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Dense suspensions of particles in viscous liquid often demonstrate the striking
phenomenon of abrupt shear thickening, where their viscosity increases strongly with
increase of the imposed stress or shear rate. In this work, discrete-particle simulations
accounting for short-range hydrodynamic, repulsive, and contact forces are performed to
simulate flow of shear thickening bidisperse suspensions, with the packing parameters of
large-to-small particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85.
The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of
shear stresses. The repulsive forces, of magnitude FR, model the effects of surface charge
and electric double-layer overlap, and result in shear thinning at small stress, with shear
thickening beginning at stresses σ ~ FRa

−2. A crossover scaling analysis used to describe
systems with more than one thermodynamic critical point has recently been shown to
successfully describe the experimentally-observed shear thickening behavior in
suspensions. The scaling theory is tested here on simulated shear thickening data of
the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ =
0.50. Presenting the viscosity in terms of a universal crossover scaling function between
the frictionless and frictional maximum packing fractions collapses the viscosity for most of
the suspensions studied. Two scaling regimes having different exponents are observed.
The scaling analysis shows that the second normal stress difference N2 and the particle
pressure Π also collapse on their respective curves, with the latter featuring a different
exponent from the viscosity and normal stress difference. The influence of the fraction of
frictional contacts, one of the parameters of the scaling analysis, and its dependence on
the packing parameters are also presented.
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1 INTRODUCTION

Suspensions of solid particles in liquids, under highly concentrated or ‘dense’ conditions in which the
volume fraction ϕ approaches the jamming fraction, can exhibit strong shear thickening. This is seen
as an abrupt increase in apparent viscosity η with increasing shear stress σ or shear rate _γ [1–5].
Strong shear thickening has been linked to a shear-induced transition from lubricated or ‘frictionless’
particle interactions at low shear stress, where the interaction between the particles is hydrodynamic,
to predominately contact interactions at high shear stress [6–9], with the critical stress determined by
interparticle repulsive forces that tend to maintain the lubricated state at low stress [10–12].

Based on the lubrication-to-frictional transition scenario [12], Wyart and Cates (WC) [10]
developed a model where shear thickening viscosity η is controlled by divergences at two jamming
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volume fractions: ϕ0J for the frictionless regime at low shear stress
(in monodisperse systems, corresponding to random close
packing ϕ0J � ϕRCP ~ 0.64 [13]) and ϕμJ < ϕ0J for the frictional
regime at high shear stress. The suspension viscosity was
expressed as η ~ (ϕJ − ϕ)−2, with the transition between ϕ0J
and ϕμJ implying a stress-dependent jamming fraction ϕJ(σ).
This was modeled using a parameter f, the fraction of close-
pair interactions that are frictional, as
ϕJ(σ) � ϕ0J(1 − f(σ)) + ϕμJf(σ). Here, 0 ≤ f ≤ 1, with f = 0
when neighboring particles have lubricated (frictionless)
interactions at low stress, and f → 1 when the neighboring
particles are predominately in the frictional state at high
stress. In their work, f was described as a function of the
particle pressure Π; since Π and σ for non-colloidal
suspensions are related by an O (1) factor, μB = σ/Π [14], f
can be written in terms of shear stress f(σ). Mari et al. [11] have
validated elements of the WC theory by carrying out simulations
of nearly monodisperse suspensions with particle size ratio δ =
1.4, where they have described f as f(σ) = exp (σ*/σ). Singh et al.
[15] adopted this expression and extended the model to develop a
constitutive description for simple shear flow. This provides a
description of relative viscosity η/η0 (η0 is the suspending fluid
viscosity), the second normal stress differenceN2, and the particle
pressure Π as a function of parameters ϕ, σ, and interparticle
friction coefficient μ. As seen in other work [16], the first normal
stress difference N1 = Σ11 − Σ22 was found to change sign from
negative to positive with increasing ϕ and σ and was not well-
described. We confine our consideration of the normal stress
response to N2 = Σ22 − Σ33 andΠ = −(Σ11 + Σ22 + Σ33)/3, where 1,
2, and 3 (or x, y, and z) are, respectively, the flow, gradient, and
vorticity directions of a viscometric flow. We study only simple
shear here, of form ux � _γy.

Rheological experiments were carried out by Guy et al. [17] on
monodisperse suspensions of poly-methylmethacrylate particles
sterically stabilized by poly-12-hydroxystearic acid, where the
data are shown to be fitted by the WC model. This model’s
predictions were, however, found [18] to exhibit significant
discrepancies from the experimental data for binary mixtures
of spheres with large-to-small particle size ratio δ = 4. This was
especially pronounced for cases with a predominance of particle
volume from the large particles. Unlike monodisperse systems,
where there is only one type of frictional contact, the bidisperse
systems have three different types of frictional contact coming
from the large-large, the large-small, and the small-small particles
contact that contribute to stress development differently. This
motivates our consideration of suspensions with significant
bidispersity.

