
Complex network measures
reveal optimal targets for deep
brain stimulation and identify
clusters of collective brain
dynamics

Konstantinos Spiliotis1, Konstantin Butenko2,3,
Ursula van Rienen2,4,5, Jens Starke1* and Rüdiger Köhling6

1Institute of Mathematics, University of Rostock, Rostock, Germany, 2Institute of General Electrical
Engineering, University of Rostock, Rostock, Germany, 3Movement Disorders and Neuromodulation
Unit, Department for Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany, 4Department
Life, Light and Matter, University of Rostock, Rostock, Germany, 5Department of Ageing of Individuals
and Society, University of Rostock, Rostock, Germany, 6Oscar-Langendorff-Institute of Physiology,
Rostock University Medical Center, Rostock, Germany

An important question in computational neuroscience is how to improve the

efficacy of deep brain stimulation by extracting information from the underlying

connectivity structure. Recent studies also highlight the relation of structural

and functional connectivity in disorders such as Parkinson’s disease. Exploiting

the structural properties of the network, we identify nodes of strong influence,

which are potential targets for Deep Brain Stimulation (DBS). Simulating the

volume of the tissue activated, we confirm that the proposed targets are

reported as optimal targets (sweet spots) to be beneficial for the

improvement of motor symptoms. Furthermore, based on a modularity

algorithm, network communities are detected as set of nodes with high-

interconnectivity. This allows to localise the neural activity, directly from the

underlying structural topology. For this purpose, we build a large scale

computational model that consists of the following elements of the basal

ganglia network: subthalamic nucleus (STN), globus pallidus (external and

internal parts) (GPe-GPi), extended with the striatum, thalamus and motor

cortex (MC) areas, integrating connectivity from multimodal imaging data.

We analyse the network dynamics under Healthy, Parkinsonian and DBS

conditions with the aim to improve DBS treatment. The dynamics of the

communities define a new functional partition (or segregation) of the brain,

characterising Healthy, Parkinsonian and DBS treatment conditions.
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1 Introduction

Movement disorders like Parkinson’s disease and dystonia

are characterised by abnormal functioning of the whole basal

ganglia (BG) - thalamocortical network. In Parkinson’s disease,

one of the main characteristics of the altered BG network

behaviour is a synchronised abnormal β − activity (12–35 Hz)

Kühn et al. [1]; Neumann et al. [2]. This enhanced BG rhythm

also affects thalamic activity by sending strong inhibitory signals

via GPi (internal segment of the globus pallidus). The

hyperpolarisation of thalamic neurons due to increased

inhibitory BG output increases the burst discharges Kim et al.

[3]; Galvan et al. [4], which in turn triggers motor dysfunction

through the thalamocortical pathway Kim et al. [3].

Deep brain stimulation (DBS) of the BG was shown to be an

efficient treatment for movement disorders Deuschl et al. [5];

Vidailhet et al. [6], but its therapeutic mechanism is still not fully

understood. The application of DBS leads to firing pattern

alterations, and in particular, to disruption of

hypersynchronised β-band oscillations Kühn et al. [1]; Kim

et al. [3]; Crompe et al. [7]. Indeed, recordings in animal

models Xu et al. [8]; Kim et al. [3]; Crompe et al. [7] and

observations from computational network models Rubin and

Terman [9]; Popovych and Tass [10]; So et al. [11]; Galvan and

Wichmann [12] suggest that DBS in the subthalamic nucleus

(STN) results in more periodic and regular firing at higher

frequencies in the BG-thalamic network.

Two important questions arise concerning the structural

connectivity and DBS effectiveness. The first question is how

to determine those electrode positions which are the most

effective for the activation of neural pathways to improve DBS

outcome. The second question which naturally arises, is which

differences in neural activation patterns will emerge within the

brain’s structural network when simulating different conditions

(i.e., Healthy, Parkinsonian and DBS). Due to the strongly

heterogeneous nature of the connection topology and the

stochastic and nonlinear large scale interactions of the

underlying units/neurons, the emergent macroscopic behavior

usually is far from trivial to predict Spiliotis and Siettos [13];

Siettos and Starke [14]; Deco et al. [15,16]; Bassett and Bullmore

[17]; Bullmore and Sporns [18]; Iliopoulos and Papasotiriou [19].

Self-organisation, sustained oscillations, travelling waves,

multiplicity of stationary states and spatio-temporal chaos are

paradigms of the rich nonlinear behaviour at the coarse-grained

systems level Spiliotis and Siettos [13]; Siettos and Starke [14];

Deco et al. [15,16]; De Santos-Sierra et al. [20]; Crowell et al. [21];

Spiliotis et al. [22], indicating thus that a precise

structure–function relation remains a major open problem

Deco et al. [16].

As the primary aim of this paper, we identify positions of

nodes of high functional impact using network analysis. We test

then the hypothesis that such high-connectivity nodes are pivotal

in shaping network activity and are highly effective stimulation

targets for restoring the normal network function. Notably, the

electric field-based approximation of the volume of tissue

activated (VTA) Butson et al. [23]; Butenko et al. [24],

computed at these nodes for a monopolar DBS, overlapped

with target areas previously shown to be effective against

akinetic symptoms of Parkinson’s disease Dembek et al. [25].

The critical high-connectivity nodes were identified

according to three different, but interrelated measures:

1) Using the measure of “clustering coefficient,” nodes are

identified which form triplet interactions. This triangular

interconnection allows for circular information flow and

information feedback. This triplet organisation constitutes

the complex level of connectivity, and is speculated to play a

role in e.g. effective information distribution but also complex

oscillatory network rhythm formation.

2) Using the measure of “betweenness centrality,” high-

connectivity nodes are identified (also known as hubs and

defined by their so-called nodal efficiency van Hartevelt et al.

[26]). This nodal efficiency is related to the degree of influence

of nodes in the network and can be interpreted as the amount

of flow that passes through these nodes. Such hubs act as

central crossroads, enhancing the ability of parallel

information transfer and the functional integration in

brain networksvan Hartevelt et al. [26].

3) Using the measure of “eigencentrality” (or eigenvector

centrality), nodes are identified which specifically connect

with other nodes of high centrality. In this way, targeting such

nodes will likely influence a large population of other nodes.

In many cases, centrality measures correlate strongly Li et al.

[27]; nodes with extreme values of “betweenness centrality”

also show high “eigencentrality” values.

The second aim of this study was to explore the relationship

between anatomical structure and neural activity (i.e., functional

connectivity) using modified Hodgkin-Huxley models Terman

et al. [28]; Rubin and Terman [9]; So et al. [11]; Spiliotis et al.

[22]. In the current study, we address this question by combining

the community structures (i.e., sets of high-connectivity nodes as

identified using modularity measures, Newman [29]) and a large

scale biophysical model which produces virtual neural activity.

We study three different conditions: Healthy, Parkinsonian state

and Parkinsonian conditions with DBS. In the latter case, we

extend the previous computational model Spiliotis et al. [22] in

order to simulate specific spatial positions of DBS electrodes

Mandali et al. [30].

Predicting DBS outcome using neural networks is not novel

Rubin and Terman [9]; Popovych and Tass [10]; Spiliotis et al.

[22]; Fleming et al. [31], in the cited studies, however, smaller

networks were studied without taking into account connectivity

structure and VTA. In the current study, we follow a different

approach: initially, we integrate the high dimensional nonlinear

system, which produces spatiotemporal patterns consistent with
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either Healthy (normal) or Parkinsonian states. Then we average

the activity over the different community structures that have

been previously identified using modularity network measures.

