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Harm can be caused to people and property by any highly-automated system,

evenwith a human user, due tomisuse or design; butwhich human has the legal

liability for the consequences of the harm is not clear, or even which laws apply.

The position is less clear for an interdependent Autonomous Human Machine

Team System (A-HMT-S) which achieves its aim by reallocating tasks and

resources between the human Team Leader and the Cyber Physical System

(CPS). A-HMT-S are now feasible and may be the only solution for complex

problems. However, legal authorities presume that humans are ultimately

responsible for the actions of any automated system, including ones using

Artificial Intelligence (AI) to replace human judgement. The concept of trust for

an A-HMT-S using AI is examined in this paper with three critical questions

being posed which must be addressed before an A-HMT-S can be trusted. A

hierarchical system architecture is used to answer these questions, combined

with a method to limit a node’s behaviour, ensuring actions requiring human

judgement are referred to the user. The underpinning issues requiring Research

and Development (R&D) for A-HMT-S applications are identified and where

legal input is required to minimize financial and legal risk for all stakeholders.

This work takes a step towards addressing the problems of developing

autonomy for interdependent human-machine teams and systems.

KEYWORDS

human machine team, trust, autonomy, legal liability, artificial intelligence, risk,
interdependence

Introduction

Achieving Artificial Intelligence’s (AI) full potential for any application will require

considerable research and engineering effort [1]. New AI-engineering techniques will

need to be developed, especially when AI-based systems interact with humans [2].

Technology has evolved to the point where Human Machine Teams (HMTs) can

dynamically and automatically reallocate tasks between human and machine team

members to optimise workloads and resource usage, an Autonomous Human

Machine Team System (A-HMT-S). However, interdependence between team

members with very different capabilities raises serious system challenges to ensure the

safe, trusted transfer of authority between human and machine.

OPEN ACCESS

EDITED BY

William Frere Lawless,
Paine College, United States

REVIEWED BY

Dioneia Motta Monte-Serrat,
University of São Paulo, Brazil
Victoria Hailey,
VHG-The Victoria Hailey Group
Corporation, Canada
David Short,
BAE Systems, United Kingdom

*CORRESPONDENCE

Tony Gillespie,
Anthony.gillespie@ucl.ac.uk

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 12 May 2022
ACCEPTED 27 June 2022
PUBLISHED 22 July 2022

CITATION

Gillespie T (2022), Building trust and
responsibility into autonomous human-
machine teams.
Front. Phys. 10:942245.
doi: 10.3389/fphy.2022.942245

COPYRIGHT

© 2022 Gillespie. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 22 July 2022
DOI 10.3389/fphy.2022.942245

https://www.frontiersin.org/articles/10.3389/fphy.2022.942245/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.942245/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.942245/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.942245&domain=pdf&date_stamp=2022-07-22
mailto:Anthony.gillespie@ucl.ac.uk
https://doi.org/10.3389/fphy.2022.942245
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.942245


When the human user of a Cyber-Physical System (CPS) has

given it an aim, and its subsequent actions are guided by AI,

questions arise about the roles of the human, the AI, and that of

the people responsible for its autonomous behaviour. Who was

responsible for its actions and any harm caused by those actions?

The legal position is evolving, with no clear consensus. Reference

[3] covers the current legal position for AI and suggests likely

developments.

The use of an A-HMT-S to achieve an aim implies complexity,

requiring reasoning to achieve it. Although a team approach may

be efficient, there are legal complications when the aim is to take an

action, or to provide information for someone or something to

take an action that could cause harm. Assignment of responsibly

for the consequences of machine-made decisions is becoming an

important issue now that CPS such as “autonomous” cars have

already caused serious injury to humans. Even in this case, there is

divergence between national jurisdictions [4].

Singapore is exploiting its unique geography and legal system

to advance the use of Autonomous Vehicles (AVs) through road

trials with close interaction between the government, regulators,

and industry [5]. They expect to continue this collaboration as

technology, public opinion, and law develop.

The United States government also see legal issues arising

now and in the future. The US Department Of Transportation’s

latest autonomous vehicles guidance document [6] states that

jurisdictional questions are likely to be raised by Automated-

Driving-System (ADS) enabled vehicles which they need to

address as a regulatory approach is developed.

The Chinese legal system may also need urgent revision to

meet the needs of AVs [7].

The English and Scottish Law Commissions, on behalf of their

governments, formally review important societal developments to

provide a basis for new legislation. The final report [8] of their AV

Project [9] concludes that the problem of assigning legal

responsibility and hence liability for harm is unclear and,

additionally, that this lack of clarity applies across all

autonomous products. Their view is that using autonomy levels

to describe a system is legally meaningless; an automated vehicle is

either autonomous or it is not, with different laws applying in the

two cases. AVs require a new regulatory authority, with

responsibility and hence liability lying with the organizations

responsible for the supply and maintenance of an automated

driving system; in all other cases the driver is responsible. Data

must also be recorded, stored, and provided for use in accident

enquiries. Their recommendations directly affect all aspects of

autonomous system design.

Analogous principles cover lethal autonomous weapon

systems [10], so it can be assumed that most, if not all,

A-HMT-Ss will provoke similar ones with responsibilities on

all participants in the design cycle.

The legal views can be summarized in one system

requirement which must be used in deriving more detailed

system requirements:

Responsibility for all decisions and actions of an A-HMT-S

must be traceable by an enquiry to an identifiable person, or

role-holder, in the organization using or supplying it.

The core problem with meeting this requirement for AI-based

actions is their non-deterministic nature and consequent uncertainties

in a system’s behaviour. Considerable Research and Development

(R&D) work will be needed to allow risk management of these legal

issues in A-HMT-S lifecycles, as is the case with current safety-related

systems. This paper identifies three key questionswhich are addressed,

giving methods for acceptable risk management in meeting the

requirement, and identifying the areas for R&D when AI is

introduced into an interdependent A-HMT-S.

Assumptions and terminology

An A-HMT-S comprises at least one human and one or more

CPS, with continual interaction between them, reallocating tasks as

necessary.Only onehuman canbe theTeamLeaderwith responsibility

for the actions of the A-HMT-S. Their interaction with the A-HMT-S

is through the Human Machine Interface (HMI) which has an

important place in an A-HMT-S as emphasised by [11, 12].

It is assumed that any A-HMT-S can cause unacceptable

harm to a person or property if its behaviour is not controlled.

This gives a requirement for trust which is defined as [13].

The willingness of a party to be vulnerable to the actions of

another party based on the expectation that the other will

perform a particular action important to the trustor,

irrespective of the ability to monitor or control that other party.

Trustworthiness, the property required to be trusted, is

defined as [14]:

The demonstrable likelihood that the system performs

according to designed behavior under any set of conditions

as evidenced by characteristics including, but not limited to,

safety, security, privacy, reliability and resilience.

