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A 4 × 20 Gbit/s-40 GHz orthogonal frequency-division multiplexing-based radio-on-free-
space optics information link, integrating hybrid wavelength- and mode-division
multiplexed transmission techniques, is proposed in this paper. Furthermore, an
ameliorated detection scheme deploying a square root module after each photo diode
at the receiver terminal is proposed tomitigate the adverse performance effects because of
nonlinear photodiode characteristics. The presented results show a successful 80 Gbit/s-
160 GHz transmission at 3000 and 2700m under heavy rainy and foggy weather,
respectively. The link demonstrates superior performance in terms of maximum range
and transmission rate compared to previous works.
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1 INTRODUCTION

The exponential rise in the number of mobile service users and the services having high
bandwidth consumption such as HDTV, networking websites, video-conferencing, and cloud
computing, have led to an unparalleled demand in channel bandwidth [1–3]. According to the
Cisco Visual Networking Index [4], the global mobile traffic density is expected to increase
tenfold from 2015 to 2020. Radio-on-free-space optics (RoFSO) transmission is a cutting-edge
data transmission technology for sharing real-time data securely, effectively, and reliably,
irrespective of time and geographical area [5]. In RoFSO links, the costly equipment used
for different signal processing stages including data encoding and decoding, up- and down-
conversion of signal frequency, channel multiplexing and de-multiplexing, and hands-off are
jointly shared with the base transceiver, which minimizes the effective cost in the
implementation of information transportation [6]. Other merits include last-mile access in
rural and remote areas, no security upgrade requirements, no costly fiber deployments and
installation on building rooftops, and so on [7]. However, factors such as signal absorption,
scattering, scintillation, deep fades, and weather conditions degrade the RoFSO link
performance [8]. In temperate regions, heavy rainfall is the most prominent weather
condition that adversely affects the performance of RoFSO links [9]. Fog is a crucial weather
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phenomenon adversely affecting the RoFSO transmission
because the fog particle size is comparable to the carrier-
wavelength used in RoFSO transmission.

Optical orthogonal frequency-division multiplexing (OFDM)
is a subset of multicarrier modulation where the high-speed
information bits are transported over many low-speed sub-
carriers [10, 11]. When implemented with RoFSO
transmission, OFDM results in a low-power consuming and
cost-effective information transmission system with enhanced
performance [7]. In OFDM, a high-bit-rate information stream is
divided into many low-bit-rate streams transported
simultaneously. The main objective of implementing the
OFDM technique is to lower the baud rate so that the system
provides high tolerance to channel effects and deep fades that
degrade the performance of the RoFSO transmission link. The
integration of the OFDM technique with RoFSO links will explore
the combined merits of both technologies to emerge as a viable
solution in providing last-mile access for broadband connectivity
[14]. The merits of hybrid OFDM-RoFSO technology include 1)
high-speed links, 2) elimination of inter-symbol interference
(ISI), 3) improvement of signal-to-noise ratio (SNR), 4) ability
to cope with frequency selective fading, 5) high spectral efficiency,
and 6) robustness against co-channel interference [15].

Figure 1 illustrates the conceptual schematic of the OFDM-
FSO transmission. The input message bits are modulated
employing M-ary schemes such as phase-shift keying (PSK)
and quadrature amplitude modulation (QAM). The
narrowband sub-carriers are more robust to signal fading than
the high-bit-rate signal and do not require any equalization.
These narrowband bit streams are then OFDM modulated
using the inverse fast Fourier transformation (IFFT) algorithm,
and then the cyclic prefix is added to this signal. It is then followed
by digital-to-analog (D/A) conversion and parallel-to-serial (P/S)
conversion. The signal is then modulated over a continuous wave
laser diode and then propagated over free-space channel. At the
input of receiver, a photo diode is deployed, which converts the
input optical beam to electrical signal, and the reverse process is
executed to recover the message signal.

