained as θ � 0.242 by fitting, which is obtained by
experimentally fitting the distribution of the user’s forwarding
time in the training set. In addition, we notice the truth that the
probability density function is integrated as one on the whole
integration interval [0,+∞), and then, we obtain the parameter
c � 6.27 × 10−4.

2.4 User Influence Modeling
We measure the influence of the ith forwarding user ui from the
perspective of network topology. Figure 3 shows a simple
network with 23 nodes and 37 edges. Obviously, node 1 has
the largest number of nearest neighbors, but the posts published
by node one do not necessarily generate a faster and wider
cascade, because the degrees of its neighbor nodes are very
small. In contrast, although node 23 does not have more
nearest neighbors, the statuses of its neighbors may make it
have more influence.

Combined with two indicators of node influence, i.e., semi-
local centrality [33] and local clustering coefficients, we expand
the measurement of forwarding user influence by using more
information of local network topology. The calculation method of
semi-local centrality is as follows:

FIGURE 2 |Graphical representation of the model for the arrival process.

FIGURE 3 | Illustration of user influence analysis.
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Q(w) � ∑
u∈N(w)

|Γ(u)|,
LC(i) � ∑

w∈N(i)Q(w)
(9)

Where N(w) represents the set of nearest neighbor nodes
(including in-degree and out-degree of node w), Γ(u)
represents the set of nearest neighbor and next nearest
neighbor nodes of node u (i.e., the adjacent nodes of the
nearest neighbor nodes), and LC(i) is the semi-local
centrality size of node i. This measurement method
expands the range of involved neighbor nodes to within
the fourth order neighbors, which is a trade-off between
low correlation centrality measure and high time-
consuming global measure. Therefore, it can not only
improve the calculation accuracy, but also ensures low
time complexity. However, this method ignores the
influence of the connectivity between nodes in the local
topology which reflects the clustering degree of nodes in
the network. Therefore, considering the connectivity
between neighbor nodes of a node can improve the
measurement accuracy of node influence. The closer the
relationships between the neighbors of a node are, the
higher the degree of mutual influence will be, and the
greater the influence of the node will be. The clustering
coefficient is an indicator which measures the degree of
connectivity between nodes. The local clustering coefficient
reflects the degree of interactions between neighbor nodes of
the current node. The formula is as follows:

ci �
∑jeij∑k,k≠jeikejk

|N(i)|(|N(i)| − 1)/2 (10)

Where eij indicates whether nodes j and k are connected, and
|N(i)| is the number of nearest neighbor nodes. Considering the
two indicators of semi-local centrality and local clustering
coefficients, the influence of user i is quantified as

ui � ∑
w∈N(i)

⎛⎝β p |Γ(w)| + (1 − β)p ∑
u∈Γ(w)

cu⎞⎠
� β *∑

w∈N(i)|Γ(w)| + (1 − β)p∑
w∈N(i)∑u∈Γ(w)cu

(11)

Where β (0≤ β≤ 1) is the balance parameter for user influence.
For each nearest neighbor node w of node i, |Γ(w)| is the sum
of the number of w’s nearest neighbor and next nearest
neighbor nodes. For each node u ∈ Γ(w), cu is the local
clustering coefficient of node u. The first part of Eq. 11
considers the number of nodes whose distances from the
nearest neighbor node w of node i are within two steps,
and the second part considers the connectivity between
neighbor nodes of node u in Γ(w). In other words, user
influence represented by Eq. 11 considers not only the
local influence of the nearest neighbor nodes, but also the
degree of interactions between nodes in the local network. In
addition, we consider both in-degrees and out-degrees of the
nearest neighbor nodes, and this measurement makes up for
the deficiency of considering only node in-degrees in a sparse
directed network.

2.5 Predicting an Information Cascade
After the modeling and parameter estimation of the arrival
intensity for post’s forwarding events, this section will discuss
how to predict the final number of forwards, that is, the final size
of an information cascade. We define Gk as the total number of
forwards formed by the descendants of the k-generation
forwarding users, i.e., the users who may take forwarding
behaviors driven by the influence of the k-generation
forwarding users. If the cumulative forwarding users until time
t are treated as the first generation with the count R(t), then G1

represents the total number of forwards in the next generation
affected by R(t) users. Based on this scenario, the information
cascade chain after time t is obtained as {G1, G2, . . .Gk}.

