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Einstein–Podolsky–Rosen steering is a peculiar quantum nonlocal correlation and has
unique physical characteristics and a wide application prospect. Even more importantly,
multipartite steerable states have more vital applications in the future quantum information
field. Thus, in this work, we explored the dynamics characteristics of both genuine
multipartite steering (GMS) and genuine multipartite entanglement (GME) and the
relations of both under an open tripartite system. Specifically, the tripartite
decoherence system may be modeled by the three parties of a tripartite state that
undergo the noisy channels. The conditions for genuine entangled and steerable states
can be acquired for the initial tripartite state. The results showed that decoherence noises
can degrade the genuine multipartite entanglement and genuine multipartite steering and
even induce its death. Explicitly, GME and GMS disappear with the increase in the
decoherence strength under the phase damping channel. However, GME and GMS
rapidly decay to death with the increase in the channel-noise factor and then come back to
life soon after in the bit flip channel. Additionally, the results indicate that GMS is born of
GME, but GME does not imply GMS, which means that the set of genuine multipartite
steerable states is a strict subset of the set of genuine multipartite entangled states. These
conclusions may be useful for discussing the relationship of quantum nonlocal correlations
(GME and GMS) in the decoherence systems.

Keywords: open system, genuine multipartite steering, genuine multipartite entanglement, noise channel,
uncertainty relation

INTRODUCTION

EPR steering and entanglement are two fundamental characteristics of quantum mechanics and that
are inextricably linked. For the moment, the researchers believe that EPR steering stems from
entanglement, but entanglement does not imply EPR steering [1, 2]. EPR entanglement characterizes
quantum nonlocal correlations among remote parties that are totally forbidden within the classical
regime. Moreover, multipartite entangled states have important applications in the field of quantum
information. Utilizing and characterizing such quantum resources stemming from multipartite
nonlocal correlations [3] are rather crucial for the applications of the information theory [4–10] and
from foundational perspectives. Amultipartite state is deemed to be genuinely multipartite entangled
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[11] if and only if the state may not be written as a convex linear
combination of states, each of which is disentangled with
reference to some partition.

One the other hand, the concept of EPR steering was first
introduced by Schrödinger [12, 13] in the context of the EPR
argument [14]. Conceptually, EPR steering describes a nontrivial
trait of quantum mechanics that an observer can immediately
“steer” a distant party by employing the local quantum measures.
EPR steering can be detected by utilizing EPR steering
inequalities [15–22]; the violation of EPR steering inequalities
can indicate that EPR steering occurs. At first, Reid [23] derived
an inequality for EPR steering based on Heisenberg uncertainty
relation in 1989. Then, EPR steering was formally defined in
2007 [24]. Numerous EPR steering inequalities have since been
given; however, most respect was given to detecting bipartite EPR
steering [25]. Additionally, multipartite steerable states have vital
applications in the future quantum information field.
Consequently, the detection and investigation of multipartite
EPR steering is more important and challenging. The concept
of multipartite EPR steering was first introduced by He and Reid
[26] and developed for Gaussian states by Kogias et al. [27].
Experiments were followed [28–32], which motivated research
studies of the monogamy relationship of EPR steering [33, 34].
Moreover, Wang et al. [35] have optimized the collective EPR
steering for the tripartite state within a particular optics-based
system in 2014.

In a realistic world, a quantum system ineluctably suffers from
the influence of the decoherence attributed to the mutual effect
between the system and its external noises. Typically, noisy
environments usually can be classified into two species,
namely, non-Markovian and Markovian environments
[36–40]. In detail, the Markovian noisy environment is
featured by leading to the degeneration of quantum nonlocal
correlations [40]. By contrast, as a normative non-Markovian
noisy environment [41, 42], a dynamic characteristic of quantum
nonlocal correlations can be discovered, which is the renewal of
quantum nonlocal correlations after a finite time period of the
entire disappearance [43]. As a consequence, in the course of
quantum information processing, considering the external noisy
environments is indispensable and significant under a realistic
regime. However, in the past years, there have been only a few
authors to examine the steerability of multipartite states in the
local noisy environments [44–46]. Hence, we will concentrate on
exploring the genuine multipartite steering (GMS) and genuine
multipartite entanglement (GME) under the noise channels. We
here mainly probed the dynamic characteristics of GME and
GMS and the relationship between them under the noise
channels.

