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To meet the needs of high-power fiber lasers, a new fiber structure called chirally coupled
core (CCC) fiber has attracted the attention of researchers all over the world. CCC fiber
consists of two cores, one of which is a central core distributed along the axial direction,
and the other is a side core that is offset from the central axis and spirally distributed around
the central core. Meanwhile, CCC fibers are helical-translation symmetric. The unique
structure results in advantages of robust single-mode performance, mode-distortion-free
splicing and compact coiling of CCC fiber. Based on a brief description of the theory about
CCC fiber, this article focuses on the research progress and application prospect of
CCC fiber.
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1 INTRODUCTION

The rise in output power from different kinds of laser sources over the past decades has gradually
made it possible to realize (or closer to) the directional energy, high-performance material
processing, laser propulsion, etc., [1–8] Fiber laser has a distinguished position amongst high-
power lasers due to the advantages of high efficiency, high beam quality and strong environmental
adaptability, therefore, has become one of the key breakthrough directions in laser community. In
recent years, the development momentum of fiber laser has been extremely rapid, and its output
power has been greatly improved [9, 10].

In the past few years, people have devoted themselves to the power scaling of narrow linewidth
(<100 GHz) output in all polarization-maintaining fiber lasers. In 2017, IPG Photonics developed a
1.5 kW polarization-maintaining narrow linewidth laser and a 2 kW non-polarization-maintaining
narrow linewidth laser [11]. In 2018, they further increased the output power of the polarization-
maintaining fiber laser to 2 kW, and the output power of the non-polarization-maintaining fiber
laser to 2.5 kW [12]. In 2019, Huang et al. from the Department of Precision Instruments of
Tsinghua University built a few-longitudinal-mode fiber oscillator using a narrow-linewidth fiber
Bragg grating [13]. After amplification, a 2.19 kW laser output was achieved, with an output
efficiency of 78.3%. In 2020, Wang et al. from the Institute of Applied Electronics, China Academy of
Engineering Physics demonstrated a 3 kW-class narrow linewidth polarization-maintaining fiber
laser [14]. The output power is up to 3.08 kW with the beam quality factor (M2) of 1.4 and the
polarization extinction ratio of 94%. However, as the output power of the fiber laser increases,
nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS)
and transverse mode instability (TMI) effects in the fiber gradually become apparent, leading to the
reduction of output power and the degradation of beam quality [15–19]. These nonlinear effects limit
the further improvement of fiber laser output power. In order to solve such problems, researchers
have turned their attention to improving the structure and materials of optical fibers, hoping to
design fibers that meet high peak power output. At present, commonly used fibers include large mode
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area fiber (LMA) and photonic crystal fiber (PCF). LMA fiber can
also be used to achieve high power output from fiber lasers. But
the large mode field area optical fiber transmission process easily
leads to the appearance of high-order modes, and it is necessary to
adopt the correct and reasonable mode control methods such as
bending and coiling to realize single-mode transmission.
Moreover, once the core diameter of a fiber with a large mode
field area is larger than 25 μm, it is difficult to stably control the
transmission mode of the fiber. Although PCF fiber can achieve
single-mode output, it will cause great mode loss. It is not
conducive to the integration of the system.

In response to the above problems, in 2007, the Ultrafast
Optics Research Center of the University of Michigan [20]
proposed a new optical fiber structure named chirally-coupled
core (CCC) fiber. It can break through the limitation of the
normalized cut-off frequency of V = 2.405 of traditional single-
mode fiber, and achieve stable single-mode output in the case of
large core size (greater than 30 μm) without any mode control
technology. In addition, CCC fibers offer the benefits of modal
distortion-free splices and compact coils (coil radius less than
15 cm), matching optics fabricated using standard fiber splicing
and processing techniques [21]. With the advantage of high
integration and high TMI threshold, CCC fiber provides a new
approach to realizing high peak power and high energy lasing,
therefore has become a promising research area in the laser
community.

In this paper, the recent advances in CCC fiber are reviewed
along with the introduction of its basic structure and related
parameters. Meanwhile, the special functions of the CCC
structure are expounded from three aspects, and the coupling
between the higher-order modes in the fiber is discussed from the
quasi-phase matching condition.