A recent study [19] showed that the WCmodel can be framed
in the language of crossover scaling. Specifically, the shear
thickening transition was described in terms of a crossover
between two critical points, at each of which the viscosity
diverges, the frictionless ϕ0J and the frictional ϕμJ maximum
packing fractions. In this scaling analysis, the viscosity was
expressed as a function of the fraction of frictional contacts
f(σ) and the distance to the frictionless maximum packing
fraction,

ηr ϕ0
J − ϕ( )2 ~ FWC

f σ( )
ϕ0
J − ϕ

( ), FWC ~
1

ϕ0
J − ϕμ

J

− f σ( )
ϕ0
J − ϕ

( )
−2
,

(1)
where the scaling variable xWC � f(σ)/(ϕ0J − ϕ) is the part of the
scaling function associated with the frictionless jamming critical
point, and xc � 1/(ϕ0J − ϕμJ) is its critical value at which there is a
divergence of the scaling function FWC. More generally, the
scaling may be written

ηr ϕ0
J − ϕ( )2 ~ F g σ, ϕ( )

ϕ0
J − ϕ

( ), (2)

with g allowing dependence on variables beyond the stress
dependence of f(σ), and FWC a particular form of F(x). With
these generalizations, an excellent collapse to a single universal
curve was achieved for experimental viscosity data for both
cornstarch and silica particle suspensions measured over a
wide range of volume fractions and shear stresses. In our
work, we will not make allowance for ϕ-dependence in g, but
will consider the scaling based on the WC scaling variable, xWC,
with f(σ) describing the microscopic interaction state, and
identify any limitations of the generalized scaling function,
F(xWC), with regard to describing the bidisperse suspension
rheology.

The scaling of the viscosity presented in Eq. 2 resembles a well-
known form called crossover scaling. An alternative way of
representing this scaling, which is better suited to identifying
any change in the nature of the divergence with g (σ, ϕ) is the
Cardy scaling form [20]. Cardy scaling is typically applied in
study of critical points and phase transitions in thermal
equilibrium systems, among which a well-known example is
that of magnetic systems described by Heisenberg and Ising
models. These differ in their symmetry properties [21], as the
Heisenberg model is isotropic, whereas the Ising model has
uniaxial symmetry as it considers a single component of the
vector spin. Based on these different symmetry properties, the
two models for magnetic systems show different universality
classes characterized by different critical exponents and scaling
functions [22], and a crossover in the dominant singularity may
be observed. Analogously, the dense suspension that undergoes
shear thickening by the lubricated-to-frictional mechanism also
consists of different states, namely frictionless and frictional. Note
that the function g (σ, ϕ) plays the same role as the uniaxial
anisotropy plays in the Heisenberg-Ising crossover, but the
suspension crossover does not involve a clear change of
symmetry. Ramaswamy et al. [19] expressed the scaling
function for the viscosity in the Cardy scaling form

ηrg
2 σ, ϕ( ) ~ H |1/xc − 1/x|( ), (3)

where H is a scaling function. The authors found that the
viscosity divergence weakened to a -3/2 exponent,
i.e., H ~|1/xc − 1/x|−3/2, in the frictional regime, distinctly
different from H ~|1/xc − 1/x|−2 in the frictionless limit. The
two divergences of F suggest critical points of different
universality classes.
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In this work, we apply the scaling approach presented in
Ramaswamy et al. [19] to dense suspension rheological data
obtained from numerical simulation. We consider nearly-
monodisperse systems, as well as more strongly bidisperse
systems of varying large particle fraction. The analyses of the
simulation data are carried out by two different approaches. We
first consider the critical exponents and scaling functions. Following
this, we implement Cardy scaling to study the crossover behavior.

2 METHODS

Shear thickening has been observed in molecular dynamics
simulations [23], including approaches which also introduce
friction to the particle interactions [24]. Here, we prefer to
consider the viscous fluid effects, but in a simplified fashion
relative to the more rigorous Stokesian Dynamics [25, 26]. To
this end, we use the lubrication flow-discrete element model (LF-

FIGURE 1 | Rheology of simulated suspensions as a function of dimensionless shear stress. Row 1: Nearly monodisperse suspensions, δ = 1.4 and ζ = 0.50; rows
2–4: bidisperse suspensions. Row 2: δ = 3 and ζ = 0.15; row 3: δ = 3 and ζ = 0.50; row 4: δ = 3 and ζ = 0.85 (A) (D) (G) (J): relative viscosity ηr (B) (E) (H) (K): the second
normal stress difference plotted as N2/η0 _γ (C) (F) (I) (L) : particle pressure plotted asΠ/η0 _γ. Data in (A–C) are from the work of Singh et al. [15]. Legends of panels A and
G apply to (A–C) and to (D–L), respectively. For the scaling analysis, we do not consider shear thinning data, and thus consider data to the right of the dashed lines
shown in panels A and G as examples.
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DEM) [6] to simulate shear flow of dense suspensions of non-
Brownian frictional spheres immersed in a viscous Newtonian
fluid under an imposed shear stress σ. With a repulsive interaction
and contact forces including friction, this method has been found
to successfully describe the flow of dense suspensions [11], and to
closely reproduce essential features of DST and shear jamming
seen experimentally [5]. Recent work [27] has extended this
approach to include a rolling friction [28], but here we consider
only frictional resistance to slipping of the contact.