The remainder of this article is organized as follows. In Section
II, we introduced the measuring method of GME and GMS
within the multi-body systems, respectively. Then, we
investigated the dynamic behaviors of GMS for the initial
tripartite state under two kinds of different noises in Section 3.
In Section 4, we probed the characteristic of GME and compared
it with GMS as the tripartite state under the two kinds of different
noises. Finally, we ended up our article with a brief conclusion.

2 MEASUREMENTS OF GME AND GMS

2.1 Measurement of GME
In the first place, a method to measure multi-body entanglement
is introduced, viz., GME. N-partite entanglement is defined by its
opposite, bi-separability. An N-partite state that cannot be
written as an ensemble of bi-separable states is an N-partite
entangled state. Employing the results of Ref. [47], for a multi-
body quantum state |ψ〉, if the state’s density matrix ρ is an
X-structured matrix form

ρ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1
a2 c2

1 0
an cn
cpn bn

0 1
cp2 b2

cp1 b1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where n � 2N−1, andN is the number of qubits in a quantum state.
For example, if the quantum state is a three-qubit state,N is equal
to three, and n � 4. In addition, we require |ci|≤

���
aibi

√
and∑i(ai + bi) � 1 to ensure that ρ is positive and normalized. In

the circumstances, one can give the expression of GME for the
X-structured matrix ρ [47].

GME � 2max{0, |ci| −∑n

j ≠ i

����
ajbj

√ }, i, j � 0, 1, 2, . . . , n , (2)

where Eq. 2 is a quantified expression for multi-body
entanglement, and the range is zero to one. If the value of the
GME is equal to zero, which means that the tripartite state does
not have genuine multipartite entanglement, then the tripartite
state is not a genuine tripartite entangled state. Furthermore, if
the value of the GME is greater than zero and less than or equal to
one, which means that the tripartite state does have genuine
multipartite entanglement, the tripartite state is a genuine
tripartite entangled state. Moreover, the value of the GME is
equal to one, which means that the tripartite state is the maximal
genuine entangled state.

2.2 Measurement of GMS
According to the method proposed by He and Reid [26], if
the tripartite system is a three-qubit system, with the usual
Pauli operators defined for each site, the uncertainty relation
for spin implies (Δσ(k)x )2 + (Δσ(k)y )2 ≥ 1, (Δσ(k)z )2 + (Δσ(k)y )2 ≥ 1
and for each site k � 1, 2, 3. The approach given by He and
Reid [26] will be used; the conditions for steering can be
given by

SΙ : � 〈[Δ(σ(1)
z − σ(2)

z )]2〉 + 〈[Δ(σ(1)
x + σ(2)y σ(3)

y )]2〉≥ 1,
SΙΙ : � 〈[Δ(σ(2)z − σ(3)

z )]2〉 + 〈[Δ(σ(2)
x + σ(1)

y σ(3)
y )]2〉≥ 1,

SΙΙΙ : � 〈[Δ(σ(3)
z − σ(1)z )]2〉 + 〈[Δ(σ(3)x + σ(2)

y σ(1)y )]2〉≥ 1.
(3)

where 〈(Δσ i)2〉 denotes the variance of the quantum
observable σ i, and i � x, y, z. Then, let us introduce the set
of all bipartitions of N parties. Each bipartition is a division of
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the set {1, 2, . . . , N} into two non-overlapping and non-empty
subsets {As, Bs}. The set of all such bipartitions is denoted by
J � {J1, J2, . . . J2N−1−1}. For example, for a three-qubit state,
there are three bipartitions {As, Bs} that are {23, 1}s, {13, 2}s,
and {12, 3}s. As a matter of fact, inequalities SΙ , SΙΙ , and SΙΙΙ are
implied by bipartitions {23, 1}s, {13, 2}s, and {12, 3}s,
respectively. Consequently, the expression of GMS
inequality for the tripartite qubit-state can be written as

GMS(ρ): � {SΙ + SΙΙ + SΙΙΙ ≥ 1}. (4)
If the GMS inequality in Eq. 4 is violated, which is sufficient to

show GMS, and the value of GMS inequality is smaller, it means
that the steerability is stronger.

