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In light of widely expanding personalized medicine applications and their impact on clinical
outcomes, it is naturally befitting to explore all the dimensional aspects of personalized
radionuclide therapy (RNT). Adoption of absorbed radiation dose into clinical practice in the
field of RNT has been hampered by difficulties such as evidence of dose-effect correlation,
technical requirements in quantitative imaging of the radiopharmaceutical, heterogeneity of
methods between not only centers, but also across software, hardware and radionuclides
used. Additionally, standardized agreed upon definition of outcome measures is being
debated whether it be solely related to toxicity, quality of life, survival or other measures.
Many clinical RNT activity administrations are still based on empirical/fixed activities, or
scaled based on parameters such as body surface area. Although still challenging, a
tremendous amount of progress has been made to facilitate routine clinical dosimetry with
discussions regarding standardization, harmonization and automated processing
techniques. This has also been aided by the development and FDA approval of several
companion diagnostics allowing within the theranostic paradigm not only a crude
qualitative predictive biomarker but also an objective dosimetry based predictive
therapeutic biomarker. This work aims to review the literature of [177Lu]Lu-PSMA RNT,
focusing on clinical trials and studies, with the goal to summarize the range of dosimetry
techniques and the range of doses calculated to organs and tissues of interest from these
techniques. A dosimetry method for [177Lu]Lu-PSMA RNT should be reliable, reproducible
and encompassing the knowledge gained from all clinical trials evaluating it. Its translation
into clinical routine practice can be achieved with the confirmation that dose calculation
represents good clinical efficacy and low treatment-related toxicity. Finally, some future
perspectives on the future of [177Lu]Lu-PSMA RNT are made, especially in the rapidly
emerging field of artificial intelligence (AI), where deep learning may be able to play a large
role in the simplification of dosimetry calculations to aid in their clinical adoption.
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INTRODUCTION

Prostate cancer (PC) is currently the most prevalent malignancy
and the second most frequent cause of cancer mortality in adult
men worldwide [1]. It is expected that the incidence andmortality
will increase by approximately 57 and 64%, respectively, from the
years 2020–2040 [2]. Latest statistics, provided by the National
Institutes of Health (NIH), predict approximately 268,490 new
diagnoses and 34,500 deaths in the United States in 2022 [3].

As the disease progresses, systemic chemotherapeutic options
for metastatic castration-resistant PC (mCRPC) patients involve
docetaxel and cabazitaxel as first and second line agents,
respectively. Patients failing chemotherapy, eligibility (i.e. due
to contraindications) and whose cancers become advanced or
aggressive may be managed with prostatectomy, radiation
therapy or androgen deprivation therapy. 10–20% of PC
patients, experience disease progression into CRPC within
5 years of follow up, following surgical or medical castration
(i.e., androgen deprivation) [4]. According to the Prostate Cancer
Working Group 2 criteria, CRPC is defined as PC with any
progression occurring in the presence of castrate-level
testosterone levels, and may present itself as a continuous rise
in prostate-specific antigen (PSA) serum levels, or progression in
known sites of disease or with new metastases [5]. 90% of CRPC
patients develop bone metastases causing significant morbidity,
such as pain, pathologic fractures and bone marrow failure [6].

Early radioligand imaging for PC relied mainly onmonoclonal
antibodies. The murine (mAb) 7E11 and the humanized mAb
hJ591 developed in the 90s showed some drawbacks such as long
circulation half-life, low signal to noise ratio and poor target
tissue uptake [7]. The 7E11 was developed as a theranostic agent,
with [111In]In-7E11 (ProstaScint) as the diagnostic
radiopharmaceutical (itself with poor positive predictive value),
to potentially be used with SPECT imaging and [90Y]Y-7E11 as its
therapeutic counterpart. However, when [90Y]Y-7E11 showed
high myelotoxic effects and the hJ591 showed overall poor
sensitivity as a SPECT imaging agent, both stopped in
development [8, 9]. At the same time, radiolabelled J591 mAb,
as [89Zr]Zr-hJ591, was investigated for PET/CT imaging with its
therapeutic counterpart being [177Lu]Lu-hJ591 [9, 10].

More recently in the clinical space, the FDA has in 2020 and
2021 approved two diagnostic imaging agents [68Ga]Ga-PSMA-
11 [11], and [18F]F-DCFPyL [Pylarify] [12]. Both agents work by
imaging the prostate-specific-membrane-antigen (PSMA)
protein, which is often found in large amounts on prostate
cancer cells and is associated with biologic aggressiveness.
Upon the development of small molecule PSMA peptide
inhibitors, studies have shown them to be a superior
alternative to antibody-based imaging agents [13]. The key
parameters in mind when these agents were under
development, was to ensure high PSMA affinity and rapid
blood clearance and excretion [7].