Recently, investigation of OFDM-based FSO links has been
reported in many works. Thus, Zhou et al. exploited OFDM-
based FSO transmission using a 16-level PSK modulation scheme
[16]. Further, the proposed FSO link is investigated for complex

atmospheric weather phenomenon viz. sunny, rainy, snowy, and
foggy states. The simulation analysis of the link demonstrates
reliable high-speed transmission at 500 m FSO range with BER of
10−4.2 and clear constellation plots. In another work reported by
Jaiswal et al. [17], an M-ary QAM based OFDM-FSO link was
investigated under weak and strong turbulence conditions. The
authors compared the performance of 64-level, 128-level, and
256-level QAM schemes. The results indicate that the 64-level
QAM shows better performance, and the link shows reliable
transportation of data at the 7000 m FSO range. Kumar et al.
reported a non-line-of-sight configuration-based OFDM-FSO
link using multi-hop relay [18]. Analog network coding has
been incorporated to provide enhanced throughput, power
efficiency, and BER performance of the link. The
incorporation of coherent detection technique in an OFDM-
based FSO transmission is explored in [19]. 128 and 512 sub-
carrier transmissions were compared, and results indicated that
the SNR performance of the link improves by 6 dB on increasing
the number of sub-carriers. Further, on investigating the link for
varying atmospheric turbulence, the results indicated that the
received signal was more degraded for strong turbulence
conditions. Dabiri et al. compared the 4-level, 16-level, and
64-level QAM transmission in an OFDM-based FSO link
under varying turbulence levels and demonstrated that 4-
QAM was a better choice for modulation scheme when
designing a high-speed FSO link under strong turbulence
conditions [20].

Wavelength division multiplexing (WDM) is an important
technology in which multiple data signals are transported
simultaneously over the same channel using different optical
beams from distinct laser source to realize a high-speed
information transmission link [21, 22]. Figure 2 illustrates the
conceptual block diagram of the WDM-based FSO link.

In WDM systems, multiple information signals from different
transmitter sections each using a distinct laser source are
combined using a WDM multiplexer (MUX), and then the
multiplexed signal is transmitted through free-space channel.
Independent signals at the receiver are demultiplexed by
employing a WDM de-multiplexer (DEMUX) and a dedicated
receiver section demodulates each signal. Shat et al. explored a 3-
channel WDM-FSO transmission in which each channel
transports 2.5 Gbit/s signals [25]. The transmission is

FIGURE 1 | Conceptual schematic of OFDM-FSO transmission.
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investigated for light, medium, and heavy rainy conditions, and
maximum achievable range is computed as 15.6, 6.1, and 3 km,
respectively. Robinson et al. reported a hybrid course wavelength
division multiplexed (CWDM)- and dense wavelength division
multiplexed (DWDM)-based FSO link in which 4 CWDM and
12 DWDM channels, each carrying 2.5 Gbit/s information, were
transported over a free-space channel [26]. The simulation results

demonstrate a reliable 30 Gbit/s transmission at 2.04 km FSO
range for heavy foggy and 2.64 km FSO range for heavy rainy
conditions. Jain et al. reported performance comparison of
return-to-zero and non-return-to-zero modulation schemes in
a DWDM-based FSO link at different optical transmission bands
viz. S, C, and L band [27]. The performance of the link was
investigated at the 10 Gbit/s transmission rate, and non-return-

FIGURE 2 | Conceptual diagram of WDM-based FSO link.

FIGURE 3 | (A) WDM-MDM-OFDM-RoFSO link schematic. (B) sub-channel schematic.
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to-zero at C-band was proved to be an optimal choice for
implementing DWDM systems. The BER performance analysis
of a 4-channel WDM-based FSO link by using the spectrum
slicing technique is discussed in [28]. 4 × 1.56 Gbit/s data

transmission for different climate phenomena of Vellore city
in India have been discussed. The results reported reliable
transmission of all channels at 3.3 km for heavy rainy and
2.7 km for heavy foggy conditions. Furthermore, Huang et al.
explored a WDM-FSO transmission where 4-channels were
transported over free-space at hybrid data transmission rates
using a doublet lens scheme [29]. The authors report reliable
transmission of 10 Gbit/s, 25 Gbit/s, 28 Gbit/s, and 32 Gbit/s
data signals over the 100 m FSO range. The scheme was proposed
for implementing light-based low-cost high-speed WiFi
applications.

Mode division multiplexing (MDM) is a novel technique that
has emerged as a cost-effective solution for providing high-speed
optical communication links [30, 31]. In MDM systems, the
transmission capacity is enhanced by capitalizing Eigen mode
dimension of the laser beam for parallel transportation of
multiple information streams. Rjeb et al. reported the
development and performance investigation of MDM of
orbital angular momentum (OAM) beams with the vortex of
order l � ± 2 in a few mode fiber based on inverse raised cosine
function for improved performance [32]. Rusch et al. explored the
transmission of three quadrature PSK modulated OAM beam
with l � 0, −1, and + 1 over the 1.4 km ring core fiber with
minimum crosstalk using 2 × 2 MIMO processor [33].

