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Extreme events are always accompanied with extensive failures and sharp performance
degradation in the power network. This study aims to derive an effective scheme to identify
the transmission bottlenecks and improve the power network’s resilience under extreme
events. A greedy search scheme is designed for the quick and slow restoration stage to
obtain the largest power supply (LPS), which is a significant engineering indicator of the
power network. In the quick restoration stage, we use interior point optimization to adjust
the operating parameters of undamaged components and maximize the LPS with limited
resources. It is worth pointing out that the LPS cannot be further improved, even by
increasing the capacities of most transmission links. This phenomenon is due to the
existence of transmission bottlenecks, which operate at their capacity limits. Thus, in the
slow restoration stage, we identify these transmission bottlenecks and further improve the
LPS by expanding the capacities of these links. Case studies show that the proposed
greedy search scheme can not only greatly improve the LPS available to the post-disaster
network but can also accurately identify the transmission bottlenecks. This work provides
practical insights for building resilient infrastructures, although the power network is the
object of study.
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1 INTRODUCTION

A continuous and stable power supply from the power network is an important prerequisite for the
normal operation of all commercial activities [1, 2]. However, with the increasing geographical
coverage of the power network, a large number of components are exposed to the natural
environment for a long time. Various disturbances, especially extreme events, can create
significant risks to the safe and stable operation of the power network [3]. Therefore, it is of
great practical significance to study the ability to resist disturbances and put forward effective
improvement methods for the power network.

Previous studies have developed a series of measures to enhance the reliability of the power
network against high-frequency low-impact disturbances [4, 5]. However, low-frequency extreme
events, such as cyberattacks and hostile attacks, can also cause multiple physical damage and lead to
sharp performance degradation of the power network. For example, in 2015, a power outage was
caused in Ukraine by cyberattacks [6]. In 2008, a heavy snowstorm led a large number of
transmission lines to fall off in China’s Southern Power Grid [7], which affected a million
households and caused huge economic losses.
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Considering the lack of restoration from extreme events, power
network resilience has been of considerable interest to both academia
and industry in recent years [8, 9]. Power network resilience refers to
the resistance, adaptation, and restoration ability during violent
disturbances [10]. By definition, the whole resilience process
should include sharp performance degradation and two
restoration stages. Figure 1 illustrates the entire process of power
network resilience, from the occurrence of extreme events to full
recovery. First, a series of components fall off from the network,
which triggers cascading failure [11–13] and causes a sharp decline
of power supply in the fast degradation stage. Then, the scheduling
department will apply different measures to gradually restore the
power supply capacity in the next two restoration stages. According
to the actual time scale, the restoration can be divided into two types:
1) quick restoration by power dispatch among the available
resources; and 2) slow restoration by expanding the components’
capacities or repairing damaged components.

For the three stages during the resilience process, the previous
studies have proposed various models and methods to enhance
power network resilience. A large number of scholars have modeled
cascading failure and studied the impact of different critical factors
on performance from a network science perspective by abstracting
the power network into graphs [14–18]. Indeed, power network
resilience is largely determined by the recovery process that occupies
the largest portion of the whole resilience process. Among the
various recovery strategies, the optimal power scheduling
strategies have been extensively studied because they can achieve
quick power supply restoration by coordinating the resources of
undamaged components in the post-disaster network. For example,
in the quick restoration stage [19], the genetic algorithm and the
inner point method have been combined. Meanwhile, a double-loop
optimization strategy has been proposed to achieve the largest power
supply (LPS) after the occurrence of extreme events [20, 21] and the
LPS has been improved through collaborative operation between
distributed generators in distribution networks. In addition to the
power scheduling strategies, repairing damaged components and
expanding the capacities of the transmission links, which need more
repair time, can also increase the LPS. For instance, repair strategies
to boost the slow recovery process have been proposed [22, 23].
However, capacity-expansion strategies that can further increase the
LPS in post-disaster network but have rarely been considered, such
as adding enhanced or parallel power cables on existing towers.