3 DYNAMIC PROPERTIES OF GMS FOR
THE INITIAL TRIPARTITE STATE WITHIN
THE TWO KINDS OF THE DIFFERENT
NOISES

In this section, we assume that there are three parties and they
share an initial three-qubit state in the form of [48, 49].

ρ � Q(|cGHZ〉〈cGHZ|) + 1 − Q

8
I8, 0≤Q≤ 1 , (5)

where |cGHZ〉 � α|000〉 + �����
1 − α2

√ |111〉, 0≤ α≤ 1, and I8 is
the 8 × 8 identity matrix. Based on Eqs 2, 4, we can obtain the
three-qubit states of GME 2αQ

�������(1 − α2)√ − 3/4(1 − Q) and
GMS inequality 39/16 − 3/2Q(1 + α

�����
1 − α2

√ )≥ 1, respectively.
In Figure 1, the red dashed line is below the black dashed line,
which means the tripartite state is a genuine tripartite
steerable state. On the contrary, if the red dashed line is
above the black dashed line, which means the tripartite
state is not a genuine tripartite steerable state. Thus, when
α is equal to

�
2

√
/2, one can obtain that the tripartite state is a

genuine steerable state in the case of 23/36<Q≤ 1, while it is a
genuine unsteerable state for 0≤Q≤ 23/36 in Figure 1.
Moreover, the tripartite state is entangled for 1≥Q> 3/7
and is separable for 3/7≥Q≥ 0. The maximally entangled state
(Q � 1, α � �

2
√

/2) is a maximally genuine tripartite steerable state.
Hence, we can draw a conclusion that for the whole set of the three-
qubit states, it holds that GMS0GME, suggesting a hierarchy
according to which all GMS’s states are genuinely entangled, while
GME does not imply GMS, which means that the set of genuine
tripartite steerable states is a strict subset of the set of genuine
tripartite entangled states.

Next, we considered that the tripartite states each
independently and locally interacts with a zero-temperature
reservoir. Herein, the two kinds of different noisy channels
were considered: the bit flip (BF) channel and phase damping
(PD) channel, respectively. In this context, the
system–environment interaction via the operator-sum
representation formalism is utilized. Following the approach of
the Kraus operators, the time-evolution of the initial three-qubit
states under the local noisy environment can be expressed by the
trace-preserving quantum operation ξ(ρ), which is ξ(ρ) �∑iKiρK

†
i with the Kraus operators satisfying the trace-

preserving condition ∑iKiK
†
i � I. The influence of the flip

noises is to damage the correlations contained in the phase
relations without the exchange of energy. The Kraus operators
for the BF noise channel can be given by

K0 �
��
d

√
I, K1 �

�����
1 − d

√
σx, (6)

where one can call that d is the channel-noise factor and 0≤ d≤ 1,
and I is the 2 × 2 unit density matrix. The set is interpreted as
corresponding to a probability d of remaining in the same state
and a probability 1 − d of having an error 0 ↔ 1. The factorK1 in
Eq. 6 ensures that at d � 1/2 has maximal ignorance about the
occurrence of an error and thereby has minimum information
about the state [50].Furthermore, the PD noise channel depicts
the losing correlations without the loss of energy. It leads to
decoherence without relaxation. The Kraus operators can be
given as

K2 � ( 1 0
0

�����
1 − d

√ ), K3 � ( 0 0
0

��
d

√ ), (7)

where d is the decoherence strength, and 0≤ d≤ 1. For
convenience, here, we collectively call that d is the channel-
noise factor in the BF and PD noise channels.

As a consequence, when three parties (all subsystem) of the
three-qubit states suffer from the two different noisy
environments, we then can obtain the non-zero elements of
two kinds of the different final states, ρBF and ρPD, respectively.