Dynamic human machine teaming
and trust

The simplest non-adaptive HMT has a human using

automated, deterministic subsystems to meet their aims by

delegating tasks to single or multiple subsystems. The human

issues instructions, updating them based on either their

responses, sensor information or a change in aims, i.e. all

adaption is by the human. Safety is assured by a combination

of testing and mechanical, electrical or software limits. When the

subsystem responses are deterministic, human users have a

trusted mental model of the system and will accept
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responsibility for the consequences of their instructions. It is

assumed that the human is authorised to operate the system,

indicating a level of trust in them by others, i.e., the HMT is

trustworthy.

When resources and tasks need rapid, multiple reassignments,

these must be automated and dynamic for optimum performance.

“Optimum performance” will be system-dependent but must

include ensuring that human workloads allow them to make

considered decisions. The HMT is then an interdependent

A-HMT-S, responding to external changes by internal

reorganizations to meet its aims, with a human Team Leader.

Trust can be seen as a problem of ensuring that the Team

Leader knows that the system is reliable, and well tested, with

bounds to its action. It then follows that the trustworthiness of

each element of the A-HMT-S is known. We take the view here

that, in addition to the definition of trustworthy given in the

Assumptions and Terminology section, human trust requires

that the A-HMT-S responses can be understood and accepted as

reasonable even if they are not necessarily the expected ones. The

Team Leader is likely to develop trust in the CPS elements if they

reliably achieve their aims but report back if there are problems.

The HMI provides the Team Leader with information about

team status and task progress. The Team Leader will have a mental

model of the A-HMT-S, with varying levels of detail and accuracy of

its subsystems and resources, which provides expectations of system

behaviour as conditions change. The control problem then becomes

one of compatibility between the Team Leader’s expectations and

the information presented by the HMI. The HMI is taken to be a

control station with a pre-determined range of user controls and

displays that change depending on predetermined variables. The

variables will include the user’s workload and situational awareness

as measured by the HMI, supplemented, if necessary, by other

sensors. This implementation is an adaptive HMI as described by

Blakeney [15]. Using the information provided by the HMI, the

Team Leader decides if new system instructions are needed, checks

that the system is trustworthy if changes are necessary, and issues the

instructions through the HMI.

The subsystem implementing the instructions by making

dynamic system control decisions has a crucial role. This role

has been demonstrated for simulated environments using either a

cyber planner/controller [11], or splitting it into a dynamic context

manager and an adaptive controller [12] as shown in Figure 1. This

shows that Machine Learning (ML) can be used in different places

to support CPHS performance. However, ML is likely to introduce

non-deterministic inputs into the A-HMT-S′ control system,

giving the potential for instability. This makes it essential to

identify the role ML plays in control decisions and which node

has the authorisation to initiate the consequent actions. Unless this

is known, the Team Leader cannot justify the system’s decisions or

be responsible for its consequent actions.

The preceding arguments show three issues when ML plays a

role in decisions and actions in an A-HMT-S:

Issue 1. An adaptive HMI which learns and adapts its outputs,

based on its own model of the Team Leader, must still present

the essential information for the human to accept

responsibility for the actions of the A-HMT-S;

Issue 2. Automation in the cyber planner/controller means

that the Team Leader is not choosing the subsystems for a task

at any given time. The introduction of ML into this choice will

FIGURE 1
(A) An A-HMT-Swith AI andML embedded in the cyber planner/controller (Adapted fromMadni &Madni 2018). (B) An A-HMT-Swith its control
elements drawing on results from separate on-line ML systems that are not in the control chain. (Adapted from Madni et al. 2018).
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lead to the system changing task and resource allocation

according to circumstances as judged by a non-

deterministic subsystem in the control chain;

Issue 3. ML in subsystems may change their behaviour due to its

own understanding of circumstances, not necessarily that of the

higher-level systems. The higher levels could request an action

from a subsystemwhose behaviour has changed andwill respond

in a manner not expected by a higher level. Both will then try to

understand the situation and remedy it but, without close

feedback, confusion is highly likely. This is an example of the

wicked problem. a well-known one in systems engineering [16].

These issues must be addressed before a human can trust an

A-HMT-S and accept responsibility for its actions.

Trust in any AI system depends on many characteristics. Alix

et al. [17] give: reliability; robustness; resistance to attack;

transparency; predictability; data security; and protection

against incorrect use. They then propose that an AI-based

system has to implement the three following features:

• Validity to make sure that the AI-based system must do

what it is supposed to do, all what it is supposed to do, and

only what is supposed to do. It is crucial to deliver reliable,

robust, safe and secure critical systems.

• Explainability to make the team leader confident with the AI

based system through human-oriented and understandable

causal justifications of the AI results. Indeed, the end-team

leaders’ trust cannot be neglected to adopt AI-based systems.

• Accountability in respect of ethical standards and of lawful

and fair behaviours.

These assume that an AI system will act on its decisions without

human intervention, implying that the Team Leader is comfortable

taking responsibility for all its actions, a very high threshold for trust.

The threshold can be lowered if the systemmakes effective predictions

about the consequences of its actions but if there is doubt about the

effect of the action, or if it will exceed a predetermined limit, then the

action and its justification is referred to the human Team Leader first.

This behaviour is analogous to a member of an all-human team

referring to the team leader for confirmation of an action or requesting

an alternative course of action.

Summarizing, an A-HMT-S must be trustworthy by design

and only take actions that are limited and authorised through its

organizational structure, with reference to the Team Leader if

necessary. The important questions that must be answered before

an A-HMT-S can be trusted and used are:

Q1. Can a dynamic A-HMT-S with AI be designed so that the

liability for the consequences of every action are clearly

assigned to an identifiable human or organisation?

Q2. What guidance can be given to all stakeholders, including

regulators, to ensure clear identification of responsibility for

actions by the A-HMT-S?

Q3. How will the potentially liable individuals develop

sufficient trust to carry out their work?

These questions must be resolved for a new design by setting

requirements with possible design solutions. The resolution for

an existing system will concern its actual performance and setting

limits on its behaviour. An architectural approach is taken as it is

a well-known methodology for both new and existing systems

The architecture and the views used to describe it must be precise,

internally consistent, and describe the system to the level of detail

needed to answer the questions.

Architectures for an A-HMT-S

Architecture aim

Every A-HMT-S must have a consistent and coherent

structure which can be described by an architecture which

drives its design and upgrades by decomposition of high-level

requirements into verifiable system and subsystem requirements

and behaviours. Every examination of the system will use

architecture views to describe the particular aspects required

for a specific aim. The views are drawn up and analysed using

standard engineering processes to achieve that aim.

