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Due to the power capacity limitation of the rotary joint, mechanical scanning radars are
limited to use high-power microwave sources to improve their performance furthermore.
To solve this problem, an over-mode circular waveguide rotary joint with radial mutations at
the rotation point is introduced in this letter. The structure of the radial mutation is optimized
to suppress unwanted modes. By connecting the choke slot and the rotating part, the
breakdown risks of the rotary joint can be reduced. In addition, the choke structure is
connected to the inner wall of the waveguide with a gap, even the breakdown occurs in the
choke, the normal modes inside the waveguide will not be affected. To verify the design, a
prototype of the rotary joint is fabricated and measured with the operating band in the
range of 9.5–10.5 GHz and a power capacity of 3 GW.
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waveguide

INTRODUCTION

Radars play an important role in modern electronic systems [1–3]. The using of high-power
microwave sources can effectively improve the detection distance and the anti-interference
performance of the radars [4]. As a key device in mechanical scanning radar systems, the rotary
joint can ensure a stable transmission of RF signals during the scanning process. There are two main
ways to realize the rotary joint, the first one is to use a coaxial structure, and the other is to use a
waveguide structure. Usually, waveguide rotary joints based on the waveguide have a higher power
capacity, which helps to further improve the power density of the radar systems [5, 6]. But rotary
joints in conventional forms generally cannot deal with the GW-level power generated by high-
power microwave systems (HPM). To solve this problem, this letter proposes a rotary joint that can
operate at 9.5–10.5 GHz with a power capacity of 3 GW level based on over-mode circular
waveguide. The joint adopts a non-contact design and a new choke slot structure is designed to
improve the power capacity.

DESIGN PRINCIPLE

Generalized Scattering Matrix Theory
In the uniform direct lossless transmission system, the microwave mode is usually consistent, and
once the structure of the waveguide is changed, such as the change of the radius of the circular
waveguide or the bending of the axis, the change of the aperture of the rectangular waveguide, etc.,
the transmission mode in the waveguide will be changed, causing the coupling between the energies
of the various modes in the waveguide, which generates new modes.

The generalized scattering matrix theory is used to analyze the abrupt structure in the circular
waveguide.

The structure of the two-stage abrupt waveguide is shown in Figure 1.
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In Figure 1A, B represents a uniform waveguide connecting
two abrupt surfaces 1 and 2, which length is L. A and C represent
a uniform waveguide connected to B, and they also represent
abrupt surfaces 1 and 2.

Figure 1B shows the scattering matrix of the structure of
Figure 1A. S1 and S3 represent the scattering matrices at the
abrupt surfaces 1 and 2, respectively. S represents the scattering
matrix of the two-level abrupt structure, and the superscripts 2
and 3 represent the scattering parameters at the left and right ends
of the uniform waveguide B, respectively. The superscripts A and
C represent the scattering parameters on the left side of the
mutation surface 1 and the right side of the mutation surface 2,
respectively, and SL represents the transmission matrix between
the mutation surfaces 1 and 2, the definition of SL is as Eq. 1

SL �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e−γ1L 0

e−γ2L

1
0 e−γnL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

γn represents the propagation constant of the nth mode in
waveguide B.

According to [7–10], the solution of each parameter in S is as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SAA � S11 + S12SLU2S

33SLS21

SAC � S12SLU2S
34

SCA � S43SLU1S
21

SCC � S43SLU1S
22SLS34 + S44

(2)

FIGURE 1 | Structure and scatteringmatrix of two-stage abrupt waveguide. (A) Structure of two-stage abrupt waveguide. (B) The scatteringmatrix of the structure
in Figure 1A.

FIGURE 2 | The geometry structure of the rotary joint. (A) Front view of the external of waveguide. (B) Front view of the internal of waveguide. (C) Front view of the
choke slot. (D) The sectional view of the waveguide.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S11 � (YLa + YLb)−1(Ya − YLa)
S12 � 2(YLb + Ya)−1MTYb

S21 � M(I + S11)
S22 � MS21 − I
U1 � [I − S22SLS33SL]−1
U2 � [I − S33SLS22SL]−1
YLa � MTYbM
YLb � MTYbM

Mmn � ∫
SA

�ebm · �ean ds

(3)

Among Eq. 3, I is the identity matrix,M is the matrix form of
Mmn; Yi is the input admittance matrix seen from the ith
waveguide to the sudden change; �ean, �ebm are the transverse
mode electric fields in the A and B waveguides.