The main aim of this study is to boost the resilience of the
power network under extreme conditions. An iterative greedy
search scheme, which applies the interior point optimization
and search algorithm in quick and slow restoration stages,
respectively, is designed to achieve the LPS. The quick
restoration method is introduced in Section 2, where the
operating parameters of the undamaged components are
first optimized within their capacities to improve the LPS
based on limited post-disaster resources. In Section 3, we
show that the LPS can be further improved by increasing
the capacities of the remaining links. However, the LPS can
only be improved by increasing the capacities of a few
transmission links, while most do not show obvious effects.
We interpret these critical links that limit the improvement of
LPS in the power network as transmission bottlenecks. In light
of this, in Section 4 we further design a search algorithm to
identify these bottlenecks and obtain the maximum expansion
values for each bottleneck to improve the LPS. We then verify
the efficiency of the proposed restoration scheme by
conducting the simulations on three IEEE Tested Cases, and
the conclusions are given in Section 5. This work provides
useful advice for the power sector on how to develop
restoration strategies to boost the power network’s
resilience under extreme conditions.

2 MODEL DESCRIPTION AND PROBLEM
FORMULATION

The occurrence of extreme events can physically damage a large
number of components and trigger cascading failure process in a
short time. As a result, the system’s performance will degrade
dramatically due to the removal of these failed components. In
this section, we use interior point optimization to rapidly improve
the LPS with limited post-disaster resources by adjusting the
operating status of each undamaged component. In the following
subsection, we will introduce the cascading failure model and give
a description of inter-point optimization.

2.1 Cascading Failure Model
The basic requirement of a power network is to ensure that
electricity can be transmitted from the generators to the
consumers through transmission lines under a series of
electrical constraints. In this article, we denote power network
as G = {N, L}, where N represents the set of power nodes and L
represents the sets of links. Here, power nodes include the
generators and loads nodes, and the power links include the
transmission lines and transformers.

Cascade failures can be completed in a surprisingly short time
due to violent disturbances caused by extreme events. Here, a
widely adopted cascading failure model [24] is briefly described,
as follows:

• Step 1: The failed nodes and links are removed from the
power network, which changes the network’s structure and
thus causes power flow redistribution due to power
imbalance.

FIGURE 1 | Schematic diagram of the entire resilience process, from the
occurrence of disturbances to the full recovery of the power network.
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• Step 2: The working clusters are detected in the post-disaster
network. For each cluster, all of the components are defined
as outage state if there are no generators for power supply.

• Step 3: The updated power flow of each remaining component
is calculated by the AC power flow equation [25]:

Pi � Vi ∑
j∈N

Vj Gij cos θij + Bij sin θij( ) (1)

Qi � Vi ∑
j∈N

Vj Gij sin θij − Bij cos θij( ) (2)

Pij � ViVj Gij cos θij + Bij sin θij( ) − V2
i Gij (3)

Qij � ViVj Gij sin θij − Bij cos θij( ) + V2
i Bij (4)

Here, Pi and Qi are the active and reactive power of node i; Vi

represents the voltage amplitude of node i; θij is the phase angle
difference between nodes i and j; Gij and Bij are the real and
imaginary parts of the admittance of the link (i, j) connecting
nodes i and j; Pij and Qij are the active and reactive power flow
through link (i, j).

• Step 4: A new round of overload detection is executed. Each
component will be removed once the updated power flow
exceeds their operating limits according to constraints
(5) to (8).

Vimin ≤Vi ≤Vimax (5)
Pimin ≤Pi ≤Pimax (6)
Qimin ≤Qi ≤Qimax (7)
Pijmin ≤Pij ≤Pijmax (8)

Constraints (5) to (8) ensure that all of the components
operate within their upper and lower bounds.

If there are no overloaded components in the remaining
network, then the cascading failure process ends. Otherwise,
return to step 1.

After the cascading failures process, the largest power
supply—which is a significant indicator to reflect service
ability in the power network—of all of the connected clusters
decreases sharply. We therefore use the interior point algorithm
to improve the LPS of the post-disaster network before taking a
slow repair plan.

2.2 Inter-Point Optimization for LPS
Improvement
The repair of physically damaged components takes a long time,
which makes it difficult for the network to provide enough
electricity in a short period of time. Thus, it is practical for an
engineer to achieve the largest amount of power supply by

TABLE 1 | Number of buses N, generators Ng, and transmission links Nl of the
three tested power networks.