To be precise, as three parties of the three-qubit states undergo
the BF channel, the final state can be written as

ρBF � K0 ⊗ K0.ρ.(K0 ⊗ K0)† + K1 ⊗ K1.ρ.(K1 ⊗ K1)†
+ K0 ⊗ K1.ρ.(K0 ⊗ K1)† +K1 ⊗ K0.ρ.(K1 ⊗ K0)†, (8)

Hence, we can obtain the non-zero elements of the final states ρBF
as follows:

FIGURE 1 | (Color online) Quantum measures {GME (blue solid line) and
GMS inequality (red dashed line)} as a function of the state parameterQ, when
α is equal to

��
2

√
/2. Here, the value of the black dashed line is equal to 1.
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ρBF18 � ρBF81 � α
�����
1 − α2

√
[1 + 3(d − 1)d]Q,

ρBF27 � ρBF72 � ρBF36 � ρBF63 � ρBF45 � ρBF54 � α
�����
1 − α2

√
(1 − d)dQ,

ρBF11 � 1
8
{1 + (2d − 1)[2(5 − 2d)d − 7 + 8α2(1 + (d − 1)d)]Q},

ρBF22 � ρBF33 � ρBF55 � 1
8
− 1
8
(2d − 1){ − 1 + 2[3 + 4α2(d − 1) − 2d]d}Q,

ρBF44 � ρBF66 � ρBF77 � 1
8
{1 + (2d − 1)[1 + 2(1 + 4α2(d − 1) − 2d)d]Q},

ρBF88 � 1
8
+ {d3 − 1

8
+ α2[1 + d((3 − 2d)d − 3)]}Q.

(9)
Then, as three parties of the three-qubit states, Eq. 5 suffers from
the PD channel; the final state can be written as

ρPD � K2 ⊗ K2.ρ.(K2 ⊗ K2)† +K3 ⊗ K3.ρ.(K3 ⊗ K3)†
+ K3 ⊗ K2.ρ.(K3 ⊗ K2)† +K2 ⊗ K3.ρ.(K2 ⊗ K3)†, (10)

and the non-zero elements of final states ρPD are

ρPD11 � 1
8
+ (α2 − 1

8
)Q,

ρPD88 � 1
8
[1 + (7 − 8α2)Q],

ρPD18 � ρPD81 � α
�����
1 − α2

√
(1 − d)3/2Q,

ρPD27 � ρPD72 � ρPD36 � ρPD63 � ρPD45 � ρPD54 � 0,

ρPD22 � ρPD33 � ρPD44 � ρPD55 � ρPD66 � ρPD77 � 1 − Q

8
.

(11)
Herein, by using Eqs 3, 4, one can gain an analytical expression

of the GMS inequality for the initial state within the two kinds of
different noisy channels, respectively. In accordance with the
abovementioned analysis, one can draw the GMS inequality of
the states ρBF and ρPD as a function of the state parameters α in
terms of the different channel-noise factor d for Q � 1 in
Figure 2. From these figures, one can see that the overall
trend of the GMS inequality first decreases and then increases

with the increase in the state parameter α for a fixed d, whatever
the initial state is under the BF channel or PD channel. The value
of α is equal to

�
2

√
/2, which corresponds to the position of the

maximal genuine steerability for the tripartite state. As the
channel-noise factor grows, it does not change. It turns out
that the noisy environments cannot destroy the symmetry of
GMS for the inertial state. Moreover, we observed that GMS will
rapidly disappear with the increasing channel-noise factor d in
the BF channel. However, GMS will not fleetly disappear with the
increasing channel-noise factor d in the PD channel. It means
that the BF and PD noises can seriously influence and damage the
GMS. However, the impact of the PD noise on GMS is weaker
than that of the BF noise.