The second main result of the study shows that in all areas

(the detected communities), including neocortical ones,

Parkinsonian conditions alter power spectrogams, but mainly

subcortical structures, with e.g., slowing of activity in the

thalamus and faster activity in pathways connecting pallido-

thalamic and subthalamic-pallidal nodes. Under DBS, in turn,

the simulation reveals that this stimulation at high-connectivity

nodes is able to restore thalamic activity, and partly also cortical

one, while on the one hand, hyperdirect-pathway associated

nodes remain largely unaffected, and on the other, structures

in close vicinity of the electrode mainly follow the stimulation.

2 Network connectivity from data
sources

To describe the structural connectivity of the network, data

from different studies on human brain anatomy were utilised.

2.1 Data sources

For the current model, published data on anatomical and fiber

tract positions were used from different sources: The basal ganglia

nuclei and their substructures were taken from the DISTAL Atlas

Ewert et al. [32]; Chakravarty et al. [33]. TheMelbourne Subcortex

Atlas Tian et al. [34] was used to define substructures of the

thalamus, while the relevant cortical regions were selected using

the Brainnetome Atlas parcellation Fan et al. [35]. Fiber tracts

classified to pathways in the vicinity of the STN were taken from

Petersen et al. [36], and projections of the ventral anterior nucleus

to motor cortical regions, required to complete the BG-thalamo-

cortical network, were extracted from the structural group

connectome of 90 PPMI Parkinsons’s disease-patients GQI

Marek et al. [37], post-processed in Ewert et al. [32]. All data

were represented in MNI (Montreal Neurological Institute) space.

2.2 Structural connectivity of the basal
ganglia-thalamo-cortical network

To investigate DBS network effects in Parkinsons’s disease, the

classic circuit model of the BG-thalamo-cortical network was

employed Milardi et al. [38] (Figure 1A). It consists of three

inputs from motor cortical regions: the direct pathway that

involves the striatum and continues as a GABAergic projection

to the GPi and SNr (substantia nigra pars reticulata); the indirect

pathway that also involves the striatum, but has GABAergic

projections to the GPe (external segment of the globus

pallidus), which in turn inhibits the STN, GPi and SNr. In

addition to these pathways, there is the hyperdirect pathway

through which the STN receives a direct excitatory input from

the cortical areas. The glutamatergic efferents of the STN innervate

the GPe, GPi and SNr. GABAergic projections of the two latter

nuclei to the ventral anterior (VA) and ventral lateral (VL) regions

of the thalamus represent the output of the BG circuit to the

thalamo-cortical network Bosch-Bouju et al. [39].

The interstructural connectivity of the network was

simulated using data based on the pathway atlas of human

motor network obtained from multimodal imaging, including

diffusion, histological and structural MRI data, fused to a virtual

3D rendering Petersen et al. [36] or classified based on their

position relative to the involved structures (thalamo-cortical

projections), see Figure 1. Note that the grouping of fibers

leads to an emergence of network nodes. In the current study,

the simulated network (Figure 1B) does not include the

substantia nigra (SN). The reason for this omission is that the

dopaminergic projections of the SNc (substantia nigra pars

compacta) are not myelinated, and hence less excitable (by

approx. two orders of magnitude) by extracellular fields

Tarnaud et al. [40], yielding a very low chance that DBS

actually would affect them directly. Furthermore, to ensure

homogeneity of the BG pathways, only those present in

Petersen et al. [36] were employed, which did not include the

striatonigral and the nigrothalamic projections. For the same

reason, only the VA neurons were simulated, as they

predominantly receive the pallidal output, unlike the VL

nucleus that is mostly innervated by the SNr afferents

Lanciego et al. [41]. Note that although the projections from

the VL to the motor cortex exist, we excluded them to avoid

modelling of intrinsic dynamics between subregions of the

thalamus.

3 Modelling structural basal ganglia-
thalamo-cortical neuronal network
using complex network theory and
pathway classification

Structural brain connectivity refers to the set of

anatomical links (or axonal tracts) which join different

brain regions. The connectivity can be described and

simplified employing elements of complex network theory

Bullmore and Sporns [18]; Stam and Reijneveld [42], where

the neural elements at the beginning and the end of a tract

serve as nodes of the network, while the anatomical tract is

described as edge of the network. The topological structure of

the network plays an important role in the emergent neural

activity and brain functionality, however it is not well

understood how the structure or topology shapes the

dynamics Deco et al. [15,43]. The knowledge of the

network structural properties is important since it allows

to build realistic computational models and to shed light
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on mechanisms underlying brain functionality or dis-

functionality (i.e., movement disorders), and to predict the

neural dynamics on multiple scales Honey et al. [44,45].

Using the structural connectivity of Section 2, we build a

directed network. The internal connectivity structure within

the areas STN, GPe, GPi, thalamus and motor cortex areas

had to be defined using complex network theory Stam and

Reijneveld [42]; Watts and Strogatz [46].

3.1 Construction of complex network
using the structural connectivity

The resulting structure of Section 2.2 is used to obtain the

connectivity network in the form G = (V, E), where V is the set

of nodes and E represents the set of edges. The nodes of the

structural network are defined as points in three-dimensional

space and correspond to the starting and ending point of a

fiber tract. The resolution is set at 1mm3, meaning that if two

(or more) ending (or starting) points lying within the same

cube of 1mm3, they are considered as one node. The

connectivity information is included in the adjacency (or

connectivity) matrix A: if there is a fiber tract starting at

position x = (x1, y1, z1) and ending at y = (x2, y2, z2) then A(x,

y) = 1, otherwise A(x, y) = 0. The resulting connectivity

constitutes a graph G = (V, E), where the V is the set of

nodes and E is the set of edges or tracts. At the given resolution

of 1mm3, the network contains 134 STN nodes, 244 and

246 GPe and GPi nodes, respectively, 833 thalamic nodes

and 2070 cortical nodes.

FIGURE 1
Basal ganglia-thalamo-cortical circuits. (A): Circuit model comprising all main connections. MC/PMC—motor and premotor cortical regions,
respectively. For explanations, please see the main text. (B): Simulated reduced circuit model with highlighted (bold arrows) connections possibly
affected by STN-DBS. The synaptic connection between Striatum and Globus Pallidus pars externa/interna (GPe and GPi) weremodelled by different
constant currents. (C): Structural connectivity of the simulated network is based on the pathway atlas of human motor network constructed
from multimodal data including diffusion, histological and structural MRI data, fused to a virtual 3D rendering Petersen et al. [36]. (C1): Projections
fromGPi to thalamus (VA nucleus) are shown in red, connections between subthalamic nucleus (STN) and GPe are shown in green, projections from
STN to GPi are shown in violet. (C2): Connections between motor cortex (MC/PMC) and the thalamus projections were obtained by classifying fiber
tracts from Marek et al. [37] and are shown in orange. Projections from motor cortex to STN (hyperdirect pathway) are shown in blue. Nuclei are
shown in the following colours: GPe in light grey, GPi in dark grey, STN in dark orange, thalamus (VA nucleus) in yellow andmotor cortex (M1) in light
grey.
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3.2 Intrastructural small-world network
connectivity

The pathway classification analysis in Section 2.2 does not

contain information about the internal connectivity of each

region (i.e., how the nodes are connected within a region).

We model connectivity within each area using small-world

structures Watts and Strogatz [46]; Bassett and Bullmore [47];

Bullmore and Sporns [18]; Stam and Reijneveld [42]; Spiliotis

and Siettos [13], thus increasing overall network connectivity

beyond the interstructural projections. In such small-world

complex networks Mark [48]; Watts and Strogatz [46], each

node interacts with its k nearest neighbours; additionally, a few

randomly chosen remote connections (with a small probability p)

within the area are also formed Watts and Strogatz [46]. Small-

world structures are commonly used in computational

neuroscience Netoff et al. [49]; Berman et al. [50]; She et al.