IEEE 39-Bus IEEE 57-Bus IEEE 118-Bus

N 39 57 118
Ng 10 18 54
Nl 46 78 179

FIGURE 2 | Comparison of LPS in three IEEE Tested Cases after the
cascading failure process and optimized by the interior point optimization.

FIGURE 3 | LPS improvement by increasing 1% capacity of each
transmission link in (A) IEEE 39-Bus Case, (B) IEEE 57-Bus Case, and (C)
IEEE 118-Bus Case.
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properly coordinating the operating parameters of all of the
undamaged components in extreme conditions. After the
cascading failure process, the original network G can be
divided into several interconnected clusters Si. The largest

values of the power supply in each cluster can be denoted as
LPS(Si). When the network suffers extreme events, we first check
the connectivity of the remaining network and calculate the LPS
of each connected cluster by using interior point optimization.

FIGURE 4 | The layout of IEEE 118-Bus Case. The red links represent the transmission bottlenecks.

FIGURE 5 | A visualization of the bottleneck phenomenon in real network.
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Thus, the optimization problem of improving the Fmax(G) can be
generally represented as follows:

max Fmax G( ) � ∑
i∈Si

∑
d∈Nd

Pd (9)

s.t. ∑
g∈Ng

Pg − ∑
d∈Nd

Pd � 0 (10)

constraints 1( ) − 8( ) (11)
where Nd and Ng represent the sets of load nodes and generation
nodes; Fmax(G) is the optimization goal, which is the sum of
LPS(Si) of each cluster Si; Pg and Pd are the active power of
generation nodes and consumer nodes; and Constraint (10)
ensures the power balance between all the generators and loads.

The aforementioned optimization problem is a typical
nonlinear problem, which includes many nonlinear constraints
in a large-scale power network. The interior point method [26]
has the advantage of dealing with such nonlinear and convex
optimization problems, and is not sensitive to the scale of the
optimization problem. By introducing a utility function, the
original optimization can be transformed into an
unconstrained problem. Then, the utility function is updated
continuously in the optimization iterative process to make the
algorithm converge. This is equivalent to building a very high wall
on the boundary of the feasible region.When the iteration point is
close to the boundary, the objective function increases in vain and

produces a punishment to prevent the iteration point from
crossing the boundary. Therefore, the optimal solution can be
blocked within the feasible region. More details about interior
point method are given in [26].

3 TRANSMISSION BOTTLENECKS IN THE
POWER NETWORK

The question of how to quickly restore power supply under
extreme conditions has been of considerable interest in the
field of power network resilience. Compared to cascading
failures process and quick restoration strategies, repairing
physical damage to components takes a long period of time.
To make full use of the available resource in the post-disaster
network, we try to improve the LPS based on limited resources by
properly adjusting the operating parameters of each undamaged
elements.

In this study, we use interior point method to solve the
optimization (9)–(11), and obtain the optimal operation
parameters of each undamaged component in each cluster Si.
Theoretically, the interior point method can be applied to large-
scale networks. However, this process often requires a huge
amount of computing time. Meanwhile, the purpose of this
study is not to study the algorithm’s efficiency but to study
the resilience of the power network under extreme events. The
size of the simulation network will only change the quantitative
results, and will not change the qualitative conclusions. Thus, we
conduct the simulations based on three power tested cases—the
IEEE 39-Bus Case (IEEE39), IEEE 57-Bus Case (IEEE57) and
IEEE 118-Bus Case (IEEE118)[27]—to verify the efficiency of
proposed strategy. To better reflect the uncertainty of extreme
events, in each tested case we imitate the disturbances caused by
extreme disasters by randomly removing 30% links and we then
run the simulations 50 times to eliminate the effect of random
selection. The number of buses, generators, and transmission
links of the three tested power network are shown in Table 1.
More system parameters of these three tested networks are
provided by [28] in the calculations.

The occurrence of extreme events can physically damage
multiple components and further cause a fast-cascading failure
process. Figure 2 gives the results of LPS after the cascading
failure process and the interior point optimization, respectively.
The results of the three cases are very similar, which proves that
our proposed greedy scheme can effectively improve the LPS by
adjusting the operating parameters of undamaged components in
the post-disaster network. For example, in IEEE 118-Bus Case,
the values of LPS increase from 3421 MW (before the interior
point optimization) to 3675 MW (after the interior point
optimization). As a result, we can effectively and quickly
improve the LPS by adjusting the operating status of each
component to achieve the optimal network performance,
which can relieve power supply pressure after extreme events
occur.