Multi-center prospective trials have demonstrated the
sensitivity of these PET radiotracers for identifying small sites
of metastatic disease which has a significant impact on the
selection of treatment options. In the context of theranostics
(i.e. imaging radioisotope surrogates for therapeutic

radioisotopes) these two agents offer a potential paradigm to
deliver predictive therapeutic dosimetry. This is of great
importance especially in lieu of the recent 2022 FDA approval
of [177Lu]Lu-PSMA as a therapeutic option in mCRPC patients.

177Lu is a beta emitter with t1/2 = 6.7 days, Eβ
−(av) = 134 keV,

Eβ
−(max) = 496 keV, Dav = 0.6 mm, Dmax = 1.6 mm and emits

several accompanying photons of 208 keV (11%) and 113 keV
(6.4%), which can be used for pre and post-treatment diagnostic
evaluation and dosimetry purposes via imaging with a gamma
camera [177Lu]Lu-PSMA-617 is currently only used on the basis
of individual therapeutic trials in some European countries [14],
in addition to its anticipated use in the United States as it becomes
readily available [15]. As with all types of radiation therapy, the
goal of [177Lu]Lu-PSMA radionuclide therapy (RNT) is to
achieve the highest therapeutic efficacy by delivering
maximum absorbed dose into the tumor lesions while sparing
healthy tissues. In order to achieve a desired radiation absorbed
dose (minimum dose for maximum efficacy) and to estimate the
absorbed dose after administration of the radiopharmaceutical,
accurate dosimetry is needed pre- and post-treatment [16].
Dosimetry has played a critical role in the development of
[177Lu]Lu-PSMA RNT, yet due to the difficulty of adopting
dosimetry in routine clinical practice, it was not integrated
into large, randomized studies initially [17]. Although
dosimetry helped initially estimate the absorbed doses to
healthy tissues and tumor lesions, it was not until wider
utilization in phase 1 and 2 clinical trials that better
knowledge of toxicities was gained [17]. The recently
published European Association of Nuclear Medicine (EANM)
procedure guidelines for [177Lu]Lu-PSMA RNT are good practice
standards to follow in line with national and international legal or
regulatory provisions [18]. The aim of these guidelines is to
identify the appropriate candidates for therapy, provide a
protocol consensus to aid when performing the treatment,
summarize potential toxicities, safety considerations and
efficacy data, and describe the value of dosimetry in the
optimization of therapy and its necessity to be carried out
when the treatment to be given differs from the approved
protocol [19]. These guidelines are similar to those published
on 90Y microspheres [20] [131I]I-MIBG [21] [131I]I-NaI [22], and
[177Lu]Lu-DOTATATE [23], summarizing the views of the
EANM/Medical Internal Radiation Dose (MIRD) Committees
for therapy optimization. Additional guidance has also been
provided by EANM RNT dosimetry committee
recommendations [24].

The purpose of this review on 177Lu-PSMA RNT dosimetry is
to give a brief overview on imaging-based dosimetry methods,
and primarily to provide a summary on the 177Lu-PSMA clinical
trials that have been carried out or are ongoing, and the results of
dosimetry from these trials. In this context, we present current
efforts and highlight future perspectives on this matter.

IMAGING-BASED DOSIMETRY

To ensure that the radiation doses to organs at risk (OAR), (i.e.
kidneys, salivary and lacrimal glands) in 177Lu-PSMA RNT is
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minimized, accurate determination of the activity of 177Lu within
a defined volume is required and, hence, imaging-based
dosimetry can fulfil this purpose [23]. The collection of fully
quantitative data is an important step in accurate dosimetry
calculations, as issues may arise with efficacy or adverse side
effects with inaccurate calibrations for quantitative
dosimetry [25].

Imaging-based dosimetry involves the patients being imaged
at different time points, which allows for the rate of activity
accumulation and depletion in each organ to be determined post-
administration. To increase the accuracy of the dose estimates,
the number of imaging time points acquired can be increased,
however this is to be balanced against many logistical issues such
as the patients’willingness to be scanned over many days, scanner
availability and cost with potential insurance/chargeback issues.
Studies have been performed into the optimal timepoints for
imaging in PSMA therapy, with a recent simulation study
demonstrating that four timepoint imaging showed similar
results as with three timepoints, and that a total imaging time
of 96 h was feasible [26].