[51]; Bassett and Bullmore [17,47]; Fang et al. [52]; De Santos-

Sierra et al. [20] as a result of two main characteristics which they

show: highly clustered property together with short path length

Bullmore and Sporns [18]; Watts and Strogatz [46]; Newman

[29], enhancing in this way the signal or rhythm propagation

within the network and the synchronizability in the network.

The GPe/GPi, thalamus and MC layers were modelled as

separate small-world networks. Each node increases the initial

number of connections (or the degree of the node) by k = 20

degrees on average. The local internal connections lay in a

distance less than 5 mm (these are the local neighbours);

however, the small-world topology Watts and Strogatz [46]

allows remote connections (in a distance greater than 5 mm)

with a small probability p = 0.05. The choices of k and p in this

model are phenomenologically extracted. These values turn out

to be successful i.e. the values k and p are chosen such that the

network will give high values of clustering coefficient compared

to a random network (where the clustering coefficient is very low

and simultaneously a low value of the characteristic path length,

see alsoWatts and Strogatz [46]. Similar values have been used in

other studies and with the chosen values, the connectivity

structure resembles real-neuronal connectivity as it is shown

for example, in the work of De Santos-Sierra et al. [20] and Netoff

et al. [49].

For the STN, we chose a modified small world approach

which results from the experimental findings of Gouty-Colomer

et al. [53]; Ammari et al. [54]. The STN area is characterised by

sparse connectivity, where local and remote connections coexist.

Specifically, only 20% of the STN neurons develop connections

(collaterals) within the other STN neurons Gouty-Colomer et al.

[53]. Almost 80% of these connections are local within a distance

of 200–400 μ m radius, and the other 20% are contacts which

occur farther away, i.e., > 500μ m. In this sense, the 20% of

neurons, which form STN connections, have both local and

remote connections analogous to the small-world property

Spiliotis et al. [22]. Similar to the previous connectivity, in our

model, only the 20% of STN neurons show an average of

25 connections each, while few of these are randomly chosen

remote connections Spiliotis et al. [22]; Gouty-Colomer

et al. [53]).

3.3 Network properties: Degree
distributions, path distances and
centralities

Network measures such as a quantification of homogeneity

are used to identify structural properties of the underlying

neuronal network. These measures allow to categorise

structural elements according to connectivity properties

(i.e., profiles), segregating them into discrete entities. The

main categories are clustering and distancing measures,

centralities and communities detection Bullmore and Sporns

[18]; Stam and Reijneveld [42]. Another subdivision of the

network measures is the local and global description. The

local description refers to the individual property of the i−th

node, while the ensemble over the whole set of nodes in the

network defines the global description (or distribution) for the

network. The statistical distribution of a network property in this

paper is characterised by its mean (the first-order statistical

measure).

3.3.1 Degree distribution
The degree of a node i refers to the number of edges

connected to it Bullmore and Sporns [18]. In directed

networks, a node has both an in-degree and out-degree, which

are the numbers of in-coming and out-going edges, respectively.

A high degree of connectivity (increased numbers of links) of the

i−th node defines the importance of a node in the network. The

degree distribution P(k) defines the probability of a randomly

selected node to have specific degree k. Averaging over all the

nodes of the network, we obtain the mean degree, the first

characteristic of the connectivity. The degree distribution after

pathway classification analysis (Section 2.1), as long as internal

connectivity is not considered, follows a power law of the form.

P K( ) � ck−γ (1)
where the exponent γ was calculated as γ ≈ 2.5.

The main characteristic of a power-law degree distribution is

that only a few high-connectivity nodes acting as central nodes or

hubs (nodes with a high number of connections) exist, while the

majority of nodes show little connectivity. The high-connectivity

nodes or hubs are responsible for an effective and fast spreading

of information or signals in the network. Figure 2A depicts the

degree distribution of P(k) in the network, while Figure 2B shows

the degree distribution of the network including internal

connections. In the latter case, the network thus combines

both power law properties (describing connections among

nuclei) and small world characteristics (describing local
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connectivity within nuclei). This generates an almost symmetric

distribution of P(k).

3.3.2 Paths lengths, efficacy, and clustering
coefficient

In graph theory, a path is a sequence of successive steps

between two nodes, assuming that it is never intersecting a

single node more than once. The minimum distance (i.e., the

minimum steps in case of binary networks) between two

nodes defines the shortest path length. Averaging over the

set of all shortest paths, we obtain the mean path length of the

network:

�m � ∑i,jdi→j

N N − 1( ), (2)

The mean path length shows the ability of the network to spread

information between any two nodes. A low mean shortest path

length �m signifies that any two randomly chosen nodes can

interchange information via just very few intermediate nodes (in

our case ≈ 4 nodes).

Another similar measure which is applied in the case where

there is no connecting path between two nodes (i.e., di→j =∞), is

the global efficiency �G:

�G �
∑i,j

1
di→j

N N − 1( ). (3)

This measure avoids calculating with infinity, since if there is no

pathway between two nodes i.e., di→j =∞0 1/di→j = 0. The �m is

comparable with inverse �G, and according to the Cauchy

inequality for the arithmetic and harmonic mean, we obtain

�m≥
1
�G
. (4)

For the augmented network, the mean path length was computed

to be �m � 4.435, while the inverse global efficacy resulted in

1/ �G � 3.91. Figure 2C shows the distribution of distances

between any two nodes (i.e., di→j).

Beyond the information flow between any two nodes,

information flow among three nodes in a circular path, with

the first node communicating with the second, and the second

with the third, but the third communicating back to the first,

another quality of information is made possible, i.e. feedback

information. This would enable a circuitry to act in control loops,

allowing for rhythm generation. To quantify this property, we

introduce the clustering coefficient, which measures the local

property of a node i to form triangle motifs. The clustering

coefficient of a node i is defined as ratio:

c i( ) � ∑jkaijajkaki

ki ki − 1( ) . (5)

The higher the number of triangles (that exist) with respect to

the i − th node, the higher the clustering coefficient. Figure 2D

depicts the distribution of clustering coefficients. The mean

clustering coefficient is computed as �c � 0.1. The distribution

shows the existence of few nodes with high values of c.

3.3.3 Betweenness centrality
Besides the ability to generate feedback-loops, information

flow within a network is governed by the degree of

interconnectivity between nodes. Centrality measures are used

to identify such high-interconnectivity nodes in the network. The

significance of a node is related to the degree of influence which it

exerts in the network. For example, the influence can be

interpreted as the amount of flow which passes from this

node. Important nodes act as central crossroad or hubs in the

network.

“Betweenness centrality” measures the amount of influence

which a node has with respect to the total information flow in the

network (serving as a bridge between subgraphs, i.e., sets of nodes

of the network). The “betweenness centrality” (Bc)

mathematically is defined as the fraction of all shortest paths

FIGURE 2
Statistical properties of the connectivity network. (A) The
degree distribution (depicted in logarithmic scale) follows a power
law as Eq. 1 with critical exponent γ = 2.54. (B) The augmented
network, using a small world network for the internal
connectivity. The resulting distribution is a combination of power
laws, meaning that the central nodes still exist and act as hubs.
Furthermore, each neuron is connected on average with the
20 nearest neighbours in a radius of 5 mm. (C) The distribution of
path lengths in the network. The mean value was calculated as
ml = 4.43. (D) The distribution of clustering coefficients. There are
few nodes with a high value of clustering coefficient.
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in the network that pass through a given node, specifically the

“betweenness centrality” of a node i is defined as:

Bc i( ) � ∑
j≠i≠k

gjk i( )( )/gjk, (6)

where gjk(i) is the number of shortest paths from j to k passing

from node i, and gjk is the number of shortest paths between

nodes j and k. Bridging nodes that connect disparate parts of the

network often have a high ‘betweenness centrality’. Higher values

of Bc(i) indicate that the node acts as a central node influencing

most of the other nodes in the network. The importance of these

hubs is also highlighted pathophysiologically in the sense that

therapeutic intervention in, e.g., Parkinson’s disease alters both

the structural and functional connectivity profile in patients (a

study which, however, obviously does not have any data on the

Healthy state of the network as a basis of comparisons) van den

Heuvel and Sporns [55].