The aim in this paper is to demonstrate that a dynamic

A-HMT-S with AI, including ML, can be trustworthy; it must

answer the questions at the end of Section 3 and meet the top-

level requirement given in the Introduction. It follows that the

architecture must separate decisions from actions and embed

clear authorisation of actions before they are taken. It is assumed

that the A-HMT-S will have to achieve its goals in environments

with varying levels of complexity and associated uncertainties.

The architecture aims should be achieved by:

1. using a model of human cognition and action to describe all

subsystems in the architecture;

2. having a clear line of control and action authorisation from

the Team leader down to the lowest level subsystem;

3. enabling rapid referral up the control chain if a node does not

have the authority to act

4. giving the Team leader visibility of the automated subsystems’

options in making decisions if needed; and by

5. providing or establishing clear limits to actions which can be

taken by every subsystem in the architecture.

The 4D/RCS architecture

The 4D/RCS Reference Model Architecture for Unmanned

Vehicle Systems V 2.0 [18], is used here as it meets the five

criteria set out in Section 4.1. It has been demonstrated with

human levels of intelligence in its subsystems [19] and for
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identifying legal responsibilities in autonomous systems [20]. A

full description of, and application as a hierarchical control

structure for road vehicles is given in Ref. [21]. Other

hierarchical architectures could be used provided they clearly

identify where decisions are made and where the authorisation of

these actions occurs.

The 4D/RCS architecture was devised for military

command structures from high command to vehicle

actuators. It defines responsibility for actions made by nodes

which may be either human, machine or a mixture of the two. A

node is defined as an organizational unit of a 4D/RCS system

that processes sensory information, computes values, maintains

a world model, generates predictions, formulates plans, and

executes tasks.

Processes to apply the architecture are described in [22].

Descriptions of its use to identify legal responsibilities for the

control of unmanned weapon systems and for autonomous

cars is given elsewhere [23–25]. It is applied here to address

the problems of trust and responsibility for the human Team

leader by consideration of the three questions at the end of

previous section.

Figure 2A is from the standard and shows a single node.

Figure 2B is a schematic representation of its principle functions

used later for simplicity. These functions are:

• the knowledge database which is the common repository

for information for all nodes at that level;

• sensory processing which interprets sensor data and

reports it to higher levels;

• a dynamic world model at every level with the resolution

appropriate to that level. It is continually updated, based on

information from the sensory processing function at that

level. The distinguishing feature of 4D/RCS is that the

world model makes predictions about the consequences of

potential actions;

• the value judgement function assesses the predictions from

the world model against the node’s success criteria and

ranks options for action; and

FIGURE 2
(A) A single 4D/RCS node, taken from NSTIR6910. (B) A schematic representation of a node used in later figures. Key: Value Judgement (VJ),
Behaviour Generator (BG), Sensory Processing (SP), World Modelling (WM), Knowledge Database (KD).
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• the behaviour generator takes the value judgement’s

outputs and acts, setting goals and success criteria for

lower levels; if there is no safe action, the behaviour

generator makes its part of the system execute a fail-safe

mode, informing other nodes of its action.

The sensory processing, value judgement and behaviour

generator functions form the three-part model of human

decision-making and behaviours as described by Rasmussen [26]

and the Observe, Orient, Decide, and Act (OODA) loop [27]. This

model enables a common representation of both human and

automated nodes. A node can have non-deterministic behaviour

provided its actions are limited to its level of responsibility. Authority

for decisions and responsibility for the consequences of their actions

is determined through the commands and responses in the hierarchy

of behaviour generators. The concept of authorised power has been

introduced recently which sets the limits to a node’s freedom of

action. It is defined as [28]:

The range of actions that a node is allowed to implement without

referring to a superior node; no other actions being allowed.

This restriction allows hard limits to be set on a node’s

behaviour. Their sum for all nodes restricts the overall A-HMT-

S′ behaviour, giving a basis for specifying trustworthiness in

engineering terminology.

4D/RCS applied to an A-HMT-S

Figure 3 gives the broad characteristics of a 4D/RCS

architecture for an A-HMT-S, with the user as Team Leader

at Level 1 and the plurality of resources needed to complete the

system’s overall tasks at Level 5. For clarity, individual nodes are

shown as blocks, each one representing a 4D/RCS node as shown

in the dashed box in the figure. External information sources will

be available at many levels, and indicated where appropriate.

Nodes at every level report to only one node in the next

higher level, with clear responsibilities and limits to their actions

based on their fixed position in the architecture. Sensory

processing information is shared across levels in the hierarchy

and can be passed up to the highest level. All information is

shared between nodes at the same level as they have a common

knowledge database.

Common response times, or other characteristics, across a

level allows simplification of the data structure and world model

at that level. They also enhance detection of differences between

the real and expected world at any level, with a rapid escalation of

FIGURE 3
An interdependent A-HMT-S structured as a 4D/RCS architecture with a 804 human as Team Leader. Acronyms in node are in the key for Figure 2.
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the awareness of a problem. The time divisions for an A-HMT-S

are not as straightforward as in the original concept for 4D/RCS.

It should be possible to construct a set of timescales for any given

application, recognising that there will be a range of timescales

for completion of activities at any given level.

ML has been incorporated into 4D/RCS. Initially Aldus et al.

put ML solely in the world models at different node levels, using

it to assimilate data in many formats [29] but later incorporated

ML in more node functions in the system [30] during the

DARPA Learning Applied to Ground Robots (LAGR)

programme; in particular the authors state that:

The learning in each of the modules is not simply added on to

the process that implements the module. It is embedded as

part of the module, and operates in accordance with its

location in the hierarchy.

An adaptive HMI at Level 2 with the sensors monitoring the

Team Leader meets this criterion for an A-HMT-S. Elsewhere ML

can be introduced into functions within any node in the hierarchy

provided there are clear authorised powers set for each node.

The node hierarchy of 4D/RCS ensures precise specification of

every node’s individual role and hence its responsibility. It builds in a

well-structured control chain that allows tasks to be transferred

between nodes provided that this transfer is authorised by the next

higher level in the hierarchy. The nodes at any given level are

interdependent, but this interdependence is managed at the next

higher level. The problemhere is that task allocation is dynamic, based

onnodeworkload at any given time. Task reallocation can be rapid for

the completely automated nodes, but the human nodes must be given

enough time and information tomake considered decisions. Assessing

and quantifying human cognition times in a dynamic systemwill be a

problem requiring a model of the Team Leader.

Inside the architecture

It is necessary to examine each level in Figure 3 in more detail

to establish the feasibility of an A-HMT-S and the key problems

requiring solutions. An A-HMT-S must assess available options

for actions and their consequences by comparing plans with the

current “real” world as reported by the sensory processing

function. The world model at each level is a key part of this

process, with its role brought out in the following sections.

It is likely that the problems highlighted by the analysis here

will be common to all architecture frameworks, so they could

become potential research topics if not already developed.

