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We demonstrate a Q-switched Er3+-doped ZBLAN fiber laser at 2.8 µm mid-infrared (mid-IR)
region achieved by adopting Te as the saturable absorbermirror (SAM). Themodulation depth
and saturation intensity of the Te-SAM were measured to be ~7.2% and 10.81MW∕cm2,
respectively. Stable Q-switched laser pulses with the maximum pulse energy of 3.05 µJ and
the minimum pulse width of 0.457 µs at the launched pump power of 4.51W were obtained.
Maximum average output power of 357mWwith repetition rate of 116.98 kHz were achieved.
The signal-to-noise ratio (SNR) is 52 dB, which is higher than that of most 2.8 µmmid-infrared
Q-switched fiber lasers reported so far. To the best of our knowledge, this is the first
demonstration from a Q-switched fiber laser at 2.8 µm based on a Te-SAM.
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1 INTRODUCTION

In recent years, mid-infrared lasers have received enormous attentions owing to their substantial
applications in gas detection, remote sensing, spectroscopy, and biomedical surgery [1–6]. In
contrast to continuous-wave ones, mid-IR Q-switched fiber lasers feature the distinct advantages of
high reliability, outstanding beam quality, excellent surface-to-volume ratio, and great efficiency, which
promote their practical applications [7]. Up to present, semiconductor saturable absorption mirrors
(SESAMs), Fe2+:ZnSe crystals, black phosphorus (BP), graphene and topological insulators (Tls) have
been widely applied as saturable absorbers (SAs) in mid-IR passively Q-switched fluoride fiber lasers at
2.8 µm [8–21]. SESAMs have controlled modulation depth but the limited bandwidths make them not
suitable for broadband pulsed lasers. Fe2+:ZnSe crystals exhibit a large saturable absorption cross section
and high damage threshold (~2 J/cm2). However, Fe2+:ZnSe crystals usually have the characteristics of
complex preparation process, relatively expensive cost and narrow absorption band. BP exhibits a large
modulation depth but it is easy to oxidize in the ambient air. Despite graphene is characterized by zero
bandgap, the modulation depth of single-layer graphene is only about 2.3% [22–28].

In this letter, we report, as far as we know, a 2.8 µm mid-IR Er3+-doped ZBLAN Q-switched fiber laser
using Te saturable absorbermirror (SAM) for the first time. The obtainedmaximumoutput power and pulse
energy are 357mW and 3.05 µJ, respectively. The results facilitate the application range of Te-SAM based
Q-Switched fiber laser as well as affirm that Te is expected to be an effective SAM of mid infrared fiber laser.

2 PREPARATION AND CHARACTERIZATION OF TE SATURABLE
ABSORBER MIRROR

In our experiment, Te-SAM were prepared by a common magnetron-sputtering deposition (MSD)
method. First of all, Te target and gold mirror were simultaneously placed in a magnetron sputtering
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chamber, the vacuum pressure of the chamber was pulled to
about 10−3 Pascal. Then, the stimulated ionized Argon ions
rapidly bombarded the Te target. Thus, the Te atoms was
slowly deposited on the gold mirror. An uniformly arranged
tellurium film could be obtained on the surface of the gold mirror
after deposition, the coating time was set to 1 min. The Raman
shift spectra were measured by a Raman spectrometer (LabRAM
HR Evolution, HORIBA Scientific, 514 nm emission) with an
excitation wavelength of 514 nm. Figure 1A presented the surface
of Te film, measured by a scanning electron microscope with a
dense and well-distributed shape. The cross-section image of Te
SAM with cold field emission scanning electron microscope was
displayed in Figure 1B, where the thickness of the Te film was
approximately measured to be 40.7 nm. The thickness of the film
was measured by the atomic force microscope (AFM) in Figures
1A,C highly uniform surface can be observed. As shown in
Figure 1D, the Raman spectra of Te film showed two obvious
peaks located at 122 cm−1 and 140 cm−1, consistenting with the
peaks reported in previous literature [29, 30], implying that the
thin film used in the experiment has high purity. The nonlinear
absorption of Te-coated fiber was studied by using a 2.8 µm
ultrafast light source (pulse width: 350 fs, repetition rate:
68 MHz) built by our laboratory, and the experimental results
were depcited in Figure 2A. The data conformed to the following
equation:

T(I) � 1 − ΔT · exp( − I/Isat) − Tns

Where T(I) is the power-dependent transmission, I is the
incident intensity, ΔT is the modulation depth, Tns is the non-
saturable loss, and Isat is the saturation peak intensity. The

modulation depth ΔT, saturation peak intensity Isat and non-
saturable loss Tns were ~7.2%, ~10.81 MW/cm2, ~76.1%
respectively. The lower modulation depth can be improved by
changing the thickness of Te film. To determine the composition
of the magnetron deposition film, X-ray photoelectron
spectroscopy (XPS) measurements (Thermo Fisher Scientific,
K-Alpha+) were performed, and the data obtained were shown
in Figures 2B,C, all calibrated with a C1s peak of 284.8 eV. The
fully binding energy spectroscopic scan shows a low energy
resolution, and all peaks were related to the expected elements
except for the weak C1s peak caused by air pollution. Figure 2B
shows the high resolution XPS spectra of the characteristic peaks
of the Te sample for determining chemical states and elemental
bonds. Te3d3/2 and Te3d5/2 peaks were found at 583.45 and
573.14 eV, which closely matched the chemical state of Te.

3 EXPERIMENTAL SETUP

Figure 3 depicts the schematic diagram of the passively
Q-switched Er3+-doped ZBLAN fiber laser. The pump was
provided by a commercial 976 nm fiber coupled
semiconductor laser (MChlight, Shenzhen) which can
achieve higher pump efficiency with a maximum output
power of 9 W, a core/cladding diameter of 105/125 μm and a
numerical aperture of 0.22 NA. Two uncoated CaF2 plano-
convex lenses (L1 = 40 mm, T = 98.8% at 976 nm, T = 99.5% at
2.8 µm, L2 = 40 mm, T = 99.5% at 2.8 µm) were used to
collimate and focus the pump beam into a 3 m long double-
cladding 7 mol%-doped Er:ZBLAN fiber with a core diameter
of 15 μm, 1st cladding diameter of 240*260 μm, 2nd cladding

FIGURE 1 | (A) SEM image for surface topography and (B) the lateral surface of the Te-SAM. (C) AFM image. (D) Raman shift spectrum.
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diameter of 290 μm, and a numerical aperture (NA) of 0.12.
Between the two CaF2 plano-convex lenses, a dichroic mirror
M1 with high reflectance of 94% at around 2.8 µm and high
transmittance of 97.6% at 976 nm was placed at a 45° angle of
incidence surface to couple out the 2.8 µm laser. The front end
of the fiber was angle-cleaved at 0° to provide ~4% Fresnel
reflection, while the other fiber end was cleaved at angle of 8° to
suppress parasitic oscillation. Two uncoated CaF2 plano-
convex lenses (L3 = 40 mm, T = 98.8% at 976 nm, T =
99.5% at 2.8 µm, L4 = 40 mm, T = 99.5% at 2.8 µm) were
used to collimate and focus the 2.8 µm laser beam from the
angle-cleaved fiber end onto the Te-SAM. Then another
dichroic mirror M2 (T > 95% @ 976 nm & R > 99% @

2.8 µm) was placed at 45° to couple out the surplus 976 nm
pump light. The average output power of the cavity was
acquired by a power meter (Laserpoint) together with an IR
bandpass filter (Thorlabs, FB2750-500) placed before the
detector which was used to remove the background light. An
detector with a response time of ~2 ns was connected to a 4-
GHz bandwidth digital oscilloscope (ROHDE & SCHWARZ,
RTO2044) to measured the pulse temporal trains. The optical
spectrum was monitored by a optical spectrum analyzer
(YOKOGAWA, AQ6376) with a minimum scanning
resolution of 0.1 nm. A RF spectrum analyzer (ROHDE &
SCHWARZ, FSWP) with a scanning range of 1 MHz–8 GHz
was utilized to analyze the radio frequency (RF) spectrum.