Figure 3 depicts the distribution of Bc of the network. Indeed,

the large majority of nodes shows very low centrality. However,

there are few nodes with high Bc. In Figure 3B, black filled circles

depict the spatial localisation of these central nodes in the

network. As can be seen in this figure, these high-centrality

nodes can be found in the STN, GPe and GPi, as well as the

thalamus, but also in the motor cortex. We propose these nodes

as very promising targets for DBS treatment. The coordinates of

these hubs in MNI space, and the brain area they belong to, are

given in Table 1.

3.3.4 Eigencentrality
Beyond betweenness centrality, identifying nodes with high-

connectivity, nodes with high connectivity connected to other

nodes with high connectivity represent a special type of network

information distribution, since nodes with such high

“eigencentrality” (Ec), are hypothesised to play an important

role in fast and effective signal distribution within the network.

For each node in the network, a positive number xi is

assigned. The number xi is set to be proportional to the sum

of the weights of all nodes connected to i:

xi � λ−1 ∑
j

Aijxj 5 Ax � λx, (7)

where λ has to be identified. The last equation shows that the

element xi is the i−th element of the eigenvector of the adjacency

matrix (corresponds to the eigenvalue λ). The eigencentrality (or

FIGURE 3
Probability distribution (A,C) and position (B,D) of nodes with high centrality measures. (A,C): Probability distribution of centrality nodes. (A) The
distribution of “betweenness centrality” follows a power law distribution. Thus, >90% of the nodes have a “betweenness centrality” <20,000, and
only 0.5% a centrality value of 200,000. (C) The distribution of “eigencentrality” also follows a power law distribution. Thus, again > 99% of the nodes
have a value < 0.2, and only 0.2% an “eigencentrality” value of 0.17. (B,D) Position of high centrality nodes (i.e., the nodes with the highest Bc or
Ec values in each region, usually with a Bc > 200.000/Ec > 0.17) in MNI brain space coordinates shown as black dots. Brain regions are colour-coded
as given in the figure. Most of these nodes are located in STN and GPi, thalamus (Tha) and GPe, but also some in the motor cortex (MC).
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eigenvector centrality) is defined when one chooses λ = λ1 the

highest eigenvalue of the adjacency matrix A. Then

Ec i( ) � λ−11 ∑
j

Aijxj, (8)

which gives the eigenvector centrality the nice property that it

can be large either because a vertex has many neighbours or

because it has important neighbours (or both) Newman [56].

3.4 Detection of communities and
modularity

Networks characteristically are made up of sets of

nodes (subgraphs) which are densely connected among

each other within the network, and which have sparse

connections to other subgraphs Newman [29]. We

hypothesise that such densely connected subgraph groups

(or communities) play a significant role in information

processing within the network. Assigning and allocating

these densely connected communities to brain structures

allows to construct a modular view of the network’s

dynamics Newman [29].

In this paper, the modality index identifies such densely

connected communities. The modality index Newman [29]

assigns a community numbersi to each node. For example, in

the case of two communities, then si = ±1. Here, we seek the best

network partition in order to optimise the modularity

function Q:

Q � 1
4m

sTBs (9)

where m = 1/2∑kij is the total number of edges in the network,

and Bij = Aij−kikj/2m is the resultant modularity matrix, also

known as graph Laplacian matrix. In such matrices, the

optimisations can be achieved using graph partitioning or

spectral partitioning (eigenvalues-eigenvectors decomposition)

of the matrix B Newman [29]; Leicht and Newman [57].

Figure 4 shows the communities for the augmented network

as determined by the optimisation of the Q function. Using

structural brain segmentation and following anatomical

partitioning, the resulting communities can be assigned to

distinct brain areas. Specifically, six communities emerged

from the simulation as populations with 294, 473, 189, 399,

290, and 330 members, all located in MC (see also Figure 7).

Three important communities were detected in BG and the

thalamus, the first one with 780 members in the thalamus, the

second with 293 members connecting GPi and thalamus, and the

third with 283 members connecting STN and GPe (see also

TABLE 1 High centrality nodes, which might have high effectiveness in the DBS treatment.

Centrality
measure

Subthalamic nucleus
(STN)

Globus pallidus
externa (GPe)

Globus pallidus
interna (Gpi)

Thalamus (Tha) Motor cortex
areas (MC)

Betweenness
centrality

(15, −13, −4),(13, −14, −7),
(13, −11, −6), (13, −13, −8) center:
(13.5, −12.8, −6.3)

(18, −4, −7), (18, −6, −2),
(19, −5, −1), (20, −6, −3)
center: (18.8, −5.3, −3.3)

(18, −9, −1), (20, −9, −1),
(19, −9, 0), (18, −10, −1)
center: (18.8, −9.3, −0.8)

(19, −7, 13), (9, −5, 4),
(9, −4, 6) (8, −4, 5)
center:
(11.25, −5.0, 7.0)

(16, 2, 51), (16, 1, 49),
(20, 9, 46), (18, 2, 49)
center: (17.5, 3.5, 48.8)

Eigencentrality (15, −14, −8), (14, −15, −8),
(11, −12, −7), (15, −13, −4) center:
(13.8, −13.5, −6.8)

(23, −7, 1), (20, −6, 1),
(22, −4, 1), (20, −2, 0) center:
(21.3, −4.8, 0.8)

(20, −9, −1), (12, −1, −6),
(13, −1, −6), (13, −2, −7)
center: (14.5, −3.3, −5)

(19, −8, 10) (18, −8, 10),
(18, −8, 9), (19, −9, 9)
center: (18.5, −8.3, 9.5)

(29, −20, 34), (27, −19,
33), (28, −22, 33),
(19, −1, 50) center:
(25.8, −15.5, 37.5)

Clustering
coefficient

(12, −11, −9), (17, −14, −4),
(15, −10, −5), (15, −17, −7), center:
(14.8, −13, −6.3)

(17, −6, 10), (21, −8, −10),
(16, −3, −7), (16, −5, -12)
center: (17.5, −5.5, −9.75)

(13, −4, −5), (15, −5, −6),
(11, −1, −5), (14, −3, −7)
center: (13.3, −3.3, −5.8)

(7, −6, 8), (7, −6, 6),
(17, −13, 10) (10, −5, 3)
center: (10.3, −7.5, 6.8)

(27, −7, 66), (47, −2, 37),
(36, 20, 32), (44, −4, 53)
center: (38.5, 1.8, 47)

FIGURE 4
Community detection using the modularity-index algorithm
Leicht and Newman [57]. The algorithm identifies 12 major areas
with the number of members of densely connected communities
higher than 100. Remarkably, the modularity partition
generated by the simulation is in line with anatomical brain
separation.
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Figure 9). In addition, one community with 41 members was

obtained in the STN itself, and further two communities with

184 and 107 members connecting MC and STN as hyperdirect

patwhway (see also Figure 10). The localisation of these

communities in virtual space is given in Figure 4, as

projection onto the MNI coordinate space in Figure 5.