Level 1, the human team leader

The Team Leader will have direct access to the functions in

the HMI and indirectly to lower-level functions through the

behaviour generator chain. Team-Leader visibility of all parts of

the system is made available through the HMI sensory processing

module.

Level 1 functions are specified to ensure the owner’s business

priorities are met, monitoring the current team status, predicting

future events, and resolving conflicts. Although a team member,

the Team Leader’s role must be the highest hierarchical level,

instructing lower levels. Instructions are given as team goals and

success criteria, with priority weightings for the A-HMT-S to

interpret. The Team Leader must also trust the CPS to flag up all

those problems requiring their attention through the HMI.

It is essential that the Team Leader’s workload is manageable

so there is time to understand the options considered by lower

levels and the issues they cannot resolve. It is assumed that the

Team Leader’s workload can be monitored at Level

2 supplemented by other sensors if necessary. Potential

overloads will be presented to the Team Leader with Level 2’s

recommendations for their removal. The Team Leader will then

decide what new instructions must be issued.

A smaller A-HMT-Smay have the Team Leader also carrying

out some Level 4 functions in parallel with Level 1 functions. This

structure does not fit in an ideal hierarchical architecture and

would need detailed attention in system design. Potential

solutions might include applying a temporary surrogate chain

of command at Levels 1 or 4 whilst the Team Leader concentrates

on the higher priority functions, or delaying the Level 4 task and

letting the low-level consequences be managed automatically.

Level 2, the HMI

The interaction between the Team Leader and the CPHS will

be through the HMI at Level 2. It is put in Figure 3 as a specific

function, followingMadni &Madni andMadni et al. [11, 12] as it

plays a key role in any human-machine system. The Team Leader

will probably have access to other information sources such as

phones, direct visual checks and independent access to the

internet.

The HMI’s first role is to translates Team-Leader-defined

aims or changes into goals for the system with priorities and

other necessary information. The information is passed through

the behaviour generator chain to Level 3. The Team Leader must

have both cognition of the A-HMT-S task status and the detail

required to issue effective instructions. Although this is a normal

human factors problem, it does not help solve the problem of

translating human-language queries or goal changes into team

instructions in the machine language used at Level 3.

The HMI’s second role is the separation of functions between

the Team Leader and the dynamic task manager so that the Team

Leader does not become overloaded by involvment in actions

which can be handled automatically. Part of this role is to

monitor the Team Leader’s own workload through indicators

such as response times and other indicators of their cognitive and
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physical state. If the workload is excessive, the HMI must present

the Team Leader with options for reducing it. With ML, the

A-HMT-S can learn an individual Team Leader’s behaviour and

overload signatures, but it must recognize individuals and

variations in their performance.

The HMI can only direct changes at lower levels, through the

behaviour generator chain, if it sees a problem and has the

authority to implement a solution. Specific system designs will

need to address which actions it can take, and how the reasoning

is presented to the Team Leader when action is taken.

The HMI’s third role is to ensure that the Team Leader is

presented with clear statements of problems which it cannot

resolve, backed up with relevant information and options

considered for action. It checks that the current and predicted

operations are being managed correctly at Level 3, flagging actual

and potential problems to Level 1. Problems can be identified by

both the HMI and Level 3. The Team Leader may then wish to

access further data from Level 3 and add new information into

the HMI knowledge database to increase the range of options. It

may be necessary for some of this information to be passed to

lower levels for more detailed analysis, but kept separate from

measured sensor data.

These three roles are fixed, so the HMI is not one of the nodes

that can have its tasks changed by the dynamic task manager.

However, if it determines that the Team Leader’s workload or

situation awareness is likely to be outside a safe and efficient level

it will inform both the Team Leader and the dynamic task

manager. The dynamic task manager can make suggestions to

the Team Leader through the HMI but not act on them. The

Team Leader can change his or her tasks and workload through

the HMI’s behaviour generator chain.

The HMI world model requires a model of human

capabilities, the human’s state and warning signs of overload

based on available sensor mechanisms. The model may be

supplemented with information about individual Team

Leaders if this is permitted. The use of the three-part model

of cognition in 4D/RCS will facilitate this interface.

This HMI world model will require all the information from

the Level 3 model, and set it in the wider context of external

factors acting on the A-HMT-S. The wider factors included at

Level 3 will have been filtered for reasons given in the next

section; the HMI can use the Level 3 internet access to overwrite

its constraints whilst deriving its own options and selections for

presentation to the Team Leader. The Team Leader will also have

this option through the sensory processing chain for their own

mental model.

Level 3, dynamic task manager

Level 3, the dynamic task manager, has only one node, the

CPS manager and its external information sources. The external

sources may include the internet, but this must be well controlled.

The use of external AI engines to search for and select

information may not be reliable so, as a minimum,

information will need to be tagged with its source and an

estimate of reliability. Unquestioning acceptance and use of

external search engine results will expose the Team Leader to

unacceptable risk as a court may decide later that the information

was clearly unsuitable for the A-HMT-S’s use.

The CPS manager’s role is to provide efficient use of

resources at Level 4 and below. It specifies the tasks required

to meet the goals and priorities from Level 2, their success criteria

and other instructions, then issuing them to Level 4 through the

behaviour generator chain. It draws on timely information about

task status from Level 4 and allowed external information

sources; these form its sensory processing functions. Decisions

to assign and reassign resources are taken by its behaviour

generator either autonomously or after referral to Level 2 and

possibly Level 1. Level 3 is the lowest level at which there is an

overview of all tasks.

The Level 3 world model includes: all current tasks and their

status; available resources; and their allocation to tasks, both current

and future. It will not have all the detailed task information in the

Level 4 worldmodel. The Level 3 worldmodel will include the wider

activities which do not form part of a task but do affect them.

Examples are maintenance and staff holidays.

Comparison of Level 3’s sensory processing function output,

workload plans and task success criteria will identify potential

problem areas for action by Level 2 if it cannot resolve them itself.

The system architecture must mandate whether all changes at

Level 4 are dictated by Level 3 or if Level 4 nodes are allowed to

negotiate due transfer of resources or parts of tasks between

themselves at a local level. This transfer could be advantageous as

it removes work from Level 3 but could create problems if the

Level 3 world model is not aware that these changes have been

made. The use of surrogate chains of command may provide a

solution to these problems.

Level 4, individual task management

Individual tasks are managed at Level 4 by drawing on the

human, physical and cyber resources at Level 5 and below which

have been allocated to the task by Level 3. The names for the

Level 4 nodes in Figure 3 simply reflect the types of task required,

and do not imply a separation of task types based on their

required resources. It is unlikely that a human will manage tasks

at Level 4, although there may be parts of many tasks which

require human resources at Level 5.