Our typical simulation is performed using 1,000 particles in a
cubic box with periodic boundary conditions, to mimic an infinite
system. Shear flow is imposed using Lees-Edwards boundary
conditions. The suspensions studied in this work are bidisperse
with as and al as the radii of the smaller and larger particles,
respectively, with the size ratio defined as δ ≡ al/as. The motion of
particles is considered inertialess, i.e. to be at particle Reynolds
number Re � ρ _γa2/η0 → 0. The equation of motion is hence
simply the force/torque balance 0 = FH + FR + FC, where FH
is the finite-range hydrodynamic force/torque, FR is the repulsive
force, and FC is the contact force/torque.

The hydrodynamic forces are of the form FH = −RFU · (U −
U∞) + RFE: E

∞, where U is the particle translational and angular
velocity, U∞ � _γyêx is the flow due to imposed shear, and E∞ �

(êxêz + êzêx) _γ/2 is the rate-of-strain tensor. The resistance
matrices RFU and RFE contain single-particle Stokes drag and
the leading terms of the pairwise hydrodynamic interaction
corresponding to short-range lubrication forces [29]. The
divergence of the resistance matrix at vanishing dimensionless
interparticle gap h = 2 (r − ai − aj)/(ai + aj) is regularised to allow
contact: the squeeze mode resistance is proportional to (h + ϵ)−1
and shear mode resistance is proportional to log [(h + ϵ)−1], where
ϵ = 10−3as. Including ϵ allows the lubrication resistance to be finite
at contact (h = 0), which could be interpreted as representing the
influence of particle surface roughness.

A repulsive electrical double layer (EDL) force maintains the
particle surface separation at low stress. The force decays
exponentially with the interparticle gap h over the length scale
defined by Debye length κ−1 as FR � F0

Re
−κh. For this work, based

on prior experience [11], the Debye length is taken as κ−1 = 0.05as.
The repulsive force introduces a stress scale of σ0 � FR/6πa2s . This
form of the simulation is called the electrostatic repulsion model
(ERM) [11]. The contact between the particles occurs when the
applied stress overcomes the repulsive forces. The contact force is
modeled by linear springs in both normal and tangential
directions; the friction prohibits slipping at the contact if the
force components satisfy the Coulomb friction law, FC, tan ≤

FIGURE 2 | The scaling functions (A)F η, (B)FN2 , and (C)FΠ as a function of the scaling variable x � f /(ϕ0J − ϕ) for simulated suspensions at δ = 1.4 and ζ =0.50 for
0.52≤ ϕ ≤0.63. Note that in (A,B), η′(ϕ0J − ϕ)2 and (N2/η0 _γ)(ϕ0J − ϕ)2 collapse, while in (C) (Π/η0 _γ)(ϕ0J − ϕ)2.75 collapses whereas in (D) (Π/η0 _γ)(ϕ0J − ϕ)2 does not
collapse. Data are adapted from Singh et al. [15] and f(σ) � e(σ*/σ) with σ*= 1.45.
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μFC,nor, where μ is the interparticle friction coefficient. When the
particles make contact, the friction is activated. The friction
coefficient is fixed at μ = 1 for this work.

The repulsive force sets the level of the critical stress, such that
when the applied stress σ ≪ σ0, the interactions between the
particles are lubricated (frictionless). When σ ≫ σ0, the
interactions are predominately frictional contacts. At each
time step, we evaluate FR and FC and solve the equation of
motion for the particle velocities,
U − U∞ � R−1

FU · (RFE: E∞ + FR + FC). The flow, velocity
gradient, and vorticity directions are x, z, and y, respectively.
We do not consider Brownian motion, i.e. the Péclet number
Pe � η0 _γa

3/kT → ∞.
The stress-controlled simulations were performed over a range

of dimensionless shear stresses of 0.3 ≤ σ/σ0 ≤ 562. Each
simulation was run to _γt � 30 strain units. The results of the
transient period were not included, as we discard the initial five
strain units. We report the suspension viscosity in the form of the
relative viscosity ηr = η/η0, and for scaling purposes we will use
the particle interaction viscosity η′ = ηr − (1 + 2.5ϕ), where (1 +
2.5ϕ) is the correction for the Einstein viscosity. The reported
shear stresses and shear rates will be nondimensionalized by σ0 �
FR/6πa2s and _γ0 � FR/6πη0a

2
s , respectively. The bidisperse

suspensions in this study are in the range of total solid
volume fraction of 0.54 ≤ ϕ ≤ 0.60, with particle size ratio of δ
= al/as = 1.4 and 3. For δ = 3, the large particle fraction of the total
volume fraction is varied by taking ζ = ϕl/ϕ = 0.15, 0.50, and 0.85.