Choke Structure Design Theory
The choke structure in the rotary joint requires a high microwave
transmission efficiency and a high power capacity. A successful
design of the choke structure can improve the electric field
distribution on the rotating surface, thus reduce the local
electric field enhancement and avoid the breakdown.
Meanwhile, the rotary joint can be rotated flexibly and the
vacuum seal inside the waveguide can be maintained. The
choke structure can be analyzed using the microwave
equivalent transmission line theory and its equivalent equation
is given by Eq. 4:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dU(z, t)
dz

� −(R0 + jωL0)I(z) � −ZI(z)

dI(z, t)
dz

� −(G0 + jωC0)U(z) � −YU(z)
(4)

Where R0、G0、L0、C0 are the resistance, conductance,
inductance and capacitance per unit length, respectively. Z、Y
are the series impedance and parallel conductor per unit length of
the transmission line, respectively. U(z), I(z) are the voltage and
current on the transmission line.

Zl is the load impedance of the choke. Zc is the characteristic
impedance of the transmission line. The reflection coefficient ΓL
is given by Eqs 5, 6:

FIGURE 3 | Simulated S21 for each transmission mode in rotary joint.

FIGURE 4 | Influence of radial slot fillet radius on coupled mode transmission. (A) TE11 mode. (B) TM11 mode. (C) TE31mode. (D) Sum of TE11, TM11 and TE31 mode.
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FIGURE 5 | Influence of radial slot radius on coupled mode transmission. (A) TE11 mode. (B) TM11 mode. (C) TE31 mode. (D) Sum of TE11, TM11 and TE31 mode.

FIGURE 6 | Influence of radial slot length on coupled mode transmission. (A) TE11 mode. (B) TM11 mode. (C) TE31 mode. (D) Sum of TE11, TM11 and TE31 mode.
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ΓL � U−(l)
U+(l) �

Zl − Zc

Zl + Zc
� 1 (5)

so

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|U(l)| � 2|U+(l)| sin(βl)
|I(l)| � j

2|U+(l)|
Zc

cos(βl) (6)

When βl � nπ, (n � 0, 1, 2, . . .), the minimum voltage and
maximum current occur on the transmission line. When the
equivalent length of the choke is given by Eq. 7:

l � n
2
λ, (n � 1, 2, . . .) (7)

Minimum voltage occurs on the inner wall of the choke, so the
breakdown problem can be effectively avoided.

GEOMETRY AND DESIGN

The rotary joint includes three parts: circular waveguides, a choke
structure and a sealing structure. The two ends of the joint are the
input and output ports respectively. Its geometry structure is shown
in Figure 2. The radii of fillets 1 and 2 are 5 and 0.3 mm respectively.

Design of the Circular Waveguide
Conventional circular waveguides have a small power
capacity, and if they are used in the HPW system,

FIGURE 7 | Field strength distribution on the inner of the waveguide. (A) The sectional view of field strength distribution inside the waveguide. (B) Position 1 view of
field strength distribution inside the waveguide. (C) Position 2 view of field strength distribution inside the waveguide.

FIGURE 8 | Photo of the rotary joint. (A) The front view of the rotary joint. (B) The bottom view of the rotary joint.
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breakdown will occur inside the waveguide. The over-mode
waveguide is a waveguide whose size is larger than the
traditional waveguide size at the operating frequencies,
which can withstand a higher power due to its increased
sectional area [11–14]. The field distribution in the rotary
joint must have the characteristics of axisymmetric
distribution to ensure stable output in the continuous
rotation process. The field distribution of the TM01 mode
is axisymmetric, and the phase is stable, so TM01 mode is used
as the operating mode in this rotary joint. The designed
rotary joint is excited by TM01 mode, which also requires
the use of an over-mode circular waveguide.