The world model and knowledge database common to all Level

4 nodes include resources and their availability for each task as a

function of time. Time resolution and resource detail will be lower

than that required at Level 5. The world model predicts the effects of

changes due to instructions from above or responses from lower

levels. Task-related problems will become known at Level 4, giving it
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the ability to solve many of them. However, each node must have

clear limits on its authority to authorize actions with consequences

outside its own task. The Level 4 nodes must have the ability to flag

problems for attention by higher levels. An example might be when

two tasks require the same resource at the same time in the future

which Level 3 could resolve by changing the time criteria on one task

or by redeploying resources across several tasks.

Level 5, resources

Functions below Level 4 are not considered in any detail here

as their structure depends on the specificA-HMT-S, recognising

this treatment as a necessary simplification. However the 4D/RCS

architecture and the structure of Level 4 do set some constraints on

Level 5 nodes and the functions they perform.

The complexity of the nodes at this level will depend on the

A-HMT-S under consideration. A nodemay include all the dedicated

resources for one task which are always allocated to that node, the

resources being used for other tasks only when that task is not needed.

On the other hand, nodes may be subsets of physical or computing

resources suitable for a range of tasks; their allocation at any time being

under the control of Level 4 task managers. It is unlikely that nodes at

this level will be able to negotiate reallocations between them.

Any given Level 5 nodemay be a complex system in its own right;

for example it could be an electro-mechanical system embodying

complex adaptive control systems using advanced methods [31].

These systems could easily include AI-based techniques provided

their freedom of action is limited by a suitably framed authorised

power covering cyber and physical outputs.

There are workload monitors for every resource at Level 5.

These may be discrete components such as thermometers for

motor drives, or they may be a part of a resource’s software.

Combinations of individual resource sensors may need to be

reconfigured when resources are reallocated to determine the

workload being used for current tasks.

The Level 5 world model will be centred on resources and their

current and future allocation to tasks on the shortest timescales. It will

be based on the structures below Level 5 and their requirements as the

tasks evolve. However, it will be visible to higher levels through the

sensory processing chain which enables the Team Leader to request

information about every resource in the system. The higher levels may

consider that changes in resource allocation or task parameters are

necessary at Level 5 or below, but they can only make these changes

using the behaviour generator chain which will identify the

consequences of such requests and then report back.

Decision making process and action
authorisation in a node

Each node in Figure 3 fits in the 4D/RCS hierarchy as shown

in Figure 4. (For clarity, lower nodes are only shown for the

middle node). Every node’s aim is to execute its task whilst

managing workloads for the resources under its control. It is

given tasks and success criteria from its superior node; these are

interpreted, and subordinate nodes are given their tasks and

success criteria through its behaviour generator. The knowledge

database is shared across its level. Every node’s actions are

constrained by node-specific authorised powers.

Figure 5 shows the information flows inside the node. The

four principal node functions are indicated by the shaded areas.

For simplicity, it is assumed here that the A-HMT-S is already

executing a task and that the new instructions will change its

plans. Instructions are aims for the revised task and, if necessary,

revised success criteria to assess task completion. The node

checks that the task is within its authorised power and then

derives one or more workload plans for comparison with the

current world.

The current world model covers the timeframe relevant to

this level in the hierarchy and is derived from the sensory

processing function. Predictions are made for workloads and

compared with the available resources to give the N task

consequences shown in Figure 5. It is assumed that the

node has some freedom in planning its own and its

subservient nodes’ instructions and that there will be a

range of success criteria for different parts of the task. A

number of plan options M, which will be less than or equal to

N are assessed in the value judgement function and ranked

according to criteria set by either the higher node or from its

knowledge database. A check is made in the behaviour

generator that the node is authorised to implement the

chosen plan. If it is, the plan is accepted, if not, another

option is chosen. If none are allowed, a fail-safe plan is

implemented and the superior node informed.

Authorisation of action is still within the node and its

own task.

The node’s authority will, among other factors, allow it to use

resources that are not assigned to other nodes for the period

required for an acceptable option. If it does, the change is accepted

as a new task, instructions are sent to lower levels as revised success

criteria, and the revised plan is incorporated into the knowledge

database for that level. The other nodes at that level will compare

the revised plan with their plans; should there be a conflict due to

their own replanning, then the nodes will cooperate to resolve

them with the results passed through the behaviour generator

chain to the next higher level. If the problems cannot be resolved,

for instance if one node’s authorised power will not allow it to act,

then the next higher node is informed through the behaviour

generator chain. Revised instructions, generated as success criteria,

will be created at that level by the same process and the lower nodes

will respond accordingly.

The decision-making process described above is generic with

differences in the information used at any point in the process at

different levels. Table 1 describes the type of information at key

points in Figure 5 when applied to Levels 2, 3 and 4 in Figure 3.
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FIGURE 4
Showing the connections between nodes in each position in the hierarchy in Figure 3A 4D/RCS node and connected nodes. Key: Value
Judgement (VJ), Behaviour Generator (BG), Sensory Processing (SP), World Modelling (WM), Knowledge Database (KD).

FIGURE 5
Information flows within and between the functions in a node. Each function is a shaded box. Information processing is in the white boxes and
comparisons in the circles.
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ML, decisions, and actions in a node

Non-deterministic processes must have strictly limited

behaviours when included in a control system requiring any

level of safety. AI has been included in a 4D/RCS architecture in

[19] and applied to autonomous ground vehicles traversing

rough terrain. In these applications AI is used mainly for

interpreting sensor data to recognise obstacles in building up

a representative world model, although Albus and Barbera [32]

propose using AI to adjust parameters in the equations used to

decompose goals into tasks and further decomposition.

Human trust has been incorporated into the A-HMT-S by

using a dynamic world model that replicates a human mental

model and having strict limits on each node’s actions. However,

although necessary, these are not sufficient. The human may not

be able to easily understand why a learning algorithm made a

decision, but they can accept it if they think that it is reasonable;

i.e., the human perceives the decision as sensible and that fits with

their own mental model of the problem. The A-HMT-S must be

able to present relevant information about the options

considered when choosing an action so that the human can

understand and assess the choice.

Restricting every AI-algorithm’s operating domain to be

within a node limits its effect. The aim of every node is to

complete its task by meeting its success criteria, solving

problems within the limits of the authority it has in the

architecture. The learning system will decide its best option

for solving the node’s problem by using information available

at that level in the heirarchy. This solution can then be

considered as one option of the N options generated in the

world model. It will then be assessed with those not generated

by the learning algorithm in the value judgement module, and

the result passed to the behaviour generator. Whichever

option is chosen, the behaviour generator checks if

consequent actions are within its authority, ensuring that

the Team Leader and any regulatory authority know that

actions arising from the learning algorithm cannot exceed

predetermined safe limits.

The sensory processing chain can pass information directly

from any level to all higher levels. The Team Leader can

TABLE 1 Description of information used at key points in Figure 5 for different architecture levels.