Then, in order to explore the influence of the state parameters
Q on the GMS inequality in terms of different channel-noise
factors d for α � �

2
√

/2, Figure 3 is drawn. As shown in Figure 3,
one can see that GMS inequality rapidly decreases to zero with the
increase in the state parameters Q, when there is no effect of the
decoherence noise, namely, d � 0. This demonstrates that the
steerability of the state is stronger. We also found that the GMS
occurs only when the state parameters Q increases to a fixed
value. However, the properties of the GMS are different in the BF
and PD noises, when the channel-noise factor is nonzero. In the
BF channel, when the channel-noise factor is equal to 0.2, 0.4, and
0.5, respectively, GMS disappears whatever the state parameter Q
is. Particularly, for the channel-noise factor d � 0.5, the tripartite
state has minimum information. In addition, GMS can appear
with the increase in the state parameter Q, while the channel-
noise factor is equal to 0.2, 0.4, and 0.5 in Figure 3 (2),
respectively.

Next, we considered the effects of the state parameters Q and
the channel-noise factor d on the GMS inequality, for which
Figures 4,5 were drawn. As shown in Figures 4, 5, it can be
concluded that the GMS inequality first increases and then
decreases with the increase in the channel-noise factor d
within the BF channel, whatever the value of the state
parameter Q is; however, the GMS inequality increases with
the increase in the channel-noise factor d in the PD channel.

FIGURE 2 | (Color online) GMS-inequality as a function of the state parameter α in terms of different channel-noise factors d for Q � 1, when the initial three-qubit
state is under the different noisy channels. (A) BF channel. (B) PD channel.
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FIGURE 3 | (Color online) GMS inequality as a function of the state parameter Q in terms of different channel-noise factors d for α � ��
2

√
/2 in the different noisy

channels. (1) BF channel. (2) PD channel.

FIGURE 4 | (Color online) GMS inequality as a function of the channel-noise factor d in terms of different state parameters Q for α � ��
2

√
/2 within the different noisy

channels. (i) BF channel. (ii) PD channel. Here, Q � 1 (red dashed lines), Q � 0.9 (blue dashed lines), Q � 0.8 (cyan dashed lines), and Q � 0.7 (green dashed lines).

FIGURE 5 | (Color online) Contour plot of GMS inequality versus the state parameter Q and the channel-noise factor d with α � ��
2

√
/2 under the different noisy

channels. (A) BF channel. (B) PD channel.
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We discovered that the GMS can be detected if and only if the
channel-noise factor d is larger than (6 − ��

23
√ )/12 and less than

(6 + ��
23

√ )/12 under the BF channel in Figure 4(i) and
Figure 5A. Moreover, when the channel-noise factor d is
equal to 0.5, the values of the GMS inequality are invariable in
the BF channel. At the moment, the tripartite state has minimum
information and no quantum correlation.

Hence, we can conclude that the decoherence effect can
destroy the steerability of quantum states or even completely
disable the steerability. In order to more intuitively observe the
influence of the three parameters (the channel-noise factor d and
the state parameters Q and α) on GMS, we drew a three-
dimensional contour map of the GMS inequality in Figure 6.
We can draw the same conclusions as mentioned earlier, and we
will not go into them here.

4 DYNAMIC CHARACTERISTICS OF GME
AND ITS COMPARISON WITH THE GMS
UNDER THE TWO KINDS OF THE
DIFFERENT NOISES

It is generally acknowledged that quantum steering originates
from quantum entanglement; however, entanglement does not
imply steering, which means that the set of steerable states is a
strict subset of the set of entangled states. In this section, we
probed the dynamic characteristics of GME and then discussed
the relationship between GMS and the GME under the two kinds
of the noisy channels.

By employing Eq. 2, we can give the expressions of the
GME as

GME(BF) � 2max[0, ∣∣∣∣ρBF18∣∣∣∣ − 3
�����������
ρBF22 · ρBF77

√
,∣∣∣∣ρBF27∣∣∣∣ − ( �����������

ρBF11 · ρBF88
√ + 2

�����������
ρBF33 · ρBF66

√ )], (12)

and

GME(PD) � 2max[0, α �����
1 − α2

√ (1 − d)3/2Q − 3
8
(1 − Q)],

(13)
under the BF and PD channels, respectively.