3 RESULTS

We present the results of the scaling analysis for all suspensions
studied, first applying it to prior work on nearly monodisperse

suspensions [15] with δ = 1.4 and ζ = 0.50 for volume fractions
0.52 ≤ ϕ ≤ 0.63 and shear stresses 0.1 ≤ σ/σ0 ≤ 100. For brevity, we
call these suspensions monodisperse, as the slight bidispersity
avoids the layering or string ordering of particles subjected to
shear flow [30] but the shear thickening at δ = 1.4 is found to
differ little from smaller δ = 1.2 [11]. We then present the scaling
analysis applied to our rheological property data for bidisperse
suspensions with δ = 3 and varying ζ = 0.15, 0.50, and 0.85 for 0.54
≤ ϕ ≤ 0.60 and 0.3 ≤ σ/σ0 ≤ 562. Unless otherwise stated, wemodel
the fraction of frictional contacts as f(σ) � e−σ*/σ , with σ*/σ0 =
1.45 based on previous work [11, 15, 31]. The rheology data that is
considered in the scaling analysis, for both the monodisperse and
bidisperse suspensions, is shown in Figure 1. Note that we do not
consider data for cases where the viscosity is shear thinning, and
thus for the monodisperse case we use data σ/σ0 ≥ 0.2 and for the
bidisperse suspensions σ/σ0 ≥ 0.32, data which is to the right of
the dashed lines shown in Figures 1A,G. This figure provides the
relative viscosity ηr, normal stress difference as N̂2 � N2/η0 _γ, and
particle pressure as Π̂ � Π/η0 _γ; plotting the normal stresses
normalized by η0 _γ produces a property analogous to the
viscosity and proportional to the well-known ‘normal stress
viscosity’ [14]. All quantities are shown as functions of the
dimensionless shear stress σ/σ0. As noted, we do not consider
the first normal stress difference in the scaling analysis.

As the two scaling methods we apply in this work have not
previously been applied to simulated suspension rheology data,
we provide some guidance before presenting our results. The two
methods (which we will call crossover and Cardy scaling) have
the same content, but the insights gained from the two are
different. In the crossover scaling analysis (presented in
Figure 2, and 4–6), the scaling approach can be seen based on
the WC [10] form of the viscosity ηr ~ (ϕJ(σ) − ϕ)−2 with
ϕJ(σ) � f(σ)ϕμJ + (1 − f(σ))ϕ0J using the fraction of frictional
contacts f. This yields

ηr ~ fϕμ
J + 1 − f( )ϕ0

J − ϕ[ ]−2 � ϕ0
J − ϕ( )−2 1 − x/xc[ ]−2

where, as defined previously,

x � f/ ϕ0
J − ϕ( ) and xc � 1/ ϕ0

J − ϕμ
J( ).

Thus we see that if x → xc, there are two possible divergences.
From the crossover scaling analysis we find the data presented as
η′(ϕ0J − ϕ)2 as a function of x collapse to the generalized scaling
form, F of Eq. 2 (not necessarily the precise form of WC), and
confirm the presence of a second divergence, i.e. a divergence in
the scaled data. Note that η′ is the singular part of the viscosity,
which will be defined in the following paragraph. The form of the
second divergence, at the frictional jamming fraction, revealed by
crossover scaling and assumed to have exponent -2 in the WC
form, is more effectively probed by Cardy scaling. For this
purpose, we manipulate the expressions of the viscosity and
other rheological functions differently, again using the WC
form for concreteness,

ηr ~ fϕμ
J + 1 − f( )ϕ0

J − ϕ[ ]−2 � f−2 ϕ0
J − ϕ( )/f − ϕ0

J − ϕμ
J( )[ ]−2

� f−2 x−1 − x−1
c( )−2.

FIGURE 3 | Scaling functions Hη (red triangles), HN2 (blue circles), and
HΠ (green diamonds) versus |1/xc −1/x| for simulated suspensions at δ = 1.4
and ζ = 0.50 for 0.52 ≤ ϕ ≤0.63 for exponential form f(σ) � e(σ*/σ). The black
solid triangle shows the slope of −2, the dashed black triangle of −2.75,
the black dash-dotted triangle of −1.5. Data for δ = 1.4 are adapted fromSingh
et al. [15].
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Plotting η′f2 as a function of |x−1
c − x−1| (as indicated by Eq. 3

with the more general g in place of f), a change in slope of the
curve provides insight to whether the two divergences have the
same exponent. In fact, we find evidence they are different.