4 Deep brain stimulation at centrality
nodes: Electric field approximation

As outlined above, the centrality nodes (defined by the higher

values of the “betweenness centrality” Bc and the

“eigencentrality” Ec, as well as the clustering coefficient c) can

be hypothesised to be possible stimulation targets especially

effective in neuromodulation. To evaluate this hypothesis, for

each of the three measures (Bc, Ec and c), first the centre of mass

was calculated for the four positions in or close to the STN with

the highest values (see coordinates as given in Table 1). For centre

of mass positions, next an approximation of the volume of tissue

activated (VTA) for a conventional DBS signal (2mA 90 μs

rectangular pulse with a 130Hz repetition rate) was

calculated. The stimulation was conducted in a monopolar

mode, with the active contact placed at the coordinates of the

centrality nodes, and the approximation was based on the electric

field magnitude Åström et al. [58], thresholded at 150 V/m.

Using the simulation platform OSS-DBS Butenko et al. [24],

the field was computed in a heterogeneous and anisotropic

volume conductor defined with data from Zhang and

Arfanakis [59] and Horn [60]; Horn et al. [61].

Since the centrality nodes were located very close to each

other, the three corresponding VTAs overlapped strongly; all

three being located in the dorsolateral STN (Figure 6A), which

is a clinically established target for treating motor symptoms

of Parkinsons’s disease Benabid et al. [62]. It must be,

however, noted that the employed structural connectivity of

the network (Figure 1) was inherently biased towards the

dorsolateral region. Next, we estimated the structural

connectivity of these VTAs using the previously described

pathway atlas, but now also including fibers beyond the

motor circuit. In all three cases, nearly the same fibers were

“recruited” by the stimulation, namely, the motor pallido-

subthalamic projections, the hyperdirect pathway descending

from the primary motor cortex (upper and lower extremity),

and the dorso-lateral prefrontal cortex. Importantly, for

the given stimulation amplitude, a recruitment of the

corticofugal pathway was not predicted, allowing to avoid

capsular side-effects Tommasi et al. [63]; Xu et al. [64].

Beyond this, no activation in the pallidothalamic

projections was observed.

Noteworthy is the spatial relation of the centrality nodes

obtained by our simulation to the target spots of the STN-DBS.

The VTAs significantly overlapped with STN regions shown to

be effective in treating hypokinetic symptoms of Parkinsons’s

disease, while a region implicated in side-effect occurrence was

largely avoided Dembek et al. [25] (Figure 6B). Moreover, the

VTAs of the present study contained the effective target points

which were determined by projecting actual target coordinates of

patients treated successfully with DBS for Parkinsons’s disease

onto MNI space in another study on a large cohort Horn et al.

[65]. Such a coincidence of the centrality nodes and the so-called

sweet spots might explain the efficiency of the STN as a target for

various neurological disorders. This relatively small nucleus is a

site of convergence of various neural circuits (even though not all

of them include the STN itself). Hence, its stimulation allows a

wide-spread neuromodulatory intervention.

FIGURE 5
Community detection using themodularity-index algorithm Leicht andNewman [57], now projecting the same communities as in Figure 4 onto
MNI space sections, showing motor cortical areas as surface projection (A), thalamus and basal ganglia as frontal cut projection (B) and STN-MC
connections as hyperdirect pathway projected onto a frontal section (C). As in the previous figure, the 12 major areas are located in MC (6), thalamus
(1) and basal ganglia (2), as well as three communities in locations associated with the hyperdirect pathway (one in STN in light orange, two
connecting STN and MC; dark orange and green).
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5 Modelling the dynamics of the
thalamo-cortical basal ganglia circuit

After establishing the structural components and

determining promising target regions in the previous

sections on structural simulation, we also wished to explore

the functional consequences of DBS on network activity

patterns. For this, we worked on the same structural model

as above, and superimposed modified Hodgkin-Huxley

modelling.

In the augmented network, each node serves as a neuron

(hypothesising a homogeneous neural population on the

1 mm3 cube), and the edges represent synaptic links between

the neurons. Consequently, depending on the region, each

node-neuron is modelled with a variation of Hodgkin-

Huxley’s current-balance equations Terman et al. [28];

Rubin and Terman [9]; Hodgkin and Huxley [66]. In this

section, we present the mathematical description of the

neurons from each area of the basal ganglia (BG),

thalamus and cortex. Next, we couple the neural activity

of neurons according to structural connectivity within and

between the subthalamic nucleus (STN), globus pallidus

externa (GPe) and interna (GPi), thalamus (Tha) and

motor cortex (MC).

5.1 Modelling and simulations of neurons
in STN-GPe-GPi nuclei

The properties of neurons are expressed using the

conductance-based biophysical model of Hodgkin-Huxley’s

formalism as also has been used in previous work of Terman

et al. [28]; Rubin and Terman [9]; Popovych and Tass [67]. The

dynamics of each STN, GPe and GPi neuron are given by a

current balance equation for the membrane potential: Terman

et al. [28]; Bevan and Wilson [68]; Popovych and Tass [10]:

C
dVi

dt
� −ILEAK − IK − INa − ICa − IT − IAHP − Isyn + IDBS (10)

dxi

dt
� x∞ − xi( )/τxi (11)

d Ca2+[ ]i
dt

� ϵ1 −ICa − IT − kCa Ca2+[ ]i( ), (12)

where C is the membrane capacity, Vi is the membrane potential

of the ith neuron, xi denotes the gating variables n, h, r and x∞ is

the steady state value for the gating variables. The quantity

[Ca2+]i is the intracellular concentration of calcium. The exact

description of the ionic currents ILEAK, IK, INa, ICa and the

synaptic current Isyn for the STN and GP neurons are given

in the supplementary material. The current IDBS in Eq. 10 models

FIGURE 6
Recruitment of neural tissue bymonopolar STN-DBS at the centrality nodes. (A): All three (overlapping) VTAs are located in the dorsolateral STN
(left; green for between-centrality nodes, yellow for clustering coefficient, and blue eigencentrality) and predominantly recruit motor
pallidosubthalamic projections, the hyperdirect pathway from the primary motor cortex (upper and lower extremities), as well as its branch
descending from the dorso-lateral prefrontal cortex (right). Note that the latter was not used to construct the networkmodel. For the particular
stimulation protocol (2 mA), no corticofugal fibers are recruited according to the computational model. (B): The VTAs (green for between-centrality
nodes, yellow for clustering coefficient, and blue eigencentrality) overlap with target areas, whose stimulation is clinically proven to improve motor
symptoms, especially akinesia Dembek et al. [25]. While an overlap alsowith regions producing possible side-effects exists, this overlap is significantly
smaller (note that the regions delineated in Dembek et al. [25] overlap as well).
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DBS on STN neurons only and the form is described in the

Supplementary Material. In the absence of DBS treatment the

value is: IDBS = 0.

5.2 Synaptic suppression of pallido-
thalamic projections

Here, we model the GABAergic short term depression. The

functionality of the GABAergic synapse and the resulting release

of neurotransmitters is dependent on the firing history of the

presynaptic neuron Zucker and Regehr [69]; Farokhniaee and

McIntyre [70]. High-frequency stimulation induces suppression

of GPi GABAergic synaptic transmission Farokhniaee and

McIntyre [70], which in turn, leads to a thalamic activity

facilitation.

The synaptic activity is defined by the activation variable si,

which is given by Laing and Chow [71]; Ermentrout and Terman

[72]; Compte et al. [73]:

dsi
dt

� α 1 − si( )H Vi − θ0( ) − βsi, (13)

where H(V) is a smooth approximation of the step function,

i.e., H(V) � 1/(1 + e−(V−θx)/σx ), where α, β stands for the rate of

activation and inactivation, respectively, and typically, α = O(1),

β = O(ϵ) holds Laing and Chow [71]; Ermentrout and Terman

[72]; Terman [74].