2 CONCEPT AND DEVELOPMENT OF
CHIRALLY COUPLED CORE FIBER
2.1 Basic Structure of Chirally Coupled Core
Fiber
Chirality refers to the fact that the object cannot coincide with the
mirror image after any spatial operation such as translation and
rotation. The macroscopic continuous media formed by such
chirality analysis are called chiral media. As early as 1989,
Engheta and Pelet [22] proposed the concept of chiral
waveguides, namely waveguide structures containing
chiral media.

Different from the ordinary optical fibers, chiral coupling
fibers are composed of two chiral waveguide fibers. There is a
central straight core on the shaft with a large core diameter, which
can be over 55 μm. An additional helix-side core deviates from
the central one, which forms the CCC around the central straight
core. Figure 1A shows the 3D geometry of this structure and
Figure 1B shows the cross-section view. This chiral coupling fiber
[22] structure can be formed in the fiber prefabricated rod using a
conventional fiber prefabricated bar. The central straight core is
used for signal light transmission [23]. The main function of the
helix-side core [24, 25] is to control the mode of the central

straight core, coupling the high order mode into the side core and
producing high loss to it. The base modes [26, 27] in the central
core can be transmitted almost without loss. In this way, the CCC
fiber [28–33] does not rely on any mode control technology to
maintain a single-mode transmission while achieving a large
mode field area. And the above problems are well solved.

The reason why CCC can achieve stable single-mode
transmission in the case of large core diameter is because of
the special helical structure of its side core [34, 35]. The composite
structure of the new type of fiber in which the side cores spiral
around the central core can achieve the following three functions.

1) Firstly, the phase velocity matching of the fundamental mode
in the central core and the mode in the side core is achieved,
enabling the coupling of the two modes. Usually, the mode
[36, 37] coupling between the two waveguides should satisfy
the exact phase velocity matching condition, that is, the mode
transmission constants of the two waveguides are equal. But in
the CCC fibers, due to the existence of the helical factor, the
transmission constants of the modes in the two cores are no
longer equal, which will lead to the additional phase
difference, so the matching condition becomes Angular-
momentum [38]:

β(sidemode) + Δβhelix � β(central mode) (1)
where β(sidemode) and β(central mode) are the transmission constants
of the mode in the central straight core and helix-side cores
respectively. Δβhelix is the extra phase velocity of the side core due
to the helix, it can be expressed as [22]:

Δβhelix � 2πn/λ⎡⎢⎢⎢⎣ ��������(2πR/Λ)2
√

+ 1 − 1⎤⎥⎥⎥⎦ (2)

where Δβhelix can be controlled by offset R and helix pitch Λ to
achieve matching conditions.

2) Secondly, efficient symmetrical selective coupling of higher-
order modes between the central straight core and the helix-
side cores is provided by satisfying the quasi-phase matching
condition. The quasi-phase matching condition can be
expressed as:

βl1m1
− βl2m2

·
���������
1 + K2 · R2

√
− Δm · K � 0 (3)

where βl1m1
is the purgation constants of LPl1m1 in straight central

cores and βl2m2
is the propagation constants of LPl2m2 in side

cores. The helical correction factor of the side cores is���������
1 +K2 · R2

√
in the formula. And for parameter Δm it is:

Δm � Δl + Δs. (4)
The value of Δl runs through four possible combinations

Δl � ± Δl1 ± Δl2 and the value of Δs runs through five possible
integers Δs � +2,+1, 0,−1,−2. The formula shows that the
interaction between the central straight core and the helix-
side cores occurs when the phase difference due to the helical
factor is compensated by the helical rate K. Only modes in the
two cores that satisfy this quasi-phase condition can couple,
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allowing higher-order modes of the central straight core to
couple into the side cores.

3) Thirdly, a reasonable selection of side core size, offset R and
helix pitch Λ can achieve high loss characteristics of high-
order modes in the side core. By satisfying the quasi-phase
matching condition and the high loss characteristics of the
side cores, the higher-order modes of the central core can
be coupled to the side cores to be lost, leaving only the
fundamental mode to transmit stably. At the same time, the
phase velocity matching is ensured, so that the central core
fundamental mode and the side core mode are partially
coupled, and the phase velocity and dispersion
characteristics of the fundamental mode can be easily
controlled.