There are two main imaging-based dosimetry methods
commonly used: dosimetry performed with 2D planar
scintigraphy and 3D imaging using single-photon emission
computed tomography (SPECT) or positron emission
tomography (PET), or a combination of both methods using
dual modality with CT [27]. The hybrid 2D and 3D SPECT/CT
methods allows for the gathering of half-life information from
planar images as well as 3D image derived local uptake
distribution. The 2D planar data-based absorbed dose
estimates approach has long been the method of choice for
its ease of use and thorough documentation [28]. In this case the
well-recognized MIRD dosimetry schema has been
implemented through a range of commercial and freely
available software solutions such as OLINDA (https://www.
hermesmedicalsolutions.com/organdosimetry/) and OpenDose
(https://www.opendose.org/). The shift from using planar
imaging alone to tomographic imaging, or a combination of
both, has provided an increase in the accuracy of activity
quantification for dosimetry [29]. As an example, a
comparison of 2D planar-based, 3D SPECT/CT-based, and
hybrid dosimetry that combines 2D and 3D data
demonstrated high agreement between the absorbed doses of
normal organs using 3D and hybrid dosimetry for normal
organs (median up to 4.0%) [30]. However, substantial
differences (median up to 10.9%) were reported when 2D
and 3D dosimetry approaches were compared. Hybrid
dosimetry was found to have high accuracy when estimating
the absorbed dose, relative to 3D dosimetry for all organs of
interest. Despite the potential accuracy of 3D dosimetry, it is
important to note however, that evaluation of SPECT/CT
reconstruction techniques are vital in ensuring accurate
dosimetry quantification. Recent work demonstrated pitfalls
using different reconstruction schemes of a kidney cortex/
medulla phantom, noting that large differences from the true
organ distribution can be obtained, and demonstrated a
potential remedy by using a partial volume correction
technique [31].

When quantitative SPECT is fully utilized, attenuation and
scatter correction are required, but also corrections for dead time
and distant-dependent detector blurring, which degrade image
quality. The wide range of correction techniques found for
SPECT makes the optimization process challenging. Also, with
small organs such as the salivary/lacrimal glands, and inherently
due to a lower spatial resolution, partial volume effects may be
challenging and recovery coefficient corrections may be needed.
177Lu isotope specific guidelines for quantitative 177Lu SPECT
(not specific for prostate PSMA) imaging are available in the
MIRD pamphlet [16]. Examples of application of this quantitative
177Lu SPECT methodology in a physical phantom using a 20%
energy window for photopeaks of 113 keV, 208 keV and a
combination of both demonstrated a quantification error up to
40% for the 113 keV energy window only, <3.2% for the 208 keV
window only and 14% error for a combination of windows [23].

Although not relevant for 177Lu imaging, Bremsstrahlung
(continuous X-ray spectrum) imaging for certain theranostic
isotopes that emit no or low-yield gamma rays (i.e. 90Y and
89Sr) may be employed, however the quantification of
Bremsstrahlung imaging remains challenging [32].

METHODS OF DOSIMETRY CALCULATION

To date, there are several dosimetry techniques available, with the
MIRD schema (developed by theMIRDCommittee of the Society
of Nuclear Medicine andMolecular Imaging (SNMMI)) being the
most incorporated technique for radiolabelled PSMA [33,34,35].
The schema was developed as a means to estimate the average
absorbed radiation doses of radiopharmaceuticals to patients’
organs, tissues, voxels and cellular compartments [36,37], via the
computation of time-activity curves, which then allow for the
calculation of the cumulative radioactivity in a volume of interest
[38,39]. It can be implemented using “S-values” (absorbed dose
rate per unit activity) that are determined using Monte Carlo
(MC) simulations for different isotopes [40,41,42]. Limitations of
S-value calculations are based on assumptions such as
homogenous distribution of radioactivity within organs and
standardized organ masses [43,44]. Due to its relative
simplicity, quick algorithms that require 2D imaging, and the
use of average organ characteristics, S-value dosimetry has been
used in routine clinical settings and represents a minimum
standard of dosimetry computation [35,45,46,47,48].
Additionally, in the past S-values used in dosimetric analysis
have been used as a reference for new dosimetry methodologies
[49,50,51].

Further accuracy in dosimetry calculations can be achieved
using direct MC simulations of radiation transport. MC
simulations involve input parameters that initiate an iterative
statistical process, resulting in voxel-level absorbed dose
calculations being carried out through estimating interactions
of particles [43]. They can account for inhomogeneous
radioactivity distribution and secondary particles, and allow
for simulation in patient-specific organ and lesion geometries
[44,45]. However, due to its computational and operational
resources and expertise required to implement a simulation,
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MC simulation is used more so in research settings and can be
considered a de facto reference standard due to the high level of
accuracy that can be achieved.