FIGURE 4 | Optical spectrum of the transmitted signal.

FIGURE 5 | Spatial profiles of (A) HG01, (B) HG03, (C) LG02, and (D) LG03 modes.
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Further, 4 independent 16-level QAM modulated channels using
linear polarized beams are transported over 0.9 km elliptical ring
core fiber. M. Hussain et al. explored the designing and
investigation of a novel photonic crystal fiber that can
transport up to 26 OAM beams simultaneously with low
crosstalk for high-speed MDM applications [34]. The work in
[35] reported 40 Gbit/s 4-OAM beam transmission under various
FSO weather conditions. The works in [36, 37] report
investigations on the impact of climate conditions on MDM-

based FSO links. Furthermore, the application of FSO links for
inter-satellite data transportation, photonic radar applications,
and 5G services is reported in [41, 42].

Polarization division multiplexing (PDM) is another
important technique that enhances the transmission capacity
and spectral efficiency of optical links. The authors in [60]
reported and investigated 640 Gbit/s hybrid PDM-WDM-
based FSO transmission under adverse climate conditions of
Bangladesh. A 320 Gbit/s hybrid PDM-WDM-based FSO
transmission incorporating the AMI encoding scheme under
adverse climate conditions was discussed in [61]. The
investigations on a binary PSK RF-subcarrier FSO system
using coherent detection under strong turbulence conditions
has been reported in [62]. The performance comparison of
on/off keying, binary, differential, quadrature, and 8-level PSK
under the effect of strong atmospheric turbulent conditions is
reported in [63]. The application of circular PDM with coherent
detection OFDM transmission in FSO for enhanced performance
was reported in [64].

Here, we present the designing of the 80 Gbit/s-160 GHz
RoFSO link using hybrid WDM-MDM-OFDM techniques
with enhanced detection and investigate the proposed link for
heavy rainy and foggy weather. Section 2 elucidates link
schematic, results are discussed in Section 3 followed by the
concluding remarks in Section 4.

2 LINK SCHEMATIC

The schematic of WDM-MDM-OFDM-RoFSO link is elucidated
Figure 3. Opti-System and MATLAB tools were used to
implement this work.

At 193.1 THz central frequency, HG01 transports channel
1 data, and HG03 transports channel 2 data. Likewise, at
193.2 THz, LG02 transports channel 3 data and
LG03 transports channel 4 data. A multiplexer combines both
frequency channels. Figure 4 elucidates the spectrum of the
transmitted signal. Figure 5 shows the excited profiles of HG
and LG modes at the transmitter terminal.

The HG and LG modes are mathematically described using
Eqs. 1, 2 respectively as [36]:

TABLE 1 | Dependence of rainfall rates on visibility [66].

Weathexr Rainfall Rate Visibility

Light rainy weather 0.25 mm/h 18–20 km
Moderate rainy weather 12.5 mm/h 2.8–10 km
Heavy rainy weather 25 mm/h 1.9–2 km

Likewise, fog attenuation can be modeled as [67].

FIGURE 6 | Geometrical loss vs. range.

FIGURE 7 | SNR vs. Range for (A) channel 1 and 2 (B) channel 3 and 4 for heavy rain conditions.
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where theX-polarization axis modal dependency is denoted by m,
the Y-polarization axis modal dependency is denoted by n, the
Laguerre polynomial is denoted by Lnm, and theHermite polynomials

FIGURE 8 | Power vs. Range for (A) channel 1 and 2 (B) channel 3 and 4 for heavy rain conditions.

FIGURE 9 | Constellation graph at 3000 m range for (A) channel 1, (B) channel 2, (C) channel 3, and (D) channel 4 under heavy rainy conditions.
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are denoted byHm and Hn, and the radius of beam and spot size are
denoted by R and w0 , respectively. 20 Gbit/s 4-level QAM signals
having 2-bits per symbol are OFDM modulated using 32 prefix
points, 512 sub-carriers, and 1024 IFFT points. This signal is mixed
with the 7.5 GHz quadrature modulator (QM) at 40 GHz and then
transmitted into the free-space channel modeled as [36]:

PReceived � PTransmitted ( d2R
(dT + θZ)2)10−σZ/10, (3)

where the optical power at the photodetector surface is denoted
by PReceived, transmitted optical power is denoted by PTransmitted ,
the diameter of receiver and transmitter antenna is represented by
dR and dT, respectively, range is represented by Z, and weather
attenuation by σ. The simulation parameters have been
considered as per practical RoFSO links reported in [36–40].
Optical amplifier with 12 dB gain has been deployed for
enhancing the link range. Different modes at the receiver side
are separated using mode selector and the spatial modes are

FIGURE 10 | RF power at the 3000 m range for (A) channel 1, (B) channel 2, (C) channel 3, and (D) channel 4 under heavy rainy conditions.