After the quick parameters adjustment of each undamaged
component in the remaining network, we can obtain the LPS
based on limited resources in the post-disaster network.

FIGURE 6 | The flowchart of the iterative greedy search scheme, which
includes the interior point optimization and bottleneck identification algorithm.
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Intuitively, the overall LPS can be further improved if we
increase the capacity while the damaged transmission lines
are being repaired. However, all of the components in the
power network must satisfy electrical constraints, such as
Kirchhoff’s law and Ohm’s law. The performance of the
whole network depends on a small number of links, which
are always limited by voltage or current and run in the boundary
state. With this consideration in mind, we study how the

capacity increment of undamaged transmission links affect
the LPS. Figure 3 gives the results of the improvement ratio
of LPS when applying the interior point optimization in the
IEEE 118-Bus Case. For each remaining link after an extreme
event, we expand the constraint boundary of these links by
increasing 1% capacities. From Figure 3, we can find that, for
most transmission links, increasing their capacity cannot
further improve the LPS of the whole network. On the
contrary, there are only a small number of links that directly
determine whether the LPS of power network can be further
improved. As shown in Figure 4, there are 14 transmission
links, whose capacity increment can increase the LPS of the
whole network over 1%.

Although we can restore the power supply by rapidly adjusting
the operating parameters of each undamaged component under
extreme conditions, transmission congestion still exists in the
post-disaster network. In other words, the LPS in the post-
disaster network is limited by the minimum transmission
capacity of a few critical links. In this study, we interpret this
congestion phenomenon as transmission bottlenecks, which is a
pervasive phenomenon in real networks. One of the basic tasks of
many infrastructure networks (e.g., power network,
transportation network, and communication network) is to
provide a certain amount of flow to the demand through a set
of links. The performance of a network is always determined by
the bottlenecks, which represent the links with the lowest
performance in the entire network. For example, in Figure 5,
when the power network is able to generate 3 MW power but the
transmission line is only capable of transmitting 1 MW power,
then the whole network cannot transmit the entire power
generation because it is limited by the transfer capability of
the transmission line. To transfer that amount of power, the
operators can add new transmission lines or increase the capacity
of the remaining lines. Transmission bottlenecks are one of the
main challenges that are faced by power utilities in extreme
events, and they limit the improvement of the system’s
performance. For the sake of clarity, we define a link with
transmission bottlenecks as a congestion link, and the link that
can alleviate transmission congestion the most is defined as the
bottleneck link in the power network.

4 A GREEDY SEARCH SCHEME FOR
RESILIENCE IMPROVEMENT

To eliminate the negative effect of transmission bottlenecks, we
propose a search algorithm to identify these congestion links, and
thus design an iterative greedy search scheme to achieve the LPS

FIGURE 7 | The ratio of LPS improvement by increasing the
capacity of each congestion link in (A) IEEE 39-Bus Case, (B) IEEE 57-
Bus Case, and (C) IEEE 118-Bus Case. In each case, 30% of the nodes
are removed from the network by random selection.

TABLE 2 | The values of LPS (MW) when the iterative greedy search scheme is
applied to the bottleneck link in three IEEE tested cases.

Network After Disaster Power adjustment Capacity expansion

IEEE39 1,138 1,289 1,324
IEEE57 1932 2,156 2,280
IEEE118 3,421 3,675 3,991
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under extreme conditions. Inspired by the above analysis, the
congestion link identification algorithm expands the capacity of
each link to judge whether or not the LPS can be positively
improved. Referring to Figure 6, the process of iterative greedy
search scheme can be described as follows:

• Step 1: Network Initialization. At the beginning of the
scheme, we initialize all of the parameters and topology
of the power network, and imitate the damage of extreme
disasters by randomly removing 30% of the links.

• Step 2: Connectivity detection. Identify the connected
cluster in G after intense disturbances. In each connected
cluster Si, all of the components are unserved and removed if
cluster Si contains no generator. The LPS of cluster Si is
defined as 0 because there is no power source.