In analogy with the MIRD formalism, MIRD pamphlet no.17
(1999) [39], provides voxel-based dosimetry using voxel S-values
(VSV). Using MC simulations, VSV are calculated for specific
isotopes and voxel dimensions [52,53]. Consequently a kernel
matrix is used to estimate the mean absorbed dose for each voxel,
whereby each voxel is a uniform source and each nearby voxel is a
target ([54], [39]). This, as a result, generates a voxel-by-voxel
dose map [56]. Although different MC codes may provide
variances in dose estimates within a few percent, this is not a
large enough margin to be considered relevant in a clinical setting
[51],[44], [58]. The VSV method is particularly advantageous for
its ability to handle inhomogeneous radioactivity
distributions [54]. Figure 1 demonstrates a comparison of
VSV, direct MC technique and a deep learning technique for
dose rate calculation on images of the same patient.

The local energy deposition method is yet another technique
that is applied in dosimetry calculations, proposed to simplify the
application of VSV for beta emitters. In this method, the
assumption is that all of the energy is absorbed in the voxel of
origin. It is primarily used for alpha and beta particles or auger
electrons and not gamma emitters or secondary photons because
of their longer range in tissue [59].

Various studies have demonstrated the use of simplified
dosimetry calculation methodologies for potential clinical
adaptation. Recent work reported on two simplified [177Lu]Lu-
PSMA-617 dosimetry schemes for organs at risk, whereby one
method simplified image acquisition and the other, dose
calculation [60]. The simplified schemes were found to be
feasible and showed potential for simplification in future
works, and were both consistent with their reference method
for cumulative absorbed dose. Mix et al. attempted to simplify
dosimetry by using intratherapeutically acquired SPECT/CT
scans to determine the kidney dose per cycle, noting that
extrapolation of individual data from dosimetry of the first
treatment cycle was highly predictive of the cumulative kidney
dose at the end of treatment [61]. Other work similarly reported
on the ability to approximate the [177Lu]Lu-DOTATATE
absorbed doses to abdominal organs and lesions from a single
time point measurement of the abdominal activity distribution
[62]. The study found that a single measurement by SPECT/CT
4 days after the administration can be used to estimate the doses
absorbed efficiently. A recent simulation study also looked at
optimal sampling schedules for renal and tumor dosimetry for
[177Lu]Lu-PSMA RNT. The study demonstrated that a timepoint
at 192 h was necessary, and improvements in accuracy and
precision could be achieved with careful selection of
timepoints [63].

CLINICAL TRIALS

Since the beginning of 2021, the results of two large, randomized,
controlled clinical trials, the TheraP [64] and VISION [65] trials,
have been published showing promising clinical outcomes.

Consequently, the international phase 3 VISION trial
(NCT03511664) led to the Food and Drug Administration
(FDA) granting breakthrough designation to [177Lu]Lu-PSMA
RNT, eventually leading to its final approval in March 2022 [66].
Results reported on the overall survival (OS) and radiographic
progression-free survival (rPFS) of [177Lu]Lu-PSMA RNT plus
protocol-permitted standard of care (SOC) in 831 prostate cancer
patients, with a sub-dosimetry study aimed at estimating the
absorbed dose in organs at risk. For the dosimetry study, a
separate cohort of 29 patients from four centers received 7.4
GBq of [177Lu]Lu-PSMA-617 per cycle in addition to SOC every
6 weeks for a maximum of 6 cycles. Whole body scintigraphy
scans and SPECT/CT scans after the first administration of the
RNT, as well as blood and urine samples were collected. The
radiation absorbed doses per unit activity were found to be the
highest in the lacrimal glands (mean 2.1 Gy/GBq) and the salivary
glands (mean 0.63 Gy/GBq) [67].

The TheraP multicenter, randomized phase 2 trial
(NCT03392428) reported on prostate-specific antigen (PSA)
response of 201 patients receiving 6–8.5 GBq of [177Lu]Lu-
PSMA-617 every 6 weeks for up to 6 cycles. Similarly, large
clinical trials are underway such as UpFrontPSMA [68],
PSMAfore [69], PSMAddition [70], and ENZA-p [71] that
have not specifically included imaging-based dosimetric related
outcomes. They have instead focused attention on endpoints such
as efficacy, safety and toxicity, which may have been improved by
looking at dosimetry implications. There are currently four phase
1 and 2 clinical trials underway with radiation dosimetry of
[177Lu]Lu-PSMA in humans as an endpoint, as summarized in
Table 1. A further study (NCT03042468) demonstrated that in a
phase 1 dose-escalation cohort patients received 7.4–22 GBq and
in phase 2 the patients received a 22.2 GBq dose, a maximum
tolerable dose of 22.2 GBq of [177Lu]Lu-PSMA-617 is safe for a
fractionated cycle [72].

Also under investigation is a trial of 43 patients
(NCT03454750), who were administered 3.7–5.5 GBq of
[177Lu]Lu-PSMA-617, four times at 8-weeks intervals [73].
Dosimetry was carried out using the MIRD formalism
(OLINDA/EXM software) in 30.2% of the patients (n = 13),
low grade hematological (with the exception of two patients
showing G3), salivary gland and renal toxicity was reported,
concluding that [177Lu]Lu-PSMA-617 is safe and salivary gland
uptake may be reduced by co-administration of polyglutamate
tablets.