2.2 Research Status of Chirally Coupled
Core Fiber
In 2007, Liu et al. from the University of Michigan [38, 39]
proposed the concept of CCC fiber and confirmed that CCC
fiber is equivalent to standard single-mode fiber with single-
mode transmission characteristics. In order to further verify

the simulation results, Liu et al. [40] prepared CCC fiber with
a central core diameter of 35 μm and a side core diameter of
12 μm. And the fundamental mode loss of the fiber is
0.095 dB/m. It is transmitted in the core with near lossless.
This is the first demonstration of the stable single-mode
transmission characteristics of CCC fiber. In 2008, the lab
produced an ytterbium-doped double-clad CCC fiber. Among
them, the central core diameter is 33 μm and the numerical
aperture is 0.06. The side core diameter is 16 μm and the
numerical aperture is 0.1. The side-core helix pitch Λ is
7.4 mm, and the edge-to-edge distance between the two
cores is 4 μm. In experiments, the active fiber was pumped
with a 915 nm laser diode and a 37 W laser output was
obtained at 1066 nm. The slope efficiency is 75% and the
output spot confirms the fundamental mode. This experiment
further verifies the superiority of the CCC fiber, indicating
that the fiber can be used as the gain medium of the laser like
ordinary fiber. The formed fiber laser has the advantages of
high slope efficiency and low threshold power, and the output
beam quality has been greatly improved compared with large
mode area fiber.

In 2009, Huang et al. from the University of Michigan [41]
demonstrated single-mode power scaling in fiber laser systems

FIGURE 1 | (A) Three-dimensional geometry of CCC structure [22], (B)Cross-section view of CCC fiber [22], (C) Experimental setup of a FCPA [51], (D) Fiber laser
system configuration [56], (E) Experimental setup of the monolithic amplifier based on a CCC fiber in the second amplifier stage [60], (F) Experimental setup of an all-fiber
amplifier based on a pump combiner directly integrated in an Yb-doped CCC fiber [65].
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built using 35 μm core Yb-doped double-clad CCC fiber. Output
power up to 250W is demonstrated in their study with pulse
width of 10 ns and the pulse energy of 1.14 mJ. The peak power is
114 kW and the amplification slope efficiency reaches 74%. Also,
the system output spot is single mode. In 2010, the team applied
CCC fiber in a master oscillator power amplifier (MOPA)
structure to increase the system output power. In the
experiment, a 2.7 m long air-clad Ytterbium-doped CCC fiber
was used as the gain medium of the power amplifier. The fiber
was excited with 2.2 W signal light and the MOPA structure
power output of 511W was achieved. The amplifier slope
efficiency is 70% [42–44]. In 2011, Ma et al. [22] established a
new reference frame from optical angular momentum by using
Maxwell equations and finite element method. A complete
theoretical analysis of the mode effects in the CCC fiber is
obtained, and the mode matching conditions of the fiber are
obtained. This is also the theoretical basis for the first disclosed
CCC fiber. The theoretical basis of CCC fiber has been introduced
in the previous article and will not be described here.

The University of Michigan Center for Ultrafast Optics,
Sosnowski et al. [45, 46] used CCC fibers to conduct
experiments with high average power and high peak power,
respectively. The experimental setup for high average power is
as follows: The system front end consisted of a 0.5 W 1.06 μm
wavelength pulsed diode seed source, a CCC fiber preamplifier
and a CCC fiber final stage amplifier. The final amplifier fiber
assembly consisted of both Yb-doped and passive 33 μm core,
250 μm clad CCC fibers with a 0.46 NA cladding. The
maximum output power achieved is 257 W at 338 W of
pump power for a net optical-to-optical efficiency of 76%
[47, 48]. Based on CCC large-core-diameter fiber and high-
dispersion mirror, Chen et al. [49] demonstrated a high-energy
femtosecond laser system in 2011. The high-energy
femtosecond laser emits 950 mW average power centered at
1045 nm with 38 MHz repetition rate, corresponding to 25 nJ
single pulse energy [50].