The final scale of the information cascade to be predicted is
expressed as

R̂(∞ ) � R(t) +∑∞

k�1Gk (12)
We assume that the own influence of the post remains

unchanged after the prediction time t is p(t), and the number
of users that may take forwarding behaviors caused by user
influence is expected to be up. Therefore, up indicates the
expected value of the forwarding user influence, which can be
obtained from the dataset. Then, the branching factor of the
cascade process is defined as ρ � pup. The branching factor
represents the expected value of descendants’ forwarding
events, so we have Gk � ρGk−1. When ρ< 1, i.e., p< 1/up, the
final scale of the information cascade is always bounded, and the
social system enters a subcritical state. The forwarding process
will gradually slow down and finally stop, and the final
forwarding number can be predicted. However, when ρ> 1,
the final scale of the information cascade is unbounded, and
the system state is called a supercritical state. The forwarding
process never stops, and the final forwarding number cannot be
predicted. Obviously, this outcome is usually not in line with the
actual situation. Therefore, when ρ< 1,∑∞

k�1Gk can be regarded as
the summation of geometric series, that is

∑∞

k�1Gk � G1

1 − ρ
(13)

Where G1 represents the users who have seen the post and may
forward it after time t. IfUt represents the sum of the influence of
forwarding users up to time t, we obtain

G1 � p(Ut − Ue
t ) (14)

Based on Eq. 14, the predicted final scale of the information
cascade can be obtained, [28] that is, the final forwarding
number is

R̂∞(t) � R(t) +∑∞

k�1Gk � R(t) + p(Ut − Ue
t )

1 − pup

(15)

In order to eliminate the inaccurate assumption that p(t)
remains unchanged after time t, a distinct correction coefficient
μt(0< μt < 1) is introduced for each post to adjust the predicted
value of the final forwarding number. μt reflects the reduced
influence of a post due to obsolescence, and we use a machine
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learning method to obtain dynamic μt. The predicted value of the
final forwarding cascade size is

R̂∞(t) � R(t) + μt
p̂(t)p(Ut − Ue

t )
1 − p̂(t)pup

(16)

Eq. 16 is the final prediction model of an information cascade.
We use the regression algorithm of a decision tree to solve and
quantify μt. The selection process of the feature set is as follows:

f 1 � R(t),
f 2 � p̂(t),
f 3 � Ut ,
f 4 � Ue

t .

(17)

After selecting the feature set, we use the data in the training
set to train the regression tree. In the test set, we input the feature
set {f1, f2, f3, f4} into the trained regression tree model so as to
obtain the corresponding correction coefficient μt. The whole
algorithm of information cascade prediction is shown in

Algorithm 1. Final scale prediction of an information cascade

3 EXPERIMENT RESULTS

We use two real-world datasets in the experiments. The first
dataset was collected from the Twitter platform and disclosed by
Zhao et al. [28] in their research on the prediction of tweet
forwarding. This dataset contains all the posts published on
Twitter and their forwarding information within 1 month
from 7 October 2011. The information of each post includes
its ID, publishing time, the ID and number of fans of the
publisher, as well as a series of forwarding time and the
forwarding users. However, this dataset does not contain the
structure information of the forwarding network, that is, there is
no relationship information between users. Therefore, we
introduce only the correction coefficient μt on dataset one to
advance the prediction model. In order to improve the efficiency,
we select the posts with the forwarding numbers greater than 500
in the dataset for cascade prediction. We split the posts published
in the first 8 days as the training set, and the test set contains the
posts published in the next 7 days. The forwarding number
formed in the remaining days is regarded as the final size of

an information cascade. The second dataset was collected from
Twitter available on the website1, which not only contains related
forwarding information of 3,553 posts, but also includes
1,731,658 relationships between 71,367 users. The purpose of
introducing this dataset is to expand the measurement method of
user influence in the original Hawkes process from the
perspective of network topology. The descriptions of the
datasets are shown in Table 2. In the experiments, we
randomly select 1,000 posts as the research subset in which
forwarding cascades of 723 posts are used as the training set.