FIGURE 2 | (A) Nonlinear saturable absorption curve of the Te-SAM. (B) XPS core level spectrum of Te 3d. (C) Full XPS spectrum of fabricated Te film.

FIGURE 3 | The schematic of the Q-switched Er:ZBLAN fiber laser.
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4 EXPERIMENTAL RESULTS AND
DISCUSSION

Figure 4 presents the Q-switched pulse sequences and pulses
profiles under different pump powers. Figure 5A displays the
measured output power and calculated pulse energy of
Q-switched pulses as a function of the launched pump power.
It can be achieved in the broad pump power range of 0.99–4.51W
with an output power of 35–357 mW at a slope efficiency of 9.2%

and a pulse energy of 0.77–3.05 µJ. Figure 5B shows the pulse
repetition rate and pulse width as a function of the launched
pump power. As expected, with the increase of the launched
pump power, the repetition rate increased and the pulse width
decreased. When the pump power increased within the above
range, the pulse repetition rate increasd from 45.34 to 116.98 kHz,
and the pulse width decreased from 1.624 to 0.457 µs. In the
system, CW began to oscillate when the launched pump power
was about 0.87W. A self-starting Q-switching train was observed

FIGURE 4 | Typical Q-switched pulse trains at the launched pump powers of (A) 0.99 W, (B) 2.33 W, (C) 3.64 W and (D) 4.51 W, respectively.

FIGURE 5 | (A) Average output power and pulse energy. (B) Repetition rate and pulse width of the Q-switched Er:ZBLAN fiber laser as a function of the pump
power. (C) Spectrum of Q-switching and CW operation. (D) Fundamental repetition rate with RBW of 100 Hz.
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with a pulse width of 1.62 µs and a repetition rate of 45.34 kHz
when the launched pump power exceeded the threshold of
0.99W, as shown in Figure 4A and Figure 5B. As presented
in Figure 4B and Figure 5B, stable Q-switching can be
maintained by slightly increasing the launched pump power to
2.33W and the pulse width was 0.73 µs at a repetition rate of
80.75 kHz. When the launched pump power continued to
increase, the Q-switching operation can be maintained.
Typical Q-switched pulse waveforms at launched pump power
of 3.64 and 4.51 W are shown in Figures 4C,D. Their pulse width
were 0.54 and 0.457 µs, respectively. At the same time, the
corresponding repetition rates were 104.63 and 116.98 kHz,
respectively. The optical and RF spectrum were measured at
the maximum pump power of 4.51 W. Figure 5C depicts the
pulse spectrum of the laser under continuous-wave (CW)
centered at 2,775 nm and Q-switching operation centered at
2,782.35 nm, the recording range is 70 nm (from 2,740 to
2,810 nm). The signal-to-noise ratio (SNR) of the RF spectrum
is measured to be 52 dB at a resolution bandwidth (RBW) of
100 Hz in a 1000-kHz scanning span, indicating a stable
Q-switching regime, as shown in Figure 5D. When the
launched pump power was higher than 4.51W, the
Q-switching pulse began to become unstable but Q-switching
can still be realized by focusing.

5 CONCLUSION

In conclusion, we have presented a mid-infrared 2.8 µm
Q-switched Er:ZBLAN fiber laser using Te as a Q-switcher for
the first time to the best of our knowledge. The Te-SAM has a
modulation depth of ~7.2% and saturation intensity of
10.81 MW/cm2, respectively. Stable Q-switched pulse trains

were obtained with a repetition rate of 116.98 kHz and a pulse
width of 0.457 µs at the maximum launched pump power. The
maximum pulse energy of 3.05 µJ, average output power of
357 mW were achieved, respectively. The signal-to-noise ratio
(SNR) is 52 dB, which is higher than most known 2.8 µm mid
infrared Q-switched fiber lasers. The research results not only
indicate that Te is an excellent SA material for stable pulses
generation in mid-IR Q-switched fiber lasers but also provides a
cost-effective method for the preparation of mid-infrared SAM.
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