The inhibitory GaBAergic synaptic current for the ith neuron

is given, by

Ii,GABA � gGABA Vi − EGABA( )∑
j

Aijsj, (14)

where Aij has the value 1 or 0, depending on whether the neuron is

connected or not. The summation is taken over all presynaptic neurons.

In case of existent synaptic suppression the GABAergic

synaptic current changes to

Ii,GABA � gGABA Vi − EGABA( )∑
j

AijsjPj, (15)

where the factor Pj describes the probability of a

neurotransmitter release (in the {ij} synapses), and follows the

dynamics Benita et al. [75]:

dPj

dt
� P0 − Pj

τD
Pj tsp( ) → Pj tsp( )AD,

(16)

where tsp corresponds to the last spike-time of the presynaptic

neuron and AD is the depression factor (0 < AD < 1), in our case,

the value AD = 0.8 was used. The value P0 describes the steady

state of P and in our case was set to 1. To simplify, when a

presynaptic neuron fires at time tsp the functionality of the

synapse (the release of neurotransmitters) is reduced

(suppressed by a factor AD). In the absence of neural activity

the synapse returns to a full ability of release, in a time scale 1/τ

where τ = 400 ms Benita et al. [75].

5.3 Modelling neurons in the thalamus

The mathematical description of the thalamic neurons is

given by the following equation.

C
dVi

dt
� −ILEAK − IK − INa − IT − Isyn + ISM (17)

dxi

dt
� x∞ − xi( )/τx, (18)

where C is the membrane capacity and Vi is the membrane

potential of the ith neuron, while the Eq. 18 describes the first

order kinetics for the gating variables h, r. The currents ILEAK, IK
and INa are the ionic currents, IT is the T-type calcium channel.

The synaptic current Isyn has the form Isyn = IGPTH + ITHTH,

where the GABAergic current IGPTH represents the inhibition of

the GPi area to the thalamus, while ITHTH represents the internal

excitatory or inhibitory thalamic connections. The current ISM
represents sensorimotor excitation (from motor cortex areas to

thalamus). The detailed description of the ionic and synaptic

currents is given in the Supplementary Material.

5.4 Modelling and simulations of neurons
in the motor cortex

The motor cortex neurons MC, are described as one-

compartment soma, and following the equations Pospischil

et al. [76]:

C
dVi

dt
� −ILEAK − IK − INa − IM − Isyn + Iapp (19)

dxi

dt
� ax 1 − xi( ) − bxxi (20)

dpi

dt
� p∞ − pi( )/τp, (21)

where Vi is the membrane potential, and xi represents the gating

variables for potassium and sodium current, of the ith neuron.

The gating variable pi represents the activation gate of the slow,

voltage-dependent potassium current IM. The current Iapp is

added to tune the oscillatory behaviour of MC neurons

around 20Hz. Each MC neuron has different value of Iapp
which is extracted randomly from the interval [2, 3]. The

synaptic activity is given from the current Isyn and the exact

form is described at Supplementary Material. The whole MC area

is modelled as small world network. In this network, 20% of the

neurons send inhibitory signals. i.e., replicate interneurons. The

cortical neurons show a regular spiking activity Pospischil et al.

[76]. The exact description is given in the Supplementary

Material.
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5.5 Average over the detected
communities macroscopic description

In this paper, we obtain a macroscopic description of the

dynamics of the detected communities of Section 3.4, by

averaging the mean voltage activity �V of neurons over the

population in the community; specifically, we define:

�Vx t( ) � 1
N

∑
N

k�1
Vk t( ). (22)

The mean voltage activity �V is used for the characterisation of

rhythmic activity using Fourier spectral analysis under different

states (Healthy, Parkinsonian or DBS in Parkinsonian

conditions). In all simulations, the Fourier power spectrum is

normalised dividing by the highest absolute value. In this context,

the Parkinsonian state was modelled, in brief, by increasing the

activity of STN, decreasing the activity of GPe (D2 dopamine-

mediated receptor activity effect in the indirect pathway), and

simultaneously increasing the activation of GPi due to

D1 dopamine-mediated activity in the direct pathway. The

detailed description of is given in Section 3 of the

Supplementary Material.

6 Collective dynamics of the
structural clusters (communities)

Structural connectivity can have significant impact on the

large-scale dynamics of the brain Deco et al. [43]; Papadopoulos

et al. [77]; Deco et al. [15], However, the connection between

anatomical-structural and functional brain connectivity is far

from been trivial. Large-scale computational models and their

complex nonlinear dynamics constitute an important method to

explore this connection Papadopoulos et al. [77]; Schirner et al.

[78]. Here, we propose a new method which correlates the

structural and functional connectivity, specifically focusing on

densely connected communities as identified by the modality

index (Section 3.4).

6.1 Analysis of macroscopic activity in
motor cortex clusters

The network analysis resulted in the identification of 6 MC

areas consisting of 294, 473, 189, 399, 290 and

330 nodes, respectively. For each area, we extract the

Fourier spectrum for the macroscopic variable of Eq. 22,

averaging all values of each member of the detected

community. The results are depicted in Figure 7. The first

column depicts the six different cortical node sets (six clusters

emerging from modularity analysis) in red on the virtual

brain surface. The next three columns show the power

spectra in three different conditions (i.e., Healthy,

Parkinsonian and DBS). Under healthy conditions, the

activity peaks in the low and high γ band (i.e. ≈ 80 Hz and

≈ 190–290 Hz, with one to three peaks). Under Parkinsonian

conditions, these peaks are often blunted, i.e., with less

obvious peaks in e.g., MC1, MC3 and MC6 (Parkinsonian

conditions depicted as blue curves, and healthy conditions

depicted as red curves, for comparison see also column 1 of

Figure 8 which depicts the differences between Healthy and

Parkinsonian cases).

To better estimate the differences between the conditions, we

generated difference curves of the spectrograms of Figure 7 based

on the following subtraction pairs: |PX(f)|−|PY(f)|, where |PX|, |

PY|, are the power spectra of the states X, Y, respectively, and

represent: healthy, Parkinsonian or DBS conditions, see Figure 8.

By further calculating the area under the curve (AUC, Valor et al.

[79]) for each of these difference pairs i.e.,

E � ∫
b

a

|PX f( )| − |PY f( )|∣∣∣∣ ∣∣∣∣df (23)

(numbers in insets in Figure 8) one can estimate the degree of

change expected to occur when changing the condition.

Comparing the difference between healthy and Parkinsonian

conditions [Park-Healthy, Eq. 23], one can see that the

spectrograms differ by ≈ 55 arbitrary units for most MC

clusters, save in two locations (MC2 and MC6), where the

values are below 50. Obviously, thus, the effect of

Parkinsonian conditions is heterogeneous in the MC network,

albeit within moderate boundaries; overall, the difference is in the

range of 50 ± 5 (arbitrary units).

Comparing these differences now to differences DBS-Healthy,

see Eq. 23, the relative effect of DBS can be gauged: In two areas,

DBS actually induced more differences than the disease condition

alone (MC1, MC2, with values 62 and 49, compared to 55 and 45),

in three areas, DBS reduces the differences (which might be

interpreted as a normalisation of activity), i.e., in MC3,

MC4 and MC5 (with values 47, 40 and 44 compared to 58,

55 and 53), and in one area, there is virtually no effect of DBS

regarding this measure (MC6, with a value 49, compared to 49).