3.1 Monodisperse Suspensions
We first consider the scaling of data for δ = 1.4. This data was
previously fitted [15] to the forms proposed by Wyart and Cates
[10], with η ~ (1 − ϕ/ϕJ(σ))−2, and has not previously been
studied by the scaling approach presented here. In Figure 2
we plot the scaling function F specific to each rheological
property as a function of the scaling variable x �
f(σ)/(ϕ0J − ϕ) using ϕ0J � 0.646 reported in [15]. We scale
viscosity, following Eq. 1, as F η � η′(ϕ0J − ϕ)2 (Figure 2A)
and find the entire range of monodisperse data show an
excellent collapse on a single universal curve. Note that η′ = ηr
− (1 + 5ϕ/2), in which the nonsingular Einstein contribution due
to individual particles is removed, is the particle interaction
contribution to the relative viscosity; as N2 and Π require
particle interactions, this places all properties on a similar
footing. The monotonic nature of the curves in Figure 2
relative to the ‘U-shape’ curve of Figure 1 is due to the noted

exclusion of shear-thinning data in the scaling analysis. To aid the
reader, in Figure 2A, points in the first two sets of data, for σ/σ0 =
0.2 and 0.3 and appearing at the left of the plot, are labeled with
their respective ϕ values, showing that as σ/σ0 or ϕ increases, we
move from left to right on the curve.

At small values of x � f(σ)/(ϕ0J − ϕ), F η is a constant and
increases as x increases, then eventually diverges at
x � xc � (ϕ0J − ϕμJ)−1 ≈ 16.13. When we adapt Eq. 1 for the
second normal stress difference, the scaling function FN2 �
−N̂2(ϕ0J − ϕ)2 behaves in a similar manner, but with more
scatter for small values of x (Figure 2B). Scatter at small
values of the scaling variable, i.e., at conditions far from the
controlling singularity, is not unexpected.

For the particle pressure, Π̂(ϕ0J − ϕ)2 ~ x does not produce a
data collapse as seen by Figure 2D. Strikingly, we find the scaling
function must have a significantly different exponent, and FΠ �
Π̂(ϕ0J − ϕ)2.75 is shown in Figure 2C to exhibit a good collapse. In
fact, the collapse is arguably better near the divergence at xc than
seen for the viscosity and N2, but we can not presently offer a
mechanistic basis for this difference in the exponent.

We treat the same data shown in Figure 2 using the Cardy
scaling approach, as described by Eq. 3 with f(σ) in place of g (σ,

FIGURE 4 | The scaling function F η � η′(ϕ0J − ϕ)2 plotted as a function of the scaling variable x = f/(ϕ0 − ϕ) for bidisperse suspensions at δ = 3 and varying large
particle fraction (A) ζ = 0.15 (B) ζ = 0.50, (C) ζ = 0.85 over 0.54 ≤ ϕ ≤ 0.60 and 0.32 ≤ σ/σ0 ≤ 562. For ζ = 0.15, the form of f is exponential f(σ) = exp (σ*/σ) with σ* = 1.45, for ζ
= 0.50 and 0.85, it is fitted manually f = ffit.
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ϕ). The two scaling forms have the same physical content, but the
Cardy scaling proves better for understanding the precise form of
the divergence at the second critical point where f(σ) is large and
x ~ xc. Therefore, it is better at identifying changes in the nature of
the divergence (change in exponents) from the frictionless, f(σ) =
0, viscosity divergence to the frictional one. In the Cardy scaling,
the viscosity scaling function is η′f2(σ) ~ Hη(1/xc − 1/x). We
use this scaling form for the normal stresses, as well.

In Figure 3, we plot the scaling functionH as a function of |1/
x − 1/xc| for η′, N̂2, and Π̂. The scaling functions Hη � η′f2 and
HN2 � −N̂f2 have qualitatively similar behavior. Both datasets
collapse on their respective lines having slope of −2 at small values
of x. As x approaches xc, the slope decreases in magnitude. The
value is near −1.5, but the range of data is rather limited for any
conclusions. The particle pressure data again have a distinctly
different behavior, shown by Cardy scaling to be HΠ ~|1/xc −
1/x|−2.75 at small x, with the slope decreasing significantly at larger
x (i.e. at small |1/x − 1/xc|). For all three rheological properties, the
change in slope, or crossover, occurs at |1/xc − 1/x| in the range of
10–1 to 10–2. Importantly, this change in exponent suggests that
the frictionless regime (small x) and the frictional regime (large x)
are qualitatively different and belong to different universality

classes. This agrees with the scaling of experimental data by
Ramaswamy et al. [19], where a reduction in the exponent for
viscosity divergence in the high stress regime was observed, with
the change in exponent occurring in a similar range of |1/x − 1/xc|.