• Step 3: Power adjustment. Based on the limited resources
after extremes, improve the LPS by adjusting the operating
parameters of the remaining components using the interior
point optimization.

• Step 4: Capacity expansion. For each link (i, j), we expand
their capacity by adding δ to the original capacity at each
round and we then recalculate the LPS. If the updated LPS
increment ΔLPS is greater than the capacity increment δ,
then accumulate the capacity increment of δ for the
corresponding link Δij.

• Step 5: Iteration steps. Repeat steps 3-4 until the capacity of
each link is increased to their maximum value.

• Step 6: Results output. Select the corresponding links
according to the descending order of Δ, and output the
set of congestion links and the LPS after quick mode
adjustment and elimination of transmission bottlenecks.

Figure 7 shows the values of capacity expansion (blue bars) and
their corresponding improvement ratio of LPS (red bars) of each
congestion link after extremes. The proposed scheme can effectively
identify all of the congestion links in a power network. From
Figure 7, we can clearly find that expanding the capacity of these
congestion links can improve the LPS of the power network.
Specifically, in each case, different congestion links play different
roles in improving the performance of the power network. Taking
the most congested link as an example, as shown in Table 2, the LPS
can be greatly improved by applying the iterative greedy search
scheme, comparing with the post-disaster network without any
restoration strategy. For example, the value of LPS after a
cascading failure process is 3421MW because multiple
components are removed from the network. By properly
coordinating the operation parameters of the remaining
components, the value of LPS can be increased to 3675MW. The
interior point optimization canmake full use of the limited resources
in the quick restoration stage. After that, in the slow restoration stage,
the LPS can achieve the maximal values by further increasing the
capacities of the transmission bottlenecks. Finally, the value of the
LPS can achieve 3991MW, which improves the LPS by 16%.

5 CONCLUSION

The main purpose of this study is to boost the resilience of power
networks after extreme events. In light of this, we design an
iterative greedy search scheme, which considers the interior point
optimization in quick restoration stage and bottlenecks
identification algorithm in slow restoration, to obtain the
amount of LPS. In the quick restoration stage, we make full
use of the remaining resources to improve the LPS by properly
adjusting the operation parameters of each undamaged
component. However, we find that the LPS cannot be further
improved, even by increasing the capacities of most transmission
links, and we interpret this congestion phenomenon as
transmission bottlenecks. Then, we further propose a
bottleneck identification algorithm in the slow restoration
stage. By increasing the capacity of these bottlenecks, we can
expand the feasible domain of power flow calculation, which can
further improve the LPS of the whole power network. Simulation
results based on three IEEE tested cases demonstrate that our
proposed restoration scheme can efficiently boost the power
network’s resilience, and greatly increase the amount of LPS
by identifying the transmission bottlenecks and increasing their
capacity. This work can provide practical insights when building
resilient infrastructures, although we take the power network as a
simulation network.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

This work was supported by the Fundamental Research Funds for
the Provincial Universities of Zhejiang under Grant
GK229909299001-018.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2022.941165/
full#supplementary-material

Frontiers in Physics | www.frontiersin.org August 2022 | Volume 10 | Article 9411657

Tu et al. Bottlenecks Identification and Resilience Improvement

https://www.frontiersin.org/articles/10.3389/fphy.2022.941165/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.941165/full#supplementary-material
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REFERENCES

1. Jusup M, Holme P, Kanazawa K, Takayasu M, Romić I, Wang Z, et al. Social
Physics. Phys Rep (2022) 948:1–148. doi:10.1016/j.physrep.2021.10.005

2. Xia Y, Small M, Wu J. Introduction to Focus Issue: Complex Network
Approaches to Cyber-Physical Systems. Chaos (2019) 29:093123. doi:10.
1063/1.5126230

3. Wang S, Zhang J, Yue X. Multiple Robustness Assessment Method for
Understanding Structural and Functional Characteristics of the Power
Network. Physica A: Stat Mech its Appl (2018) 510:261–70. doi:10.1016/j.
physa.2018.06.117

4. Eryilmaz S, Bulanık İ, Devrim Y. Reliability Based Modeling of Hybrid Solar/
wind Power System for Long Term Performance Assessment. Reliability Eng
Syst Saf (2021) 209:107478. doi:10.1016/j.ress.2021.107478