Term Level 2 Level 3 Level 4

Inputs from higher level
behaviour generator

• A-HMT-S tasking from Team Leader • New or revised tasks and success criteria • New or revised task

• success criteria

• resource allocation

Success criteria • Business priorities for tasks or groups
of tasks

• Match of all proposed options against business
criteria

• Cost, time and quality for task

Outputs from Sensory
Processing to World Modelling

• Match of future activities and plans
against Team Leader’s criteria

• Match of task progress and resource allocation
against Team Leader’s success criteria

• Progress reports on task progress

• Human activity and stress level • Workload on resources currently or
planned to be used by node

Output from Current
Workloads

• Need for extra or fewer resources • Workload across all resources • Workload for one node’s task

Plan options • Look for and secure external
resources if possible

• Reassignment of resources across tasks • Changes to current resource plans

• Present options to Team Leader • Slips in progress allowed for lower priority tasks if
overall success criteria are met.

• Slip in task completion deadline

World model horizon • Current and predicted operations
under current plans

• Resource use across all tasks plus likely new ones • Detailed task plans with current and
predicted progress

• External world as it affects current
operations

• Overall costs • Options to reduce costs in individual
tasks

Default authorised power • Limited ability to draw on external
resources

• Can reallocate resources across tasks at Level 4 • Only use previously assigned
resources

• Cannot exceed fixed criteria when
considering options

• Can only instruct restricted set of available
resources

• All systems to follow safety protocols
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interrogate the data and other information used by any node in

its decision making, giving the potential safeguard of human-

initiated enquiries. However it will be impossible for the Team

Leader to query every decision before its consequent action, so

triggers should be included in the value judgement and behaviour

generator modules to initiate a Team Leader enquiry into the

decisions leading to defined types of critical action before their

execution.

Examples of learning systems which can improve efficiency

in the A-HMT-S include:

• tasking workload monitors to pick up warning signs of

overloads due to variations and tolerances on workload

data, timing etc.;

• adding to task consequences based on historic data;

• assessing changes in the business environment that may

alter task success criteria;

• ranking of options, but rank order may need confirmation

by the next higher level before acting;

• using AI to identify potential problems at the level below

the node it is in; and

• monitoring external conditions to give early warnings e.g.

an approaching snowstorm probably changing delivery

times for materials.

Some nodes at Level 4 may be people acting in accordance

with their task and management instructions. They will not be

fully autonomous as their authorised power will be set by their

organization’s management processes. Their workload sensors

may be more subjective than for other parts of the A-HMT-S and

so will need explicit inclusion in the sensory processing chain.

They will almost certainly use network support tools for their

work, and their use may provide a suitable mechanism to

monitor their workloads.

Example architecture applications

The architecture presented in Figures 3–5 is generic in

nature. It needs to be applied to some sample scenarios both

to check their practical validity and to identify more precisely the

topics that warrant further R&D effort. One vignette is taken

from each of the three classes of HMT used at a recent conference

on human-machine teaming [33].

Recommendations to a human for their
immediate action

Automated identification of targets to a pilot who is about

to release a weapon is a well-known A-HMT-S problem and

the subject of international debate [10]. The 4D/RCS

architecture has been applied to it in Chapter 12 of [20]

with architectures similar to Figure 3 shown in Figures

12.8 and 12.9 in that reference and Figure 5 similar to the

one shown in Figure 13.4. The architecture took an

incremental evolution of current systems by replacing

human nodes with automated ones whilst maintaining the

necessary response speed for human assessment of action and

the consequent changes in military tactics and rules of

engagement.

[25] shows how legal responsibilities for the driver and

vehicle can be derived for autonomous vehicles at all

autonomy levels.

The consequent changes to responsibilities in the design

chain for military and civilian products are discussed in Ref.

[34]. It is shown there that a hierarchical architecture is essential

for the design of an autonomous system so that safety-related

decisions can be identified with the legal responsibility for the

system’s actions assigned to individual organizations and role-

holders. The principal issues are link-integrity to ensure

continuous control of the weapon, and reliable identification

of both targets, non-targets, and the civilian objects which should

not be attacked. Similar issues will apply for vehicles.

Carebots

We take the case of a robot caring for an elderly person in

their own home which has one floor. The carebot is leased from a

health care provider who are responsible for its maintenance and

updates. Figure 6 gives the broad characteristics of a carebot

HMT architecture equivalent to Figure 3.

The Team Leader is the elderly person giving instructions to

the CPS part of the team. Mutual trust and interdependence is

critical. The CPS can provide facilities or resources such as

medication but cannot force the person to take them as this

legally is assault; similarly, the elderly person may be critically

dependent on the CPS for provision of medication and their

regular supply. The person will have normal interaction with

other people and resources using the non-carebot resources that

they are capable of using; these may be restricted but could be

extensive for a mentally agile but physically infirm person.

The HMI at Level 2 will be safety-related as a minimum

standard if it provides calls to emergency services on behalf of the

Team Leader. This places high demands at Level 2, making an

adaptive HMI essential with a sophisticated model of the Team

Leader and voice recognition for a range of human emotions. The

adaptive HMI will be very different from that assumed in earlier

sections with considerable scope for AI-based development here.

There is only one human to model, and scope to incorporate

intelligent analysis of physiological sensors looking for

precursors of serious medical conditions. Actions will be

requested from the Team Leader and passed, as necessary, to

Level 3 to alert necessary medical or social services or relatives.

This may raise the software standard to safety-critical with
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associated standard and regulatory requirements, a very high

standard for an evolving model of an individual.

The dynamic task manager at Level 3 will perform

approximately the same as those described for Level 3 in the

Inside the Architecture section, but there will almost certainly be

mandated external interfaces for medical and emergency

services. Medical records, medication and related data will

need to be in the knowledge database; their location at Level

2 or 3 or a split between these levels will be a design decision, as

will the method of updating them. The task to alert external

organizations must decide the type of aid sought and be able to

communicate with them effectively. The decision will be based on

a comparison of the person’s current status compared with their

expected status, the level and type of difference, and the

confidentiality of information in its database. There will

probably be a need for a medical professional to talk to or

visit the Team Leader so arrangements may need to be made

for this. This interface represents a large R&D challenge.

The carebot will need to continuously monitor the Team

Leader’s well-being through signatures such as movement and

heart beat as well as external environmental conditions such as a

sudden cold snap or thunderstorm which may necessitate

precautionary measures in the house or changes to the Team

Leader’s diet, for example, by offering more hot drinks.

The CPS aspects of controlling, maintaining, and upgrading

the functions and resources at Level 5 will be similar to any other

A-HMT-S system. The main difference will be the notifications

and revised instructions given to the Team Leader in a way that

they are understand, possibly with prior warning and a

familiarisation session before installation, based on the Team

Leader’s specific needs.