In 2013, Želudevičius et al. from the Lithuanian Centre for
Physical Sciences and Technology [51] demonstrated a
femtosecond fiber chirped-pulse amplification (FCPA)
system to enhance output power. The entire FCPA setting is
shown in Figure 1C. In addition to the oscillator, it also
includes the first preamplifier, an acousto-optic down-
counter, a PM SM fiber stretcher, a second preamplifier, a
power amplifier and a bulk grating compressor. The power
amplification device in the system adopts 33 μm core CCC
fiber as a gain medium. After compression with spectral

filtering, pulses with a duration of 400 fs and energy as high
as 50 μJ were achieved [52, 53].

In 2014, Ma et al. [54] reported further advances in effective
single-mode CCC Ge-doped and Yb-doped double-clad fibers
geometry, which enables increasing fiber core sizes into 55–60 μm
range, and experimentally demonstrate their robust single-mode.
In 2017, Pei et al. [55] coherently stacked the output based on an
85 μm Yb-doped CCC fiber into a single pulse. Output energy of
5.4 mJ was obtained at a repetition rate of 1 kHz. In 2018, Bai et al.
of Carnegie Mellon University [56] designed a high-power, high-
energy system based on a fiber laser and amplifier system. The
configuration of the laser system is shown in Figure 1D. The seed
amplifies a stable, computer-controlled, pulsed semiconductor
laser emitting at 1064 nm. And the fiber has a core diameter of
34 μm and a cladding diameter of 250 μm [57]. This compact
system is capable of generating outputs of up to 1.2 mJ for 25 ns
pulses at a repetition rate of 100 kHz, with an average power of up
to 121W and a slope efficiency of 82%.

In 2020, Hochheim et al. [58] presented the characterization of
a monolithic high-power fiber amplifier at 1064 nm, built using
an ytterbium-doped CCC fiber, which achieves an output power
of 100W in a linearly polarized TEM00 mode in an all-fiber setup.
Two years later, Hochheim et al. [59] demonstrated a splice-less
all-fiber amplifier, where all optical components are directly
integrated into a single Yb3+-doped CCC fiber. At an output
power of 336W [60] operating at 1064 nm, a fundamental mode
content of 90.4% at a polarization extinction ratio above 13 dB
was measured [61–64]. And the experimental setup is shown in
Figure 1E. Hochheim et al. [65–67] designed a counter- and side-
pumped all-fiber amplifier based on CCC fiber. The setup is
shown in Figure 1F. Four fiber-coupled pump diodes deliver the
required pump with an output power of 150W at 976 nm
[68–71]. This design allows for a stable and robust amplifier,
which ensures a high output of more than 300W [72].

The output parameters of the above CCC based laser are
illustrated Table 1. Because of the special structure of this fiber, it
has the advantages of high output power and high higher-order
modes loss. However, when the fundamental mode loss changes
greatly with the heat load, the slope efficiency of the CCC will be
strongly dependent on the operation power [57].

3 CONCLUSION AND OUTLOOK

In general, CCC has many advantages, which not only
overcomes the disadvantage of weak guide fiber with great

TABLE 1 | Out parameters of some typical CCC fiber based lasers.

Time Author (Organization) Output parameters References

2009 Huang S (University of Michigan) 150 W (250 kHz,10 ns) [41]
2011 Chen H (Massachusetts Institute of Technology) 950 mW (38 MHz,80 fs) [49]
2013 Sosnowski T (University of Michigan) 257 W (200 kHz,10 ns) [45]
2013 Želudevičius J (Center for Physics Sciences and Technology in Lithuania) 5 W (100 kHz,400 fs) [51]
2018 Bai J (Carnegie Mellon University) 121 W (100 kHz,150 ns) [56]
2020 Hochheim S (Laser Zentrum Hannover e.V.) 103 W (50 MHz, CW) [59]
2022 Hochheim S (Laser Zentrum Hannover e.V.) 336 W (5 MHz, CW) [60]
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bending loss, but also realize stable single-mode transmission
without any mode control technology. A series of related
experiments also confirmed that CCC fiber has the advantages
of high output power, high slope efficiency and good
polarization-maintaining characteristics, which provides an
effective way to increase the power of high-power fiber lasers
and is conducive to the integrated development of laser
systems [73]. In addition, the CCC fiber structure can also
control nonlinear effects to realize special functions such as
quantum communication [74]. It is certain that the CCC fiber
has very important significance and broad development
prospects in both scientific research and practical
applications.
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