5. Wang Z, Chen G, Liu L, Hill DJ. Cascading Risk Assessment in Power-
Communication Interdependent Networks. Physica A: Stat Mech its Appl
(2020) 540:120496. doi:10.1016/j.physa.2019.01.065

6. Tu H, Xia Y, Chen X. Vulnerability Analysis of Cyber Physical Systems under
the False Alarm Cyber Attacks. Physica A: Stat Mech its Appl (2022) 599:
127416. doi:10.1016/j.physa.2022.127416

7. Ye Q. Building Resilient Power Grids from Integrated Risk Governance
Perspective: A Lesson Learned from china’s 2008 Ice-Snow Storm Disaster.
Eur Phys J Spec Top (2014) 223:2439–49. doi:10.1140/epjst/e2014-02218-7

8. Xu F, Si S, Duan D, Lv C, Xie J. Dynamical Resilience of Networks against
Targeted Attack. Physica A: Stat Mech its Appl (2019) 528:121329. doi:10.1016/
j.physa.2019.121329

9. DeWit A. Japan’s” National Resilience” and the Legacy of 3-11. Asia-Pacific
Journal-Japan Focus (2016) 14:1–7. doi:10.1080/09555803.2017.1378698

10. Bie Z, Lin Y, Li G, Li F. Battling the Extreme: A Study on the Power System
Resilience. Proc IEEE (2017) 105:1253–66. doi:10.1109/jproc.2017.2679040

11. Guo H, Yu SS, Iu HHC, Fernando T, Zheng C. A Complex Network Theory
Analytical Approach to Power System Cascading Failure-From a Cyber-
Physical Perspective. Chaos (2019) 29:053111. doi:10.1063/1.5092629

12. Wenli F, Zhigang L, Ping H, Shengwei M. Cascading Failure Model in Power
Grids Using the Complex Network Theory. IET Generation, Transm &amp;
Distribution (2016) 10:3940–9. doi:10.1049/iet-gtd.2016.0692

13. Cai M, Liu J, Cui Y. Network Robustness Analysis Based on Maximum Flow.
Front Phys (2021) 767. doi:10.3389/fphy.2021.792410

14. Zhou D, Hu F, Wang S, Chen J. Power Network Robustness Analysis Based on
Electrical Engineering and Complex Network Theory. Physica A: Stat Mech its
Appl (2021) 564:125540. doi:10.1016/j.physa.2020.125540

15. Tu H, Xia Y, Iu HH-C, Chen X. Optimal Robustness in Power Grids from a
Network Science Perspective. IEEE Trans Circuits Syst (2019) 66:126–30.
doi:10.1109/tcsii.2018.2832850

16. Huang Y, Li P, Zhang X, Mu B, Mao X, Li Z. A Power Dispatch Optimization
Method to Enhance the Resilience of Renewable Energy Penetrated Power
Networks. Front Phys (2021) 9:517. doi:10.3389/fphy.2021.743670

17. Guo H, Zheng C, Iu HH-C, Fernando T. A Critical Review of Cascading
Failure Analysis and Modeling of Power System. Renew Sustainable Energ Rev
(2017) 80:9–22. doi:10.1016/j.rser.2017.05.206

18. Fu JQ, Guo Q, Yang K, Liu JG. Network Reconstruction in Terms of the Priori
Structure Information. Front Phys (2021) 9:452. doi:10.3389/fphy.2021.732835

19. Zhang X, Tu H, Guo J, Ma S, Li Z, Xia Y, et al. Braess Paradox and Double-
Loop Optimization Method to Enhance Power Grid Resilience. Reliability Eng.
Syst. Safety (2021) 215:107913. doi:10.1016/j.ress.2021.107913

20. Chen C, Zhou X, Li Z, He Z, Li Z, Lin X. Novel Complex Network Model
and its Application in Identifying Critical Components of Power Grid.
Physica A: Stat Mech Its Appl (2018) 512:316–29. doi:10.1016/j.physa.
2018.08.095

21. Wang Y, Xu Y, He J, Liu C-C, Schneider KP, Hong M, et al. Coordinating
Multiple Sources for Service Restoration to Enhance Resilience of Distribution
Systems. IEEE Trans Smart Grid (2019) 10:5781–93. doi:10.1109/tsg.2019.
2891515