TUMOR LESION DOSIMETRY

Recent work has shown high tumor doses for skeletal, lymph
node, and liver metastases [74], and in some (prospective)
studies for lung metastases as well [75] in patients
administered with [177Lu]Lu-PSMA-617. Radiation dosimetry
demonstrated high tumor absorbed doses, as shown in Table 2,
and low exposure to OAR. Similarly, with [177Lu]Lu-PSMA-
I&T, two studies reported on the absorbed doses to tumor
lesions [88,89]. The studies found the highest absorbed doses
in bone, lymph node, liver and lung tumor lesions [177Lu]Lu-
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PSMA-I&T was noted to achieve high tumor to background
ratios of the mean absorbed doses [90,91].

NORMAL ORGAN AND TISSUE
DOSIMETRY

Various studies have reported on absorbed doses to normal
organs and tissues [74,75,76,77,89,92], as is shown in Table 3.

Many retrospective and prospective studies, concluded that
the organs with the highest absorbed doses were the kidneys
and salivary glands [81,85,87,93,94]. Additional studies have
also reported that the maximum cumulative doses to the
kidneys and salivary glands were the highest [78,85,94] and
the lacrimal glands possibly representing the dose-limiting
organs [95]; they concluded that the doses did not exceed the
commonly applied dose constraints for the kidney (23 Gy [96])
and salivary glands (45 Gy [93]) [97,98]. When the kidney

TABLE 1 | Summary of ongoing clinical trials for 177Lu-PSMA RNT.

Clinical Trial
Identifier

Study Title Phases Primary Objective

NCT03874884 177Lu-PSMA-617 Therapy and Olaparib in Patients With
Metastatic Castration Resistant Prostate Cancer

1 Evaluate the safety and tolerability of olaparib in combination with
177Lu-PSMA-617

NCT03042468 Phase I Dose-escalation Study of Fractionated 177Lu-PSMA-617
for Progressive Metastatic CRPC

1,2 Find the highest dose level of 177Lu-PSMA-617 that can be given
without severe side effects

NCT03490838 177Lu-PSMA-R2 in Patients With PSMA Positive Progressive,
Metastatic, Castration Resistant Prostate Cancer

1,2 The first phase will determine the recommended 177Lu-PSMA-R2
dose. The second phase will study the preliminary activity of repeated
treatments administered, with continued assessments of the safety
and quality of life of the RNT.

NCT04430192 Dosimetry, Safety and Potential Benefit of 177Lu-PSMA-617 Prior
to Prostatectomy

1,2 Evaluate the dosimetry, efficacy and toxicity of Lu-PSMA-617

NCT03454750 Radiometabolic Therapy (RMT) With 177Lu PSMA 617 in
Advanced Castration Resistant Prostate Cancer (CRPC)

2 Evaluate the efficacy and toxicity of 177Lu-PSMA-617

TABLE 2 | Tumor absorbed doses after 177Lu-PSMA RNT.

Radiophar-
Maceutical

Study References No. of
Patients

Organ/
Target

Mean
Absorbed Dose

(Gy/GBq)

PET/CT or
SPECT/CT

Dosimetry Calculation
Method

1 Paganelli et al[73] 14 Skeletal 4.70 SPECT Planar
Nodal 3.64

2 Maffey-Steffan
et al[76]

32 Skeletal 4.01 ± 2.64 SPECT Planar
Lymph node 3.12 ± 2.07
Liver 2.97 ± 1.38

3 Scarpa et al. [77] 10 Skeletal 3.4 ± 1.9 SPECT Planar w/blood sampling
Lymph node 2.6 ± 0.4
Liver 2.4 ± 0.8

4 Violet et al. [78] 30 Skeletal 5.28 ± 2.46 SPECT Blood sampling
Nodal 3.91 ± 3.93

5 Zhang et al. [79] 14 Tumor 13.75 ± 31.59 SPECT Planar
6 Delker et al. [80] 5 Bone 5.3 ± 3.7 SPECT Planar

3 Lymph node 4.2 ± 5.3
1 Soft tissue 2.1 ± 0.8

7 Kratochwil et al[81] 4 Tumor 6.1–22.8 SPECT, PET —

8 Sarnelli et al[82] 9 Liver 0.16 ± 0.15 SPECT Planar w/blood sampling
9 Peters et al[83] 10 Tumor 3.25 ± 3.19 SPECT —

10 Völter et al[84] 30 Skeletal 4.7 ± 3.9 SPECT —

Nodal 7.7 ± 9.7
11 Yadav et al[85] 26 Tumor 10.95 ± 18.01 — Planar w/blood sampling
12 Fendler et al[86] 30 Tumor 6.1 ± 4.9 — —

13 Rosar et al[87] 24 Skeletal 1.42 ± 0.99 SPECT Planar
177Lu-PSMA-I&T 14 Barna et al[88] 22 Bone 4.38 SPECT Voxel-wise

Lymph node 5.47
Liver 4.95

15 Okamoto et al. [89] 18 Bone 3.4 ± 2.7 PET Planar
Lymph node 3.2 ± 2.2
Liver 1.2 ± 0.67
Lung 1.75 ± 0.92
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TABLE 3 | Normal organ absorbed doses after 177Lu-PSMA RNT.