We use the absolute percentage error (APE) and Kendall rank
correlation coefficient as the evaluation metrics of prediction
performance. APE is calculated as follows:

APE �
∣∣∣∣R̂∞(t) − R(∞ )∣∣∣∣

R(∞ ) (18)

Where R̂∞(t) is the predicted value of the cascade size, and R(∞ )
is the real value. Obviously, smaller values of APE indicate higher
prediction accuracy. The Kendall rank correlation is usually used
to count the correlation of two attributes for n objects, which is
defined as follows

k � (4P/np(n − 1)) − 1, − 1< k < 1 (19)
Where P represents the number of concordant pairs of objects
between the predicted values and real values. In other words, we
suppose that there are n objects, each of which has two attributes,
corresponding to the predicted value and the real value,
respectively. Then, we sort the n objects according to the
predicted values and real values, respectively. If both the ranks
of R̂∞(t) and R(∞ ) for object i are larger than those for object j,
the pair of i and j are called a concordant pair. Then, P counts the
number of concordant pairs of objects [34]. Obviously, the larger
the value of k, the higher the matching degree between the
predicted values and real values, so that the better prediction
performance is achieved.

Here, we use the Hawkes model proposed by Zhao et al. [28] as
the benchmark for experimental evaluation. The original Hawkes
model uses the same correction coefficient for all posts, and the
measurement of user influence only considers the number of
users’ fans, so we address the role of our method of calculating
user influence for the prediction performance. Note that the two
datasets do not play the same role. We distinguish between two
datasets to evaluate the impact of different modules on prediction
performance. Dataset one does not have user relationships, so we
validate on this dataset the effect on prediction performance of
having different correction factors for different posts that we
learned through machine learning without calculating user
influence. Dataset 2 has user relationships, so influence can be
calculated. We mainly extend the user influence on dataset two
and verify the impact of this module on the prediction
performance. For each post, 300s, 600s, 900s, 1,200s and
1,800s are selected as the prediction time to obtain the final
sizes of forwarding cascades.

1https://github.com/ShinyZC/dataset.
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The comparison results on dataset one are shown in Figure 4
and Figure 5. In both figures, the curve ‘Hawkes’ represents the
original Hawkes model, and the curve ‘Hawkesandfeature’
represents the model by introducing the idea of feature
learning and using the regression tree algorithm to improve
only correction coefficients. Figure 4A shows the evolutionary
trend of the median of APE as a function of the prediction time t,
and Figure 4B shows the evolutionary trend of the mean of APE
with the prediction time t. As can be seen from Figure 4,
different correction coefficients μt varying with time are
generated for each post through the feature set of the initial
cascade process, and the performance of Hawkesandfeature is
improved both for the median or mean value of APE compared
with the original model. Specifically, at time 300s, 600s, 900s,
1,200s and 1,800s, the improvement in median APE compared to
the Hawkes process is 36.28%, 46.38%, 46.58%, 44.77% and
45.07%, respectively in Figure 4A. For the mean APE, the best

improved performance reaches 36.70% in time 1800s compared
to the Hawkes process Figure 4B. The value of APE decreases
with the increase of prediction time t, indicating that when more
historical cascade information is used, the performance of the
prediction method will be improved.

Figure 5 shows the evolutionary trend of Kendall rank
correlation for the above two models with prediction time t. It
can be seen that the model Hawkesandfeature also performs
better than the original process model in the correlation between
the predicted values and real values, and the value of Kendall rank
correlation also increases with time, indicating that the
correlation between the predicted values and real values is also
improved due to the use of more historical cascade information.