Design of the Choke Structure
Since it needs a certain space to rotate itself for the rotary joint, a
slot is made in the waveguide wall along the radial direction as
shown in Figure 2. However, a discontinuity in the radial
direction of the waveguide in introduced, and can excite high-
order modes in the waveguide. Figure 3 shows Simulated S21 for
each transmission mode in rotary joint when the radial slot has a
radius of 39 mm, a length of 12 and 5 mm fillets for the
connections. It can be seen with the introducing of the
discontinuous structure exists in the rotating joint, when the
TM01 mode generated, some additional modes, such as TE11,
TE21, TM11, TE31, TE01, and TM21 are also excited.

As shown in the Figure 3 except for the TM01 mode, the S21 of
TE11, TM11, and TE31 are larger than other high-order modes, so
they are selected as the analysis objects later.

As shown in Figure 4, Figure 5 and Figure 6, the optimization
of fillet radius R_fillet of the waveguide radial slot, slot radius
R_slot and slot length L_slot can suppress higher-order modes.

It can be seen that the suppression of the unwanted modes is
achieved when the radius and the length of the radial slot are
chosen to be 39 and 12 mm, respectively.

It can be derived from the choke theory in Eq. 7, when the
choke slot length is 15 mm, 1/2λ, the voltage is minimized at the
point where it is connected to the inner wall of the waveguide. It is
helpful to avoid the breakdown problem. After optimization, the
choke slot length is adjusted to 17 mm, as shown in Figure 2.c. It
can be seen that the choke slot is not directly connected to the
inner wall of the waveguide, but is connected to the slot along the
radial direction. The field strength is relatively small and the risk
of breakdown is smaller than choke slot which is connected to the
inner wall. Since the choke slot is not directly connected to the
inner wall of the waveguide, when the choke slot is broken down,

FIGURE 9 | S21 and VSWR of TM01 mode.

FIGURE 10 | The output waveform of pulse width 20 ns for X-band.
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the influence of the electric field in the waveguide is
relatively weak.

According to the measurement, the breakdown field strength
of YL122 aluminum alloy material is 700 kv/cm. Figure 7 shows
the field strength distribution of the inner of the waveguide when
the input energy is 3 GW. It can be seen that the field strength at
the location of the choke slot is about 600 kv/cm, so this rotary
joint can withstand 3 GW microwave power.

MEASUREMENT RESULTS

Figure 8 is the photograph of the rotary joint. When the rotary
joint is operating in TM01 mode, and the measured and simulated
results of the transmission coefficient and the standing wave ratio
are shown in Figure 9.

A HPM source [15–17] and horn antenna are used for the
power capacity measurements of the rotary joint. The HPM
source has a microwave pulse width of 20 ns and a output
power of 3 GW. The horn antenna is a multimode conical
horn with continuously variable flare angle. In the experiment,
the rotary joint is connected between the HPM source and the
horn antenna, and the power capacity of the rotary joint is
evaluated by monitoring whether the microwave waveform of
the radiation field shows tail-erosion phenomenon to determine
whether the breakdown occurs during the transmission process.
Figure 10 shows the radiation field waveform when 30
microwave pulses are continuously input to the rotary joint in
the measurement. The vacuum value during the high-power test
is 3p10−2Pa.

The comparison between the online waveform and the
radiation field waveform in Figure 9 shows that the waveform
repetition is very well and there is no tail erosion, which
indicating that there is no obvious HPM breakdown in this
rotary joint. As a result, the power capacity of this rotary joint
meets the demand of HPM with power of 3 GW and microwave
pulse width of 20 ns.

CONCLUSION

In this paper, a high-power radar rotary joint is designed based on
an over-mode circular waveguide, and an innovative choke slot is
used, which reduces the electric field strength at the choke slot
and reduces the risks of the breakdown. The structure of the
radial slot is optimized to suppress other coupling modes, and the
transmission efficiency of TM01 mode at 9.5–10.5 GHz reaches
more than 98.9% while withstanding power of 3 GW.
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