FIGURE 11 | SNR vs. range for (A) channel 1 and 2 (B) channel 3 and 4 for heavy foggy conditions.
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converted to electrical signal using photodiode. A square root
module (SRm) is used after the photo diode to compensate for its
nonlinear response. The transmitted message is recovered using
the QAM demodulator preceding OFDM and QM decoders.
Attenuation for varying levels of rainy weather can be
calculated using the equation [65]:

βrain � 1.076R0.67, (4)
where R is the rainfall rate in mm/hr. The attenuation because of
rainy weather in RoFSO links can be reasonably approximated by
having information about the visibility range, V (km)
(Table 1) as:

σrain � 2.8
V
, (5)

βfog (λ) �
3.91
V

( λ

550
)−p

, (6)

where λ (nm) is the optical beam wavelength, and p is the
scattering coefficient, which is expressed using Kim’s model
as [68]:

p �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.6 V > 50
1.3 6 <V < 50

0.16V + 0.34 1 <V < 6
V − 0.5 0.5 <V < 1

0 V < 0.5

, (7)

Based on the above equations, the attenuation for heavy rainy
and foggy weather is approximated to be 19.28 and 22 dB/km,

FIGURE 12 | Power vs. range for (A) channel 1 and 2 (B) channel 3 and 4 for heavy foggy conditions.

FIGURE 13 | Modal decomposition analysis of (A) channel 1 HG01 mode (B) channel 2 HG03 mode (C) channel 3 LG02 mode (D) channel 4 LG03 mode.
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respectively [68]. Another factor is geometric loss (AGeo) that
degrades the RoFSO link performance and is expressed as [69]:

AGeo � 10log10[ 4ARX

π(θZ)2] · dB, (8)

where the area of the surface of receiver antenna is expressed as
ARX, the size of laser beam is expressed as θ, and the range is
expressed as Z. Figure 6 reports the geometric loss for the
1000–3500 m FSO range.

3 RESULTS AND DISCUSSION

Figures 7 and 8 report the SNR and power plots at the photo
diode for varying range under heavy rainy weather. It is observed
from Figure 7 that the SNR for channel 1 (HG01 mode) is 60.00,
47.69, and 12.14 dB at the 1000, 2250, and 3500 m range,
respectively, whereas the SNR for channel 2 (HG03 mode) is
59.98, 45.35, and 7.61 dB at the 1000, 2250, and 3500 m range,
respectively. Likewise, the SNR for channel 3 (LG02 mode) is
58.66, 47.30, and 12.04 dB and for channel 4 (LG03 mode) is
58.65, 43.86, and 5.66 dB at the 1000, 2250, and 3500 m range,
respectively. The results show that channel 1 (HG01 mode)
having the highest SNR at the receiver terminal is most robust
against fading followed by channel 3 (LG02 mode), channel 2
(HG03 mode), and channel 4 (LG03 mode). In addition, all the
channels are transported reliably at the 3000 m range with
acceptable SNR at the receiver (~20 dB). Alternatively, it is
observed from Figure 8 that total power for channel
1 is −10.29, −39.98, and −74.19 dBm; for channel
2 is −12.91, −42.64, and −77.69 dBm; for channel
3 is −10.55, −40.24, and −74.81 dBm; and for channel
4 is −13.76, −43.50, and −78.31 dBm at 1000, 2250, and
3500 m, respectively. The highest power at the receiver

terminal is observed for channel 1. Thus, channel 4
(LG03 mode) is most affected by fading, and channel 1
(HG01 mode) is most robust against it.

Figures 9 and 10 present the constellation graph and RF
power for all channels at the 3000 m range. The clear
constellation graph for all the channels in Figure 9 indicates a
reliable 80 Gbit/s-160 GHz transmission at 3000 m under heavy
rainy weather. The results presented in Figure 10 show that the
highest RF power at the receiver terminal is collected by channel
1, which further demonstrates that channel 1 is least susceptible
to channel fading.