Radiophar-
Maceutical

Study References No. of
Patients

Organ/Target Mean
Absorbed Dose

(Gy/GBq)

PET/CT or
SPECT/CT

Dosimetry Calculation
Method

1 Paganelli et al[73] 14 Lacrimal glands 2.26 SPECT Planar
Parotid glands 0.65
Submandibular
glands

0.59

Kidneys 0.42
2 Maffey-Steffan

et al[76]
32 Kidneys 0.771 ± 0.564 SPECT Planar

Lacrimal glands 0.845 ± 0.505
Parotid glands 0.534 ± 0.217
Submandibular 0.455 ± 0.171

3 Scarpa et al[77] 10 Parotid glands 0.561 ± 0.248 SPECT Planar
Submandibular
glands

0.498 ± 0.146

Lacrimal glands 1.006 ± 0.690
Kidneys 0.600 ± 0.362

4 Violet et al[78] 30 Kidneys 0.39 ± 0.15 SPECT Blood sampling
Submandibular
glands

0.44 ± 0.36

Parotid glands 0.58 ± 0.43
Bone marrow 0.11 ± 0.10

5 Zhang et al[79] 14 Kidneys 0.81 ± 0.32 SPECT Planar
Whole body 0.058 ± 0.027

6 Delker et al[80] 5 Left kidney 0.60 ± 0.19 SPECT Planar
Right kidney 0.61 ± 0.16
Salivary glands 1.41 ± 0.53
Liver 0.11 ± 0.06

7 Kratochwil et al[81] 4 Kidneys 0.75 SPECT Planar, w/blood sampling
Red marrow 0.03
Salivary glands 1.4

8 Sarnelli et al[82] 9 Parotid glands 0.81 ± 0.74 SPECT Planar
Kidneys 0.67 ± 0.27
Liver 0.16 ± 0.15
Whole body 0.049 ± 0.031

9 Peters et al[83] 10 Salivary glands 0.39 ± 0.17 SPECT —

Kidneys 0.49 ± 0.11
Liver 0.09 ± 0.01

10 Yadav et al[85] 26 Salivary glands 1.24 ± 0.26 — Planar w/blood sampling
Kidneys 0.99 ± 0.31
Liver 0.36 ± 0.10
Urinary bladder 0.243 ± 0.09

11 Fendler et al[86] 30 Left kidney 0.5 ± 0.3 — —

Right Kidney 0.6 ± 0.2
Liver 0.1 ± 0.1
Spleen 0.1 ± 0.1

10 Salivary glands 1.0 ± 0.6
12 Rosar et al[87] 24 Kidneys 0.54 ± 0.28 SPECT Planar

Parotid gland 0.81 ± 0.34
Submandibular
gland

0.72 ± 0.39

Liver 0.10 ± 0.05
13 Gosewisch

et al. (92)
5 Bone marrow 0.108 3D Planar w/blood sampling

14 Kabasakal et al[93] 7 Parotid glands 1.17 ± 0.31 — Planar w/blood sampling
Kidneys 0.88 ± 0.40
Liver 0.28 ± 0.09
Total body 0.061 ± 0.026

15 Kabasakal et al. [94] 7 Parotid glands 1.90 ± 1.19 SPECT Planar
Kidneys 0.82 ± 0.25
Liver 0.17 ± 0.09
Bone marrow 0.030 ± 0.008

16 Hohnberg et al[95] 9 Kidneys 0.525 ± 0.173 — Planar
Salivary glands 0.721 ± 0.142
Lacrimal glands 2.82 ± 0.76

(Continued on following page)
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doses were above the International Commission on
Radiological Commission (ICRP) critical dose limits
however, they were observed to not cause clinical
complications due to nephrotoxicity [99].