To begin with, we considered the influence of the state
parameters Q and α on GME, when d is a constant value. As
shown in Figure 7, the GME first increases and then reduces with
the increasing state parameter α, as Q is a constant value.
Additionally, the tripartite state is a product state with no GME,
when the state parameter α is equal to zero or one. We also obtained
that GME increases with the increase in the state parameterQ. Thus,
we think that Q is a purity parameter for the tripartite state. The
bigger theQ, the bigger the GME is. The tripartite state is a maximal
entangled state, when α � �

2
√

/2, Q � 1, and there is no decoherence.
Next, for comparing GME with GMS and the relationship

between GMS and GME, we investigated the influence between
the state parameters α and the channel-noise factor d on the GME
and the GMS for Q � 0.9. In the BF channel, both GME and GMS
first rapidly decay to deathwith the increasing channel-noise factord
and then come back to life (see Figure 8A). However, bothGME and
GMS tardily decay to death with the increasing channel-noise factor
d within the PD channel. Meanwhile, as shown in Figure 8B, when
GMS and GME just disappear, the channel-noise factor d has a
critical value, and the critical values are d ≈ 0.744 and d ≈ 0.809,
respectively. In other words, as the channel-noise factor is
approximately smaller than 0.744, the tripartite state is both
genuine steerable and entangled. If the channel-noise factor is

FIGURE 6 | (Color online) 3D contour plot of GMS inequality versus the state parametersQ and α and the channel-noise factor d under the different noisy channels.
(A) BF channel. (B) PD channel.
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larger than 0.744 but less than 0.809, the tripartite state is unsteerable
and only genuinely entangled. The channel-noise factor is larger
than 0.809, and the tripartite state is both unsteerable and
disentangled. It is indicated that GMS originates from GME, but
GME does not imply to GMS, which means that the set of genuine
multipartite steerable states is a strict subset of the set of genuine
multipartite entangled states. This result is also true in the BF
channel (see Figure 8A). These conclusions may be useful for
analyzing the relationship of quantum nonlocal correlations
(GME and GMS) in the decoherence noise.

5 CONCLUSION

In this article, we mainly investigated the physical
characteristic of GME and GMS within the two kinds of the

different noisy channels. In contrast with our previous work
[49], we used different initial states, and this state (see Eq. 5) is
more general. In addition, here, we utilized different
measurement methods for the multipartite quantum
nonlocal correlation (GME) in this work. The anti-
decoherence ability of GME is stronger than that of GMN.
In the next place, a tripartite state is subjected to different
decoherence noisy environments, but one is under curved
spacetime (non-inertial frame) and one is without (this
work). Consequently, in this study, we first discussed that
the dynamic properties of GMS and GME for the initial
tripartite state and the conditions for entangled and
steerable states can be given. Then, the effect of BF and PD
noises on the GMS is discussed, respectively. The results
indicated that GMS is very flimsy under the influence of the
decoherence. Specifically, GMS will perish with the increase in

FIGURE 7 | (Color online) Contour plot of GME versus the state parameters Q and α for d � 0.1 in the different noisy channels. (A) BF channel. (B) PD channel.

FIGURE 8 | (Color online) Variety of quantum measures (GME (dashed line) and GMS (solid line)) as a function of channel-noise factor d in terms of different state
parameters α for Q � 0.9. (A) shows the BF channel, and (B) shows the PD channel. Here, α � ��

2
√

/2 (red lines), α � 0.3 (pink lines), α � 0.6 (blue lines), α � 0.9 (green
lines), and α � 1 (cyan lines).
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the channel-noise factor under the PD channel. However,
GMS rapidly decays to death with the increase in the
channel-noise factor and then come back to life soon in the
BF channel. At the end, we studied the dynamic characteristics
of GME and discussed the relationship between GME and
GMS under decoherence noises. The decoherence noises can
also degrade the GME and even induce its death. In addition,
we can draw a conclusion that GMS originates from GME, but
the GME does not imply GMS, which means that the set of
genuine multipartite steerable states is a strict subset of the set
of genuine multipartite entangled states. These conclusions
may be useful for analyzing the relationship of quantum
nonlocal correlations in the decoherence noises.
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