A system which operates alone for long
periods then reforms as an A-HMT-S

An example of this type of system is a robotic planetary

explorer that is visited periodically by humans who rely on it for

support while they are on a planet. Levels 4 and 5 will be similar

to most robotic applications, but the higher levels will have major

FIGURE 6
Carebot as an A-HMT-S with the elderly person as the Team Leader.
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architectural problems. There will be two types of human

interaction: remote monitoring, with instructions and updates

sent from Earth or a relay satellite, and local interactions by

visiting astronauts using an embedded HMI. These are shown in

Figure 7.

Level 1 is shown with one Team Leader as it assumed that

there will be protocols to prevent a remote person sending

instructions when the rover has a local Team Leader. The

Level 2 sensors will be for data transfer using remote links,

checking for errors and missing messages, and will operate at all

times. It is assumed that the astronauts’ state of health will be

monitored by other means such as their personal life-support

equipment, reducing the HMI requirements considerably from

the general case for an A-HMT-S.

Extensive fault detection systems will be necessary due to

long periods without human attention in a hazardous

environment with, for example, high radiation levels

increasing the chance of semiconductor failure in the narrow-

track high-frequency processors needed for advanced AI systems.

Contingency reconfiguration of functions and tasks will need to

be chosen based on probably incomplete diagnosis of apparently

random failures and clear symptomatic information passed to the

Team Leader, another area for R&D.

The strategic sensors at Level 3 will monitor local planetary

conditions and provide assurance that software updates are not

only received and installed, but will also run the required

performance tests, sending the results back to Earth and to

the local astronauts before and after their arrival for checking.

This is to ensure the vital mutual trust between Team Leader and

machine when restarting an interdependent relationship. The

information will be held in the Level 3 database and its world

model compared with the Levels 3 and 4 sensor processing

outputs. The CPS manager will play a similar role to that in

all the other A-HMT-S.

Discussion

Trust for an A-HMT-S

Three important questions were posed in at the end of the

third section:

Q1. Can a dynamic A-HMT-S with AI be designed so that the

liability for the consequences of every action are clearly

assigned to an identifiable human or organisation?

FIGURE 7
A planetary rover as an A-HMT-S showing the two Team Leaders.
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Q2. What guidance can be given to all stakeholders, including

regulators, to ensure clear identification of responsibility for

actions by the A-HMT-S?

Q3. How will the potentially liable individuals develop

sufficient trust to carry out their work?

Questions 1 and 2 can be answered by the use of a

hierarchical architecture. It can be used to identify important

and critical issues for each stakeholder based on the following

points:

• The architecture can and must give clear separation of human

nodes and automated ones in the hierarchy. This separation

ensures that liabilities can be clearly assigned to the Team

Leader or the organization responsible for the design or upkeep

f the automated node. The architecture in this paper has taken

Level 1 to be exclusively human, interacting through an

adaptive HMI at Level 2. Other humans will be at Level 4,

participating as TeamLeaders of tasks, againwith separation by

levels within the tasks. These Level 4 humans receive their

tasking from Level 3 and are monitored as part of the overall

A-HMT-S.

• The architecture should separate decisions from actions

with an assessment of the reliability of the decision. The

Level 3 dynamic task manager is automated and should

refer uncertain actions to the Team Leader through the

Level 2 HMI when problems cannot be resolved within its

authority level. Action is based on the choice of an option

from those arising from the comparison of the worldmodel

with physical reality, a difficult task for a complex

environment. The decision to refer to a higher level is

critical as the false alarm rate must be low in order to

maintain trust. This decision will require intelligent AI

analysis based on mainly uncertain data.

• A bounded system, such as a distribution network or airport

where tasks and progress can be readily quantified, will make

the comparison of the real world and its world model easier

than with subjective information. Additionally, the range of

actions and their authorisation node can be defined uniquely.

Developing such an A-HMT-S with humans at several levels

would give opportunities for R&D progress in developing Level

3CPS techniques for both complex (Level 3) and simpler (Level

4 or 5) scenarios.

• The use of predictive models in 4D/RCS and the

information flow model used here ensures that the

consequences of an action are assessed and authorised

before it happens. Auditable authorisation of actions by the

system enables consequent identification of responsibility

for the consequences of every action. The choice between

automated or human authorisation becomes a part of the

design process as it is recognised that ultimately any

human authorisation of an action must be legal and

follow local and national requirements.

• The use of authorised power as part of the behaviour

generator in every node ensures that no unauthorised

actions can be carried out without reference to a higher

node and ultimately the human Team Leader. This does

place the onus for safety on the person who specifies what

must be raised to the next architectural level. However,

when the specification is for a function within one node

with defined authority, its implementation becomes a

tractable problem which can be addressed by CPS

designers. They will also require clear directions about

local changes, regulations, and processes for system

upgrades. Every A-HMT-S will be designed, or tailored,

for specific applications so explicit considerations of

authority levels and the allowed options for action at

each node should give answers to questions 1 and 2 above.

The third question should be answered by the following

points

• Limiting the behaviour of every node by setting and applying

limits to actions based on a comparison of the real world and

predicted consequences of a range of actions leads to it being

trustworthy for defined conditions. Defining the conditions

becomes a design and procedural issue which can be addressed

by current engineering processes.

• Careful specification of the adaptive HMI so that it presents

clear information about problems, whilst allowing the Team

Leader to see the options and consequences that the lower-

level nodes considered. This transparency should allow trust

to develop. If it does not, the Team Leader can alter the

authorised power of specific nodes so that actions that appear

untrustworthy will be highlighted for further human action.

It is possible to set up a trustworthy A-HMT-S that satisfies

the three critical questions and has little or no AI in it for specific

applications. In these cases the A-HMT-S would have limited

flexibility because most of its decisions would be made using

deterministic processes with well-understood uncertainties. It

could be argued that these are not teams but are adaptive control

systems that change their behaviour in defined ways, triggered by

pre-determined thresholds. AI is needed to achieve flexibility,

autonomy and interpretation of uncertain inputs.

Trust-specific R&D

It was noted earlier in this paper that the authors of [30]

found that learning processes must be embedded in nodes and

not across them. That work was for one specific system and

mainly concerned the sensory processing chain. A more general

approach is to consider a node’s functions in detail. Figure 5 gives

more detail than the NSTIR standard, allowing an examination of

the processes to identify which will benefit from AI and the type
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of R&D work that is needed. The following sections highlight the

important areas for A-HMT-Ss without giving a review of

current research, which is beyond the scope of this paper.

There will be uncertainties at all points in the architecture,

arising from many sources, making AI-based solutions

attractive, but they must not detract from the CPS’s

trustworthiness or the HMT becomes untrustworthy. This

places large requirements on all AI processes in the A-HMT-S

and hence on the R&D work for every application.