PREDICTIVE DOSIMETRY

Many works have reported on pretherapeutic [68Ga]Ga-
PSMA-617 PET possibly serving to indicate the dosimetry

of [177Lu]Lu-PSMA-617. One such study by Wang et al. [74]
reported on a high correlation between the standard uptake
value (SUV) of tumor lesions in [68Ga]Ga-PSMA-617 PET and
those in [177Lu]Lu-PSMA-617. Maffey-Steffan et al. [76]
studied the 68Ga/177Lu-theranostic concept in PSMA-
targeting of mCRPC patients. The study concluded that
while whole body scintigraphy allows for accurate follow up
of patients treated with [177Lu]Lu-PSMA-617 [68Ga]Ga-
PSMA-11 PET/CT is recommended to be performed for
both patient selection and final response assessment.

TABLE 3 | (Continued) Normal organ absorbed doses after 177Lu-PSMA RNT.

Radiophar-
Maceutical

Study References No. of
Patients

Organ/Target Mean
Absorbed Dose

(Gy/GBq)

PET/CT or
SPECT/CT

Dosimetry Calculation
Method

Whole body 0.0630 ± 0.0229
17 Ozkan et al[99] 10 Kidneys 0.70 ± 0.24 — —

Parotid glands 1.34 ± 0.78
Submandibular
glands

0.94 ± 0.45

Lacrimal glands 2.28 ± 1.29
18 Gosewisch

et al. [100]
10 Bone marrow 0.012 SPECT —

19 Mix et al [61] 59 Kidneys 0.67 ± 0.24 SPECT —

20 Privé et al. [101] 10 Salivary glands 0.39 ± 0.17 SPECT Blood sampling
Kidneys 0.49 ± 0.11
Liver 0.09 ± 0.01

177Lu-PSMA-I&T 21 Barna et al[88] 22 Parotid glands 0.77 SPECT Voxel-wise
Kidneys 0.71
Liver 0.27

22 Okamoto et al[89] 18 Liver 0.72 ± 0.21 SPECT, PET Planar
Submandibular
glands

0.64 ± 0.40

Lacrimal glands 3.8 ± 1.4
Whole body 0.06 ± 0.03

FIGURE 1 | Example of dose rate maps produced by direct MC simulation (considered ground truth), voxel S-value convolution and a deep convolutional neural
network (CNN). The CNN approach generates dose rate maps similar to MC, and better agreement in certain areas such as lungs compared to VSV, as highlighted by
the red arrows (With copyright permission - [146]).
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The use of [68Ga]Ga-PSMA-11 PET/CT for an absorbed
estimation of [177Lu]Lu-PSMA RNT has not yet been
evaluated extensively in literature. However, a recent study
compared predicted absorbed doses to actual delivered doses;
it did so through the use of [177Lu]Lu-PSMA SPECT imaging data
to determine population tissue effective half-times and estimate
dosimetry using a single time point pretherapeutic [68Ga]Ga-
PSMA PET [102]. The PET/SPECT absorbed dose ratios were
1.01 ± 0.21 for the kidneys, 1.10 ± 0.15 for the liver, 1.20 ± 0.34 for
the submandibular glands, and 1.11 ± 0.29 for the parotid glands.
As for the lesion kinetics, a larger range was reported with a PET/
SPECT absorbed dose ratio of 1.3 ± 0.7 (range: 0.4–2.7), possibly
due to the difficulty in calculating the SPECT absorbed dose for
small structures. This raises the increased probability of larger
uncertainties for the calculations associated with these small
volumes [103,104]. Predictive dosimetry has also been shown
to be improved by obtaining continuous tracer distribution data
1 h post [68Ga]Ga-PSMA administration using PET imaging
[105], however would likely suffer from complex acquisition
logistics.

DISCUSSION & FUTURE PERSPECTIVES

Seeing the results of both retrospective and prospective studies,
the dosimetry of [177Lu]Lu-PSMARNT played a pivotal role in its
FDA approval and hence its use in clinical practice. We project
that the current ongoing clinical trials will bring more light to the
dosimetry of [177Lu]Lu-PSMA, in hopes of optimizing its use so
its clinical feasibility will be expanded. There are various studies
that have investigated “cocktail therapy” (a combination of drugs
used to treat a certain condition) [106], while others explored
[177Lu]Lu-PSMA RNT post-exhaustion of standard treatment
options. However, there are studies yet to evaluate the optimal
sequencing of treatment of options.

Recently, alpha-based RNT has proven to be a promising
therapeutic option in mCRPC patients with tumors refractory to
beta RNT [107]. Clinical studies with alpha emitters such as 213Bi
have suggested that contrary to beta-emitters RNT, patients do
not develop resistance to alpha emitter therapy [108]. By
lessening the localized dose pattern with higher energy beta
electrons to achieve uniformity [109], or chelating PSMA
molecules with radioisotopes, such as alpha emitters, capable
of causing greater DNA damage through high LET emission
[110], radiation dose delivery may be optimized. While 223RaCl
is the first and only alpha emitting radioligand currently FDA and
European Medicines Agency (EMA) approved for mCRPC with
bone metastases with no known extra-skeletal metastases
[111,112,113], radionuclides such as 149Tb, 211At, 213Bi, 212Pb/
212Bi, 227Th, and 225Ac are being evaluated for their use in PSMA
RNT preclinical and clinical studies [114,115,116,117,118]. The
dosimetry of the latter three radionuclides for RNT in prostate
cancer patients is being investigated with both PSMA and other
chelators [119,120,121,122,123,124,125,126,127].