Again, this leads to the conclusion that the effect of DBS is

heterogeneous regarding cortical activity, with alterations by

+18 and +8% (positive changes meaning that the frequency

spectrogram digresses even more from healthy conditions under

DBS than under Parkinsonian conditions alone) occurring in some

regions (MC1, MC2), and −20, −28 and −17% in others (MC3,

MC4,MC5; negative values indicating that the spectrograms under

DBS show less of a difference against healthy conditions than

under Parkinsonian conditions without DBS), and in fact only a

minimal change (+0.9%) in MC6, see Figure 8 (Supplementary

Table S4). Using repetitive analyses with the data, we did not see

changes of > 5%, while the effect sizes particularly of beneficial

DBS effects in the order of 17%–28%. Therefore, we think that the
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differences are unlikely due to random sampling errors. Overall,

just averaging these changes, this amounts to a change of cortical

spectral activity by ≈ − 7%. Where are the clusters positioned on

the cortex? With MC1 and MC2, those regions where DBS seems

to accentuate differences in spectral activity, we see the largest

clusters forming (incidentally) a “W” or “∞” figure. With MC3,

MC4 and MC5, it appears that these clusters are positioned very

close to the frontal or dorsal end of the MC2 cluster, or indeed at

fragmented positions of the MC1 cluster; those regions

interestingly show a reduction in spectrogram difference

induced by DBS. One might speculate that normalising

effects of DBS are reflected in spatially fragmented changes

in the cortex, but not when considering large networks. Overall,

obviously, the reason for the heterogeneity in functional

connectivity or for the impact of DBS remains unknown and

we hope that the current analysis spurs further detailed

investigations into this matter.

6.2 Analysis of macroscopic activity in
basal ganglia-thalamic clusters

The second group of communities (clusters), identified by

modularity measure, belongs to the basal ganglia or thalamus.

Specifically, the first thalamic cluster contains 780 neurons, the

second community contains 293 neurons connecting GPi and

thalamus and the third cluster consists of 283 neurons

connecting STN and GPe. For each cluster, we extract the

Fourier spectrum for the macroscopic variable of Eq. 22. These

Fourier spectra of all members of the detected communities were

averaged. The results are depicted in Figure 9. The three rows depict

node sets emerging frommodularity analysis in the thalamus (top),

in the GPi-thalamic pathway (middle) and the STN-GPe pathway

(bottom), depicted as red dots on the virtual brain sections.

Under healthy conditions (column 2 in Figure 9), in the

thalamus, the activity peaks in the low γ band (i.e., ≈ 46 Hz). In

FIGURE 7
Simulation of frequency spectrograms of cortical sets of nodes as average neuronal activity (power on ordinate given as relative value) in a
frequency range of 0–400 Hz. The six rows depict six different cortical node sets (six clusters emerging frommodularity analysis) shown in red on the
virtual brain surface. The spectrograms correspond to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected
network (both as blue traces), as shown in the different columns. Traces from healthy conditions are superimposed as fine red traces. Under
healthy conditions, the activity peaks in the low and high γ band (i.e., ≈80 Hz and ≈190–290 Hz, with one to three peaks). Under Parkinsonian
conditions, these peaks are generally blunted, and DBS is able to reverse this at least in some instances (e.g., clusters in MC3, MC4 and MC5, where
spectrograms under DBS deviate less from healthy conditions than spectrograms under Parkinsonian conditions by as much as 17–28%, taking the
overall area under the curve differences as a measure; see Figure 8).
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the pallido-thalamic cluster (projections from GPi to thalamus;

GPi-Thal), the neuronal activity is characterised by a slow β band

rhythm (i.e., ≈ 13–14 Hz). The third cluster comprises neurons

projecting from the STN to GPe (STN-GPe), again showing a

maximum of activity in the low β band (i.e., ≈ 13–14 Hz).

Under Parkinsonian conditions, the situation reverses: in the

thalamus, higher frequency γ activity is blunted, and low-frequency

activity emerges (at ≈ 6 Hz, i.e., θ band), while in the cited pallidal

pathways, peak frequencies are shifted to higher frequencies

(≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly

changes this situation: In the pathways directly connected to the

STN (which is the stimulation target), the dominant frequencies are

in the DBS frequency and harmonics (i.e., 130 and 260 Hz).

Importantly, this leads to a restoration of thalamic activity, where

again the activity is peaking in the low γ band (i.e., ≈ 38 Hz), not

quite reaching the frequency under healthy conditions, but definitely

different from low-frequency Parkinsonian activity.

6.3 Analysis of macroscopic activity in
clusters associated with the hyperdirect
pathway

The third group of communities emerging from the

simulation were clusters associated with the hyperdirect

pathway, as shown in Figure 10. These include one cluster

in the STN, and two clusters connecting MC and STN. The

first cluster is made of 41 neurons, and the other two of

184 and 107 neurons. Under healthy conditions, in a set of

STN nodes quite different from the one projecting to the GPe

of the BG-thalamic clusters (compare with Figure 9), the

activity is also distinctly different as it peaks at 21 Hz

(compared to 14 Hz in the BG-cluster), with a much wider

frequency distribution into higher frequencies. These nodes

probably relate to the hyperdirect pathway, as they are close to

the nodes of MC-STN connections. In the latter, under

FIGURE 8
Differences of the spectrum between Park-Healthy and DBS-Healthy [subtracting the spectrum according to Eq. 23]. Each row represents one
of six cortical sets of nodes as emergent from centrality measure modelling. The columns show the differences of these frequency spectra by
subtracting Park vs. Healthy, DBS vs. Park and DBS vs. Healthy. The shaded area under the curve as a measure of frequency spectrum divergence is
computed and depicted in columns 1, 2 and 3. The MC3, MC4 andMC5 areas in the cases of DBS vs. Healthy show a reduction in the computed
area compared to Park vs. Healthy, indicating that DBS reduces the spectrum difference compared to Parkinsonian condition, although differences
to the healthy condition remain.

Frontiers in Physics frontiersin.org14

Spiliotis et al. 10.3389/fphy.2022.951724

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.951724


healthy conditions, peak activity emerges at ≈ 160–180 Hz, i.e.

in the high γ range.

Under Parkinsonian conditions, STN nodes narrow down

their spectrum to two peaks (at 44 and 86 Hz), and a loss of the

wide spectral activity. Under DBS, in the STN nodes a wider

distribution of frequencies appears again, albeit as an appearance

of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the

hyperdirect pathway related nodes, however, DBS does not

change much in the activity, save appearance of a 130 Hz

peak (then stimulating frequency). In the first cluster (see

middle row in Figure 10), the frequency distribution otherwise

remains more or less similar, and in the second cluster (bottom

row in Figure 10), the 160 Hz peak is blunted.

7 Discussion and conclusion

In this study, we provided insights into complex network

processes in order to obtain a new approach gauging the

effectiveness of DBS. Additionally, we investigated the

relationship between structural and functional connectivity,

presenting a new in silico methodological approach to explore

dynamics of brain motor area functions under healthy and

Parkinsonian conditions, as well as the impact of Deep Brain

Stimulation (DBS). Using a state-of-the-art network (constructed

from data based on the pathway atlas of human motor network,

obtained from various types of imaging, including diffusion,

histological and structural MRI data, all fused to a virtual 3D

rendering, Petersen et al. [36]) and integrating this network into

advanced complex network measures, Bullmore and Sporns [18],

we detected nodes, with high-connectivity and thus pivotal

impact on the activity distribution within the network. These

nodes are hypothesised to be ideal targets for DBS application.