3.2 Bidisperse Suspensions
In this section, we test the scaling of Eq. 1 on our simulation data
from bidisperse suspensions. These are at δ = 3 and ζ = 0.15, 0.50,
and 0.85 for 0.54 ≤ ϕ ≤ 0.60 and 0.32 ≤ σ/σ0 ≤ 562. Based on the
scaling procedure, we find that the data collapse requires
frictionless maximum packing fractions of ϕ0J � 0.65, 0.70, and
0.71 for ζ = 0.15, 0.50, and 0.85, respectively. These values are
slightly lower than those determined in our previous work [32]
using the least-square error method, with ϕ0J being the best fitting
parameter in ηr(ϕ) � (1 − ϕ/ϕ0J)−2 at low shear stress σ/σ≤ 0.32. In
contrast, in the present work, we use a single ϕ0J value for each value
of ζ across the entire range of shear stresses 0.32 ≤ σ/σ0 ≤ 562.

In Figure 4 we plot the viscosity scaling function F η �
η′(ϕ0J − ϕ)2 as a function of the scaling parameter
x � f/(ϕ0J − ϕ). The scaling collapse holds for bidisperse
suspensions for each ζ. Due to different ϕ0J for each ζ, each
data curve diverges at different xc � 1/(ϕ0J − ϕμJ): at xc = 18.18 for

FIGURE 5 | The scaling function FN2 � −N̂2(ϕ0J − ϕ)2 plotted as a function of the scaling variable x = f/(ϕ0 − ϕ) for bidisperse suspensions at δ = 3 and varying large
particle fraction (A) ζ = 0.15 (B) ζ = 0.50, (C) ζ = 0.85 over 0.54 ≤ ϕ ≤ 0.60 and 0.32 ≤ σ/σ0 ≤ 562. For ζ = 0.15, the form of f is exponential f(σ) = exp (σ*/σ) with σ* = 1.45; for ζ
= 0.50 and 0.85, it is fitted manually f = ffit.
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ζ = 0.15 (Figure 4A), xc = 13.51 for ζ = 0.50 (Figure 4B) and xc =
9.26 for ζ = 0.85 (Figure 4C). The scaling functionFN2 (Figure 5)
shows a good collapse at large x, but the data exhibit scatter at
small x. Similar to what was found for the monodisperse
suspensions, the bidisperse particle pressure does not produce
a single curve when scaled as Π̂(ϕ0J − ϕ)2 and plotted as a function
of x. We again find that Π̂(ϕ0J − ϕ)2.75 yields a good collapse
(Figure 6). See Supplemental Material showing Π̂(ϕ0J − ϕ)2 ~ x
not collapsing on a single curve.

For ζ = 0.15, we use f(σ) = exp (σ*/σ), as done for the
monodisperse suspension data. For ζ = 0.50 and 0.85,
however, we have to modify the expression. To do so, we fit
the function manually, calling the result ffit, in order that the data
collapse to their respective curves. The selected values are the
same for any fixed value of σ/σ0, consistent with f = ffit being a
function only of σ and independent of ϕ. It is important to
highlight that the ζ = 0.15 suspension consists of mostly small
particles. This makes the suspension very similar to the
monodisperse case with just a few large particles, thus creating
no issues with using f(σ) = exp (σ*/σ); note that the dominant
fraction is truly monodisperse in this mixture.

FIGURE 6 | The scaling function FΠ � Π̂(ϕ0J − ϕ)2.75 (note the different exponent relative to F η and FN2 in the prior two figure) plotted as a function of the scaling
variable x = f/(ϕ0 − ϕ) for bidisperse suspensions at δ = 3 and varying large particle fraction (A) ζ = 0.15 (B) ζ = 0.50, (C) ζ = 0.85 over 0.54 ≤ ϕ ≤ 0.60 and 0.32 ≤ σ/σ0 ≤ 562.
For ζ = 0.15, the form of f is exponential f(σ) = exp (σ*/σ) with σ* = 1.45; for ζ = 0.50 and 0.85, it is fitted manually f = ffit.

FIGURE 7 | Fraction of frictional contacts f and ffit as a function of
dimensionless shear stress σ/σ0 for monodisperse suspension δ = 1.4 ζ = 0.50
and bidisperse suspensions δ =3 for ζ = 0.15, 0.50 0.85. For δ = 1.4 with ζ =
0.50 and δ = 3 with ζ = 0.15, the form of f is exponential f(σ) = exp (σ*/σ)
with σ* = 1.45. For ζ = 0.50 and 0.85, it is fitted manually f = ffit.
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To illustrate the form of ffit and how it differs from the
exponential f(σ) = exp (σ*/σ), in Figure 7 we plot both forms as
a function of dimensionless shear stress σ/σ0. There are significant
differences, and these depend on the packing parameters. For ζ =
0.85, ffit is larger compared to the exponential f, with df/dσ being
more gradual at low shear stresses σ/σ0 ≤ 3. As shear stress
increases, ffit crosses the exponential f and eventually saturates
at high shear stress but slightly slower than its counterpart. For ζ =
0.50, ffit is slightly larger than the exponential f at low stresses, but
becomes gradually smaller after σ/σ0 ≥ 6 and requires larger stress
to saturate. The difference between the forms of f raises the
question of how f is related to frictional contacts of different
types of particles, i.e. between small-small, small-large, and
large-large particles. Note that in the work of Ramaswamy et al.
[19], it was found necessary to allow a modification of the function
related to the fraction of frictional contacts, g (σ, ϕ) to allow data
collapse; in the current work, the added dependence is not on ϕ but
on packing parameters.