22. Zhou D, Hu F, Wang S, Chen J. Robustness Analysis of Power System
Dynamic Process and Repair Strategy. Electric Power Syst Res (2021) 194:
107046. doi:10.1016/j.epsr.2021.107046

23. Jing K, Du X, Shen L, Tang L. Robustness of Complex Networks: Cascading
Failure Mechanism by Considering the Characteristics of Time Delay and
Recovery Strategy. Physica A: Stat Mech its Appl (2019) 534:122061. doi:10.
1016/j.physa.2019.122061

24. Li J, Shi C, Chen C, Dueñas-Osorio L. A Cascading Failure Model Based on Ac
Optimal Power Flow: Case Study. Physica A: Stat Mech its Appl (2018) 508:
313–23. doi:10.1016/j.physa.2018.05.081

25. Smed T, Andersson G, Sheble GB, Grigsby LL. A New Approach to Ac/dc
Power Flow. IEEE Trans Power Syst (1991) 6:1238–44. doi:10.1109/59.119272

26. Dantzig GB, Thapa MN. Linear Programming 2: Theory and Extensions.
Hongkong: Springer Science & Business Media (2006).

27. [Dataset] Christie RD. University of washington Power Systems Test Case
Archive (1999). Available at: (????) https://www.ee.washington.edu/research/
pstca/.

28. Zimmerman RD, Murillo-Sánchez CE, Gan D. Matpower. PSERC.[Online]
(1997). Software Available at: http://www.pserc.cornell.edu/matpower.

Conflict of Interest: FG was employed by the Beijing Kedong Electric Power
Control System Co., Ltd. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Tu, Zhang, Xia, Gu and Xu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Physics | www.frontiersin.org August 2022 | Volume 10 | Article 9411658

Tu et al. Bottlenecks Identification and Resilience Improvement

https://doi.org/10.1016/j.physrep.2021.10.005
https://doi.org/10.1063/1.5126230
https://doi.org/10.1063/1.5126230
https://doi.org/10.1016/j.physa.2018.06.117
https://doi.org/10.1016/j.physa.2018.06.117
https://doi.org/10.1016/j.ress.2021.107478
https://doi.org/10.1016/j.physa.2019.01.065
https://doi.org/10.1016/j.physa.2022.127416
https://doi.org/10.1140/epjst/e2014-02218-7
https://doi.org/10.1016/j.physa.2019.121329
https://doi.org/10.1016/j.physa.2019.121329
https://doi.org/10.1080/09555803.2017.1378698
https://doi.org/10.1109/jproc.2017.2679040
https://doi.org/10.1063/1.5092629
https://doi.org/10.1049/iet-gtd.2016.0692
https://doi.org/10.3389/fphy.2021.792410
https://doi.org/10.1016/j.physa.2020.125540
https://doi.org/10.1109/tcsii.2018.2832850
https://doi.org/10.3389/fphy.2021.743670
https://doi.org/10.1016/j.rser.2017.05.206
https://doi.org/10.3389/fphy.2021.732835
https://doi.org/10.1016/j.ress.2021.107913
https://doi.org/10.1016/j.physa.2018.08.095
https://doi.org/10.1016/j.physa.2018.08.095
https://doi.org/10.1109/tsg.2019.2891515
https://doi.org/10.1109/tsg.2019.2891515
https://doi.org/10.1016/j.epsr.2021.107046
https://doi.org/10.1016/j.physa.2019.122061
https://doi.org/10.1016/j.physa.2019.122061
https://doi.org/10.1016/j.physa.2018.05.081
https://doi.org/10.1109/59.119272
https://www.ee.washington.edu/research/pstca/
https://www.ee.washington.edu/research/pstca/
http://www.pserc.cornell.edu/matpower
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Bottlenecks Identification and Resilience Improvement of Power Networks in Extreme Events
	1 Introduction
	2 Model Description and Problem Formulation
	2.1 Cascading Failure Model
	2.2 Inter-Point Optimization for LPS Improvement

	3 Transmission Bottlenecks in the Power Network
	4 A Greedy Search Scheme for Resilience Improvement
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