While encouraging results are being documented, some
studies have reported on irreversible toxicities associated with
alpha emitting PSMA agents. The shorter tissue range of alpha

radiation has shown beneficial in targeting tumor cells that have
penetrated bone marrow with a relatively lower toxicity when
compared to beta emitters [110]. However, a high rate of
irreversible xerostomia was reported as the dose-limiting
toxicity upon exceeding 100 kBq/kg per cycle, thus leading to
the use of 225Ac-PSMA therapy only for salvage therapy
[107,110]. Similarly, irreversible grade 2 + neutropenia was
observed in the use of 50kBq/kg of 223Ra in prostate cancer
patients [128].

Artificial Intelligence in RNT
The field of diagnostic imaging has seen a huge increase in the use
of AI in almost all aspects of the clinical patient pathway. For
Nuclear Imaging, this has led to AI developments in patient
positioning, attenuation and scatter correction [129], low-count
image reconstruction techniques [130,131], event positioning in
monolithic crystals [132] and various postprocessing
applications. In external beam radiotherapy, AI has been
investigated for radiation dose calculations such as
optimization of treatment plan quality/uniformity with a
reduction of planning time [133], prediction of human
operator behavior in the treatment planning process of
prostate IMRT [134] and automated organ at risk and lesion
segmentation [135,136]. Although technically very similar, lesion
segmentation has proven to be more challenging when compared
to organ segmentation, due to the possible variability in the
location, size and shape of lesions leading to unusual
pathophysiology that may be unseen by AI training
algorithms. Clinical tools from major vendors are available for
automated/semi-automated segmentations with varying degrees
of success in oncological cases. To improve efficiency and
standardization, U-Net architecture using AI-based algortihms
has shown promise [137,138,139]. A full review on AI
developments in EBRT treatment planning and segmentation
is reported by Wang et al [140].

Similarly, explorations are also underway to incorporate AI
into RNT dosimetry, primarily where MC simulations are used as
a reference standard. Recent work has used a deep neural network
(DNN) to extend single S-value kernels to specific S-value kernels
corresponding to patient-specific anatomy to construct 3D dose
maps of [18F]FDG distribution [141]. Using training data of
density maps (via CT images) and reference voxel wise
S-values (generated using Monte Carlo simulations), whole-
body dose maps can be constructed like the standard voxel-
based MIRD scheme. The growth in the importance of
mandatory regulation for each test that will be put to routine
use in clinical practice, with the latest regulatory papers
undergoing certification to prove reproducibility is expected
[142,143]. Perhaps more studies are needed to address the
challenges of how these AI ML models will join clinical
practice to predict PC using histopathological or imaging
methods for diagnosis [144].

Similar work aimed at incorporating dosimetry calculations
into clinical practice with less computational effort used a U-net
architecture with full MC simulation as a reference to predict
individual absorbed dose distributions with inputs of CT (density
maps) and dose maps (estimated using MIRD calculations, whole

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9406778

Alsadi et al. Review of Prostate [177Lu]Lu-PSMA Dosimetry

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


organ S-values and time activity data) [145]. This work examined
the predictions of 26 177Lu-PSMA datasets (4 timepoint imaging),
and their resulting method outperformed the standard MIRD
DVK dose calculation method in terms of dose deviation. Similar
work using data also trained from MC ground truth to predict a
3D dose rate map evaluated their method on 10 datasets of [68Ga]
Ga-NOTA-RGD [146]. Their CNN-based dose rate map agreed
with the ground truth with voxel dose rate errors of 2.54 ± 2.09%.
Although their work demonstrates a proof of principle of learning
dose estimates, and the ability to significantly reduce dosimetry
calculation time while retaining accuracy of MC simulations, the
cohort of these 2 studies are small. Similarly, many AI methods
are limited by small cohort studies. Therefore, the collaborations
between various clinical centers will be necessary for more
generalizable models and accurate training data.

Such advances in AI dosimetry methods in diagnostic
imaging, histopathology, and genomics offers the
possibility for the delivery of personalized, precision
medicine. Current work performed is remains difficult to
standardize in terms of quantification, dosimetry
calculation technique and analysis but offers good insight
into the true potential of dosimetry in predicting toxicity and
outcomes. The use of AI is promising and has the potential to
truly deliver predictive dosimetry.
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