Sensory processing chain
Levels 2 to 4 are mainly concerned with creating task

instructions from human-defined aims, workload issues in the

A-HMT-S, and selecting problems which require human

cognition and authority to resolve. Level 3 has restricted

access to outside networks so the access limits can be tailored

to the ability of the CPS manager to interpret the information.

Level 5 and belowwill have the application-specific sensors for the

outside world such as imagers and collisionwarning systems.Many of

these already have some AI and some will be safety-critical.

At Level 4, the sensory processor outputs from Level 5 are

interpreted by the taskmanager as progress on the tasks required for

the A-HMT-S to achieve its aim. An accurate interpretation will be

impossible if the world models at Levels 4 and 5 are incompatible or

in conflict. Comparison will be difficult as they have different levels

of detail with different time horizons, so checking their consistency

may be a better approach, carried out in the “current workloads”

process in the world modelling function in Figure 5.

World models, world modelling and value
judgement

All nodes at a given level have a common world model in

their knowledge database. The world modelling function uses it

for multiple comparisons and predictions. The results are

assessed by a node against its success criteria, ready for

decisions and action. The success criteria may include non-

interference with higher priority tasks. The world models will

need regular and intermittent updates for two reasons: real-time

changes in the environment; and the detection of

incompatibilities between world models at different

architectural levels. All world models must be under

configuration control, with a process for updates and the

knock-on effects in other nodes and levels. Authorisation of a

change to a model can only come from the next higher level as

that has an overview of all the lower level’s nodes and, with AI,

will develop a model of each node’s behaviour.

World models at all levels must be consistent, even though

they have different time horizons. The model at any level must

include the available resources, their current allocation into the

future, and the authority vested in lower nodes to change an

allocation. Figure 5 illustrates that each node will create its own

set of M ≤ N predicted world models based on its interpretation

of its workload plan and its success criteria. The N predictions

could be based on multiple simulations representing the

uncertainty range in the world model at that level.

Alternatively, it may be straightforward to introduce AI into

nodes performing well-bounded tasks and then to generate one

preferred option. Each option will affect resource usage and the

environment at different times due to their interdependencies, so

each option’s affects must be assessed before implementation of

any action.

Behaviour generator
The behaviour generator function in each node has limits on its

actions set by the system design. These may be temporarily changed

by the next higher level if that level’s predictions allow it. When the

task iswithin a node’s authority, a chosen option is created and offered

to the behaviour generator by the value judgement function. This

choice includes the plans and tasks for lower levels.

The final check before action is taken is to compare the

chosen option with the node’s authorised power. This includes

not only what the node can do, but also what it cannot do.

Prohibitions may come from higher levels, including higher

priority levels of other tasks on available resources, and

effects on the wider world. At the highest A-HMT-S levels

(Level 3 and above) this will include the societal issues such as

interpretation of laws and regulations. An example for the

carebot is a lower level offering of an approved medication, the

Team Leader refusing, which is their legal right, and

Level 2 issuing instructions to re-offer in 5 min; several

refusals could trigger an alert as an external human

medical judgement would be needed, the fail-safe mode.

The behaviour generator could include comparison tools

developed using AI techniques, utilizing the power they

bring to the assessment function. However, they must be

thoroughly tested to ensure they do not evolve

after installation to ensure that they have deterministic

behaviour.

The check against a node’s authorised power is effectively

asking if the consequences of choosing the offered option are

reasonable. If they are, the option is chosen and action taken. If

not, and no other option is acceptable, the task is rejected, the

higher node’s behaviour generator informed and the higher-level

node must reconsider its options. If no choice is acceptable to the

higher node then the problem is escalated, eventually to the Team

Leader for human assessment. This guards against the build-up

of errors or large uncertainties producing an unexpected and

unreasonable action which must requires human assessment.

The Team Leader has access to information at all levels in the 4D/

RCS architecture, enabling them to make a more-targeted

assessment of the problem and potential solutions than the

unaided CPS can make.

The definition of reasonable is crucial as it is a societal and

legal term, not an engineering one. At lower levels limits can be

set by their design as clear technical bounds can be set for most

tasks, based on avoiding interference with other higher-priority
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tasks and preventing physical harm. At higher levels the limits

become softer making an AI-based approach attractive, but this

jeopardises its role as a safeguard because of the non-

deterministic nature of AI. The interpretation of the softer

issues and translating them into the engineering terminology

of deterministic limits will require iterations between lawyers,

social scientists and engineers. It is possible that eventually robust

ML algorithms, their training data, and their automated

reasoning approaches may develop to the stage of meeting

legal challenges but this is unlikely at the current state of

technology.

Conclusion

The use of a hierarchical architecture improves the effectiveness of

A-HMT-S design and development. The analysis presented here gives

approaches to solving problems in R&D for autonomy in

interdependent A-HMT-Ss in three ways:

i) Specific ML tools can be introduced into a task where it will

produce clear benefits as part of the world model at that

node’s level, yet all consequences of its decisions will still be

bounded by that node’s authorised power;

ii) ML can be introduced into all parts of a node, except in the

behaviour generator function. This design decision will ensure

that actions cannot happen based on unexpected decisions

without authorization by the human Team Leader; and

iii) Introducing ML into the node’s value judgement function

highlights the often-subjective nature of assessing the value of

tasks when setting priorities. Recognising the associated risks

before introducingML in this function should explicitly raise, and

help resolve, the complex questions in these applications.

An underlying problem with the use of AI is that of

uncertainties in the interpretation of input information for

comparison with world models which are themselves

incomplete or inaccurate in some respects. Solving this

problem is Research Objective 2-2, AI Uncertainty Resolution

in the 2022 NAS report [1] for the general case: the approach

presented here allows the uncertainties to be identified and

their effects limited for specific cases. The offering of the

alternatives considered by the system to the human goes some

way to addressing Research Objective 5-5, Explainability and

Trust.

AI will always generate a solution, so there must be a

safeguard against unreasonable action, as interpreted by

society or an accident inquiry. Setting limits using

authorised power, and their use for deterministic testing of

reasonable behaviour in every node provides a potential

safeguard, although it does create its own design problems.

However, locating authorized power in the behaviour

generator function of every node bounds the problems, and

provides a clear context for the essential cross-disciplinary

and societal agreements before an A-HMT-S can be

considered trustworthy.

Decomposition of A-HMT-S requirements using a hierarchical

architecture into requirements for nodes comprising functions, with

limited authority to act, allows targeted introduction of AI into the

areas where it will bring maximum benefit, and will also identify the

R&D needs before its safe introduction. This goes some way to

meeting the 2022NASReport’s ResearchObjective 10-1,Human-AI

Team Design and Testing Methods and Research Objective 10-2,

Human-AI Team Requirements.
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