To provide an essentially similar form for each rheological function
across all cases, we normalize the scaled data. Scaling each F by its
baseline value and plotting the result as a function of x/xc, we see that
F η � η′(ϕ0J − ϕ)2 shows an excellent scaling collapse (Figure 8).

FΠ � Π̂(ϕ0J − ϕ)2.75 also shows good scaling collapse for x/xc > 10−1,
but there is significant scatter for smaller x/xc. For FN2 �
−N̂2(ϕ0J − ϕ)2 a common curve emerges as x/xc → 1, but the
general collapse is poorer than we find for the other F -functions.

Cardy scaling: We now apply the Cardy scaling to the
bidisperse suspension data. We plot the scaling functions H
against |1/x − 1/xc| in Figure 9 for η′, N̂2, and Π̂. Recall that
Hη � η′f2 and HN2 � −N̂2f2, while the particle pressure differs
in the exponent of f and is given by HΠ � Π̂f2.75.

For ζ = 0.15, an excellent collapse on the same curve as the
monodisperse data is found over almost five orders of magnitude
in the scaling variable for η′ and N̂2 in Figures 9A,B, respectively;
for ζ = 0.50, the collapse to this same line is equally good for small
|1/x − 1/xc| (approaching frictional jamming) but there is some
evidence of departure from the scaling at |1/x − 1/xc| > 10–1. At
larger values of |1/x − 1/xc|, the behavior is governed for both by
H ~|1/x − 1/xc|−2, i.e., the line has slope of −2. However, this
slope changes to a smaller magnitude at small |1/xc − 1/x|, with
the crossover occurring at |1/xc − 1/x| between 10–2 and 10–1. For
bidisperse suspensions with ζ = 0.85, the data lay off the collapse
curve for |1/x − 1/xc|≳ 10–1, with each separate set of data
corresponding to one shear stress in the range between 0.3 ≤

FIGURE 8 | Scaling functions (A)F η, (B) FN2 , and (C) FΠ, normalized by their baseline values, versus the scaling variable x/xc for simulated monodisperse (δ = 1.4
and ζ = 0.50 over 0.52 ≤ ϕ ≤ 0.63) and bidisperse (δ = 3 for ζ = 0.15, 0.50, 0.85 over 0.54 ≤ ϕ ≤ 0.60) suspensions, where x � f /(ϕ0J − ϕ) and xc � 1/(ϕ0J − ϕμJ). For
monodisperse suspension and bidisperse suspension at ζ = 0.15 the form of f is f(σ) � e−σ*/σ . For bidisperse suspensions at ζ = 0.50 and 0.85 it is ffit. The legend in panel
(A) is used in all plots.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9462219

Malbranche et al. Scaling in Shear Thickening Suspensions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


σ/σ0 ≤ 3; the points in each set labeled by stress level are at
different volume fraction. The higher stress data, σ/σ0 > 3,
eventually collapse on the main line at |1/x − 1/xc|≲ 10–1. The
ζ = 0.85 suspension data not lining up with the rest of the data
highlights the fact that f used to collapse the data in Figures 4–6
and Figure 8, fails in Cardy scaling. This leads us to think that
defining f as a function of shear stress only is not accurate,
perhaps because the frictional contacts between different types of
particles, small-small, small-large, and large-large, are not equal
in their influence on the bulk stress, as was suggested by Guy et al.
in their analysis of the Wyart and Cates [10] approach when
applied to experimental data at δ = 4 [18].

The Cardy scaling of bidisperse particle pressure data shows
two notable features. First is that the scaling requires the different
dependence of f2.75 to achieve collapse, and the data for the
bidisperse cases do not fall on the line with the nearly
monodisperse data, but both have power law scaling with an
exponent of −2.75 at larger values of |1/x − 1/xc| (lower stress).
Similar to η′ and N̂2, the exponent changes to a slightly smaller
value at |1/x − 1/xc| < 10−1. Again, the data for ζ = 0.85 do not
collapse well, except as |1/x − 1/xc| → 0.