Our results based on betweenness centrality propose the

following MNI coordinates (13.5, −12.8, −6.3) as optimal STN

target. The following optimal points (sweet spots) are suggested

in other publications: (12.5, −12.72, −5.38) in Dembek et al. [25];

(12.42, −12.58, −5.92) in Horn et al. [65]; (11.83, −11.63, −5.8) in

Bot et al. [80] and (10.83, −13.31, −7.01) in Akram et al. [81], see

also Table 2 in Dembek et al. [25]. Remarkably, completely

different methodologies [e.g., we use graph theory, while

Dembek et al. [25] use VTA with Probabilistic Stimulation

FIGURE 9
Simulation of frequency spectrograms of basal ganglia and thalamic sets of nodes as average neuronal activity (power on ordinate given as
relative value) in a frequency range of 0–400 Hz. The three rows depict node sets emerging from modularity analysis in the thalamus (top), in the
GPi-thalamic pathway (middle) and the STN-GPe pathway (bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond
to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the
different columns. Traces from healthy conditions are superimposed as fine red traces. Under healthy conditions, the activity peaks in the low γ band
(i.e., ≈ 46 Hz) in the thalamus, while in the pathways projecting from GPi to the thalamus and projecting from the STN to GPe, low frequency activity
in the low β band is seen (i.e. ≈ 13–14 Hz). Under Parkinsonian conditions, the situation reverses: in the thalamus, higher frequency γ activity is
blunted, and low-frequency activity emerges (at ≈6 Hz, i.e., θ band), while in the cited pathways, peak frequencies are shifted to higher frequencies
(≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly changes this situation: In the pathways directly connected to the STN (which is the
stimulation target), the dominant frequencies are in the DBS frequency and harmonics (i.e., 130 and 260 Hz). This leads to a restoration of thalamic
activity, where again the activity is peaking in the low γ band (i.e., ≈38 Hz).

Frontiers in Physics frontiersin.org15

Spiliotis et al. 10.3389/fphy.2022.951724

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.951724


Maps (PSM)] result in very similar STN sweet spots. The

advantage of using a graph-theoretical approach, as in the

current study, is that it is simple and takes only a few seconds

to estimate the best stimulus target. Furthermore, this method

could be combined in the future with already established

statistical methods used e.g., Dembek et al. [25].

As a next step, we computed the volume of tissue activated

(VTA) at the positions around the STN, which had emerged as

pivotal nodes. Comparing these VTAs to clinically established

DBS targets in Parkinsons’s disease, it is evident that the position

of the nodes matches well with areas associated with alleviation of

motor symptoms Benabid et al. [62]; Dembek et al. [25]; Horn

et al. [65], suggesting that the high-connectivity nodes can infer

potentially effective stimulation sites. Future studies should

investigate whether a match between such nodes and

neurosurgical targets also occurs when analysing networks

constructed based on whole brain structural connectomes.

The second part of the current study addresses modelling of

functional changes within a neuronal network. Specifically, here,

we propose a new method to analyse network activity under

different conditions (i.e., Healthy, Parkinsonian and DBS), using

knowledge of detailed structural network connectivity in a large

scale Basal ganglia-thalamo-cortical model. This new approach is

based on the detection of network communities or modules

central to activity distribution. Network analysis of structural

connectivity showed that the communities or groups of highly-

connected nodes can be assigned to distinct anatomical regions

(Figure 4). Such a modular network organisation, in comparison

to a random distribution network, clearly shows advantages like

greater robustness, adaptivity, and evolvability of network

function Meunier et al. [82]. Although the relation of

structural/functional connectivity and how neural activity

could emerge from the brain’s anatomical connections has

been studied in several other experimental and computational

studies Deco et al. [16,43]; Horn et al. [83], the current view of

modular activity organisation is new.

Our analysis showed that in all modular areas, including

neocortical ones, Parkinsonian conditions alter power

spectrogams, but mainly subcortical structures, with e.g.,

slowing of activity in the thalamus and faster activity in

FIGURE 10
Simulation of frequency spectrograms of the STN (top row) and the hyperdirect pathway connections (two bottom rows) as average neuronal
activity (power on ordinate given as relative value) in a frequency range of 0–400 Hz. The three rows thus depict node sets emerging frommodularity
analysis in the STN itself (top), and in nodes connecting MC and STN, i.e., two clusters of connections involving the hyperdirect pathway (middle and
bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond to healthy conditions (red traces), Parkinsonian
conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the different columns. Traces from healthy conditions are
superimposed as fine red traces. Under healthy conditions, in a set of STN nodes quite different from the one projecting to the GPe of the previous
figure, the activity is also distinctly different as it peaks at 21 Hz, with a very wide frequency distribution into higher frequencies. These nodes probably
relate to the hyperdirect pathway, as they are close to the nodes of the second row, i.e., MC-STN connections. In the latter, under healthy conditions,
peak activity emerges at ≈ 160–180 Hz, i.e., in the high γ range. Under Parkinsonian conditions, STN nodes narrow down their spectrum to two peaks
(at 44 and 86 Hz), and a loss of the wide spectral activity. Under DBS, in the STN nodes a wider distribution of frequencies appears again, albeit as an
appearance of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the hyperdirect pathway related nodes, however, DBS does not change
much in the activity, save appearance of a 130 Hz peak (then stimulating frequency). In the first cluster (middle), the frequency distribution otherwise
remains more or less similar, and in the second cluster (bottom), the 160 Hz peak is blunted.
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pathways connecting pallido-thalamic and subthalamic-pallidal

nodes. Under DBS, in turn, simulations reveal that this

stimulation at high-connectivity nodes is able to restore

thalamic activity, and partly also cortical one, while on the

other hand, hyperdirect-pathway associated nodes remain

largely unaffected. Specifically, the simulations suggest that

nuclei directly involved in DBS (STN, Pallidum) mainly

follow the stimulation. The thalamus, in turn, translates this

into a concordant shift of its activity to the low-γ frequency band

(from θ under Parkinsonian conditions), while the motor cortex,

in turn, shows a discrete, and inhomogeneous response. Thus,

theoretically, the thalamus also under these conditions may serve

as activity gate to the cortex, while the motor cortex only adjusts

in a minor way—presumably thus preserving general

functionality, which would likely be lost if strong rhythmicity

were to emerge in the cortex. Importantly, at least a part of these

conclusions is also clinically confirmed. In a recent study

Neumann et al. [84] on Parkinsons’s disease patients receiving

DBS, using clinical, behavioural and fiber tracking informed

computational models, the hypokinetic state depends on

suppressing indirect pathway activity and not on the

hyperdirect pathway. By contrast, in that study, cognitive

impairment in Parkinson’s disease patients could be attributed

to modulation of the hyperdirect pathway, suggesting that the

hyperdirect and indirect pathways, converging in the

subthalamic nucleus, are differentially involved in cognitive

aspects of motor programming and kinematic gain control

during motor performance.

The present study constitutes a computational

approximation of the basal ganglia-thalamo-cortical network,

with assumptions and limitations. Regarding the assumptions,

synaptic coupling was tuned to be consistent to produce beta-

band oscillatory activity within the basal ganglia, as a

pathophysiological marker of Parkinson’s disease. Further, an

internal connectivity in the nuclei was assumed to take the form

of small world complex structures. This novel approach in basal

ganglia modelling has a reasonable justification in previous

publications, both modelling and experimental Netoff et al.

[49]; Berman et al. [50]; She et al. [51]; Bassett and Bullmore

[17,47]; Fang et al. [52]; De Santos-Sierra et al. [20]. As a

limitation of the model, the exact structure of the connectivity

on this microscopic level is not known, and hence also it remains

to be clarified in the future how this can be analogously modelled.

In the current study, the striatal input to GPe and GPi was

simplified as different, but homogeneous constant currents to all

neurons in GPe and GPi, but with different values between GPe

and GPi, as well as healthy and Parkinsonian conditions.

As a future modelling perspective, one important

topic will be the investigation of how this structural

separation of the network can help to construct a low-

representation model of brain activity (also called neural

manifolds). The low representation will be tested under

several DBS variations (i.e., functional connectivity) with

respect to the parameters of DBS implantation (position,

frequency, shape).
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