In the experiments on dataset 2, the measurement of user
influence is expanded and the influence balance factor is set at
β � 0.7. The improved correction coefficients are also included.
The relevant experimental results are shown in Figure 6. The
curve ‘Hawkesandinfluence’ represents the model only expanding
user influence measurement on the basis of the original process
model, and the curve ‘Hawkesandfeature&influence’ represents
our cascade prediction model which comprehensively improves
the correction coefficients and expands user influence
measurement. Figure 6A shows the evolutionary trend of the
median of APE with the prediction time t, and Figure 6B shows
that of the mean of APE. It can be seen that although the model
Hawkes and influence which only expands user influence
measurement has a certain performance improvement over the
original process model, it is not as effective as the model
Hawkesandfeature which only improves the correction
coefficients. Therefore, the prediction method based on feature
learning has more advantages in prediction accuracy than the
method based on a generative model. Combining the
improvement of correction coefficients and user influence, the
final model Hawkesandfeature&influence has the smallest APE
value, and its prediction performance is the best. For the median
APE, the performance of final model improves 71.60% than
Hawkes at time 300s in Figure 6A. For the mean APE, the
performance improves 78.46% at time 300s in Figure 6B. With

FIGURE 4 | Comparison of APE of two models on dataset 1. (A) Evolutionary trend of the median APE with prediction time t, (B) Evolutionary trend of mean APE
with prediction time t.

FIGURE 5 | Comparison of Kendall rank correlation for two models on
dataset 1.
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the increase of the prediction time, the median and mean of APE
show an overall downward trend, which once again reveals the
fact that using more historical cascade information can improve
the prediction accuracy. Meanwhile, from Figure 4 and Figure 6,
the decline rate of APE gradually slows down with the passage of
the prediction time, indicating that the amount of historical
information available at the initial stage of the forwarding
cascade increases rapidly, and then the growth rate of cascade
information slows down. This phenomenon to some extent shows
the rapid dissemination in social networks and the timeliness of
posts, that is, posts are easier to obtain more forwards not long
after publication, and with the time elapsed, the propagation of
the posts eventually becomes stable.

Figure 7 shows the evolution trend of Kendall rank
correlation of the above four models with prediction time t.

It can be seen from the figure that our model represented by
Hawkesandfeature&influence has larger Kendall rank
correlation, indicating that the correlation between
predicted values and real values is the highest, and the
prediction performance of the model is the best. The value
of Kendall rank correlation increases with the passage of
prediction time, and also reflect the fact that the prediction
accuracy is improved with the increase of historical cascade
information.

We also notice that the performance of the models on the
two datasets is slightly different. For instance, the mean APE
of hawkesandfeature and Kendall rank correlation in dataset
two are higher than it in dataset 1, which could be caused by
the differences of the two networks. Dataset one contains a
longer timeline of users’ actions, which leads to the better
results.

Above all, through the experiments on real-world datasets, it
can be concluded that our proposed method can effectively
predict the final size of an information cascade, and has
obvious performance improvement compared with the current
process model.

4 CONCLUSION

Information cascades reflect a kind of user clustering behaviors,
and the prediction of them has important theoretical significance
and practical applications. In this paper, the prediction method
based on model generation was proposed to solve the problem of
cascade prediction. By analyzing the factors affecting information
diffusion, we studied the growth mechanism of information
cascades. On the basis of the Hawkes process, we modeled the
arrival intensity of post forwarding process in combination with
post attraction, forwarding user influence and users’ response
time. We combined semi-local centrality with local clustering
coefficients to measure the influence of forwarding users, and
used the regression tree algorithm to improve the correction
coefficients. Finally, the prediction model of the final number of

FIGURE 6 | Comparison of APE of different models on dataset 2. (A) Evolutionary trend of the median APE with prediction time t, (B) Evolutionary trend of mean
APE with prediction time t.

FIGURE 7 | Comparison of Kendall rank correlation for different models
on dataset 2.
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forwards was obtained. The performance evaluation of the
proposed method was carried out on real-world datasets, and
results demonstrated that our method improves the prediction
accuracy compared with representative models, indicating our
method effectively realizes the prediction of information
cascades.

In future, we will use deep learning methods to exploit
forwarding paths and extract more latent features of
information cascades, and incorporate deep learning with model
generation methods. In addition, we will study the effective
calculation methods of user influence in the propagation
process, and investigate their roles in popularity prediction.
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