The crossover behavior for both monodisperse and bidisperse
suspensions is in line with the findings from experimental work of

Ramaswamy et al. [19] carried out for two different suspensions,
cornstarch in glycerol and silica particles in glycerol-water
mixtures. On the other hand, this appears to disagree with the
previous simulation work [32], where the monodisperse (δ = 1.4, ζ
= 0.50) and bidisperse (δ = 3 and four for ζ = 0.15, 0.50, 0.85)
viscosity data were shown to diverge with a single exponent as
η ~ (ϕJ − ϕ)−2, where ϕJ is the maximum packing fraction that
decreases its value with the increase of σ. In that work, the high-ϕ
data at large σ lay off the power law curve, which was suggested as
potentially being due to underestimation of the maximum packing
fraction. In light of the current work, this discrepancy suggests that
a more sophisticated form of scaling than was used in [32] is
needed to account for the diverging viscosity on approach to ϕμJ .

4 CONCLUSION

We have carried out a scaling analysis on the rheology determined
from simulations of shear-thickening suspensions. This is the first
application of the crossover and Cardy scaling to simulated
suspension rheology data. Our analysis includes nearly
monodisperse suspensions studied in prior work [15] and
bidisperse suspensions with particle size ratio δ = 3 for fractions

FIGURE 9 | The scaling functions (A)Hη � η′(f(σ))2, (B)HN2 � −N̂2(f(σ))2, (C)HΠ � Π̂(f(σ))2 versus |1/xc − 1/x| for monodisperse suspensions with δ = 1.4, ζ
= 0.50 and bidisperse suspensions with δ = 3 and varying ζ = 0.15, 0.50, 0.85 over 0.54 ≤ ϕ ≤ 0.60 for f(σ) � e(σ*/σ) and ffit. Each set of data for ζ = 0.85 belongs to a
specific shear stress (labeled) but varying ϕ. The black solid triangles in (A) and (B) indicate the slope of −2, the black dashed triangle in (C) indicates the slope of −2.75.
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of the particle volume occupied by large particles given by ζ = 0.15,
0.50, and 0.85. We considered first a critical exponent approach
and then Cardy scaling. We showed that the singular part of the
suspension relative viscosity given by η′ = ηr − (1 + 5ϕ/2) exhibits
critical scaling, with the data collapsing to a universal curve when
plotted as η′(ϕ0J − ϕ)2 as a function of f/(ϕ0J − ϕ) for both
monodisperse and bidisperse suspensions studied. Here, ϕ0J is
the frictionless (or low stress) jamming fraction, and the
fraction of frictional contacts f(σ) plays a key role. Note that
while the data collapses with that of the monodisperse case for
the smaller ζ bidisperse suspensions and the flow state diagrams [5,
10, 15] would be qualitatively similar, the forms would differ
quantitatively because jamming fractions and the separation
between them differ with the packing parameters δ and ζ.

The normal stress response was also found to follow the
scaling, albeit with more scatter. Adapting Eq. 1 for
N̂2 � N2/η0 _γ, −N̂2(ϕ0J − ϕ)2 showed reasonably good collapse.
The particle pressure, however, exhibited a different exponent in
order for the data to achieve a collapse, namely Π̂(ϕ0J − ϕ)2.75
collapsed the data, again as a function of f/(ϕ0J − ϕ); we cannot at
present offer a mechanistic basis for this difference in form for the
particle pressure. All functions plotted in this fashion had a
divergence at xc � 1/(ϕμJ − ϕ0J), with ϕμJ the frictional or high
stress jamming fraction. As noted, ϕμJ − ϕ0J differs depending
upon the packing parameters.

The Cardy scaling analysis revealed a change in the exponent
for the divergences of η′, N̂2, and Π̂. We find the frictionless limit
to have a −2 exponent for η′ and N̂2 and −2.75 for Π̂, and the
magnitude decreases to an exponent of ≈ 1.5 as frictional
jamming is approached. The change in slope occurred in the
range |1/xc − 1/x| of 10−1 to 10−2, similar to the location of the
slope change observed in the experimental work of Ramaswamy
et al. for two different systems. In essence, we demonstrated that
all viscosity data, as well as N2 andΠ data could be related to each
other through the scaling parameter x � f/(ϕ0J − ϕ).

We have also demonstrated that the fraction of frictional
contacts f necessary to obtain collapse differs in form depending
on the suspension packing parameters. Specifically, for
monodisperse suspensions and the bidisperse ζ = 0.15-
suspensions, f follows the exponential form f(σ) � e(σ*/σ) which
has been previously described [15]. In order to achieve a collapse
for the bidisperse ζ = 0.50 and 0.85 suspensions, however, we found
that f had to be modified and this was done by fitting the function
manually for each set of packing parameters (δ and ζ), but
otherwise retaining only stress dependence, such that a scaling
collapse could be obtained. This was due in part to the fact that the
different size particles are driven into contact across a range of

stresses, such that the single critical stress is incomplete. However,
consistent with the arguments of Guy et al. [18], the need for
different forms of f depending on ζ appears to also arise from the
different contributions to the stress of frictional contacts between
different types of particles, i.e. small-small, small-large, or large-
large particle interaction, and this topic warrants further
investigation.
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