Furthermore, the link was investigated for heavy foggy
weather, as illustrated in Figures 11 and 12. The SNR for
channel 1 is 51.84, 45.74, and 19.04 dB; for channel 2 is 51.82,
43.03, and 14.01 dB; for channel 3 is 51.82, 43.34, and 14.57 dB;
and for channel 4 is 51.77, 40.15, and 8.64 dB at the 1000, 2000,
and 3000 m range, respectively. The total power for channel
1 is −11.23, −37.68, and −65.33 dBm; for channel
2 is −14.46, −40.92, and −70.12 dBm; for channel
3 is −14.11, −40.57, and −69.59 dBm; and for channel
4 is −17.57, −44.07, and −74.69 dBm at the 1000, 2000, and
3000 m range, respectively. The results show reliable transmission
of all channels up to the 2700 m range under heavy foggy
conditions with acceptable SNR.

Figure 13 shows the power-coupling coefficients of different
LP modes decomposed at the receiver terminal. For channel 1,
most power is coupled into mode LP [1] followed by LP [1, 2], LP
[1, 3], and LP [2, 3]. For channel 2, most power is coupled into LP
[1, 2] followed by LP [1, 3], LP [1, 3], LP [2, 3], and LP [1, 5]. For
channel 3, most power is coupled into the LP [1, 3] mode followed
by LP [2, 3], LP [1, 2], and LP [1, 3]. For channel 4, most power is
coupled into the LP [1, 2] mode, followed by LP [2], LP [2, 3], and
LP [2, 4]. Further, the comparison of the system performance
with conventional techniques reported in literature is listed in
Table 2.

TABLE 2 | The comparison of the system performance with conventional techniques reported in literature [26, 28, 70–81].

Author/Ref Method Data Rate Atmospheric Condition Link Range (km)

Robinson S et al. Reference [26] Hybrid DWDM + CWDM 12 λ × 2.5 Gbit/s Heavy rain 2.64
Heavy fog 2.04

Prabhu K et al. Reference [28] Spectrum-slicing-based WDM 4 λ × 1.56 Gbit/s Heavy rain 3.3
Heavy fog 2.7

Hatim S et.al. Reference [70] WDM 16 λ × 2.5 Gbit/s Heavy rain 2.4
Gailani S et.al. References [71, 72] Multibeam concept 1 Gbit/s Heavy rain 1.14
Gailani S et.al. References [73, 74] Hybrid WDM-Multibeam concept 4 λ × 1.25 Gbit/s Heavy rain 1.09
Sahu N et.al. Reference [75] Hybrid WDM-Multibeam concept 16 λ × 2.5 Gbit/s Heavy rain 2.54
Robinson S et.al. Reference [76] Hybrid CWDM-Multibeam concept 12 λ × 2.5 Gbit/s Heavy rain 3

Heavy fog 2.35
Kumar N et.al. Reference [77] OFDM 10 Gbit/s Heavy rain 0.6

Heavy fog 0.1
Dayal N et.al. Reference [78] WDM with hybrid optical amplifier 3 λ × 2.5 Gbit/s Heavy rain 5
Kaur G. et.al. Reference [79] SAC-OCDMA with DDW code 5 Gbit/s Heavy rain 1
Sharma V et.al. Reference [80] CO-CDMA with OSSB signal 10 Gbit/s Heavy rain 1

Heavy fog 0.48
Kakati D et.al. Reference [81] DP-16-QAM with DSP 120 Gbit/s Heavy rain 1

Heavy fog 0.4
In this work Hybrid WDM-MDM-OFDM techniques 80 Gbit/s Heavy rain 3

Heavy fog 2.7
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4 CONCLUDING REMARKS

The present work reports the designing and investigation of a
high-speed RoFSO link incorporating hybrid WDM-MDM-
OFDM techniques under heavy rainy and foggy conditions.
Four channels each carrying the 20 Gbit/s-40 GHz information
are successfully transmitted using distinct spatial modes (HG01,
HG03, LG02, and LG03) over the 3000 and 2700 m range under
heavy rain and foggy weather, respectively, with acceptable
performance using an enhanced detection technique involving
the use of SRm at the receiver terminal. The proposed 4 × 20 Gbit/
s-40 GHz-based RoFSO link provides a useful platform for future
long-reach high-capacity RoFSO transmission links. In future
works, the performance of the proposed link will be further
improved by incorporating optical code-division multiple

access transmission along with adaptive optics and digital
signal processing techniques at the receiver.
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