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We have investigated the Fano factor and shot noise theoretically in the confined region of
the potential well of zigzag graphene nanoribbon (ZGNR). We have found that the Fano
factor is approximately 1, corresponding to the minimum conductivity (σ) for both
symmetrical and asymmetrical potential wells. The conductivity plot with respect to
Fermi energy appears as symmetrical plateaus on both sides of zero Fermi energy.
Moreover, a peak observed at zero Fermi energy in the local density of states (LDOS)
confirms the edge states in the system. The transmission properties of ZGNR in the
confined region of the potential well are examined using the standard tight-binding Green’s
function approach. The perfect transmission observed in the confined region of the
potential well shows that pnp type transistors can be made with ZGNR. We have
discussed the Fano factor, shot noise, conductivity, and nanohub results in the
continuation of previous results. Our results show that the presence of van-Hove
singularities in the density of states (DOS) matters in the presence of edge states. The
existence of these edge states is sensitive to the number of atoms considered and the
nature of the potential wells. We have compared our numerical results with the results
obtained from the nanohub software (CNTbands) of Purdue University.
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1 INTRODUCTION

Graphene, since its discovery in 2004 by Geim and Novoselov, has attracted the attention of the scientific
community because of its exceptional properties and its widespread applications in nanoelectronic devices
like spintronics and solar panels [5–8]. Its high strength, durability, flexibility, light weight, optical
transparency, excellent electrical and thermal conductivity make it unique among the other known
materials for diverse applications [9–12]. Graphene is a zero band gap material, and that limits its
application in microelectronics. However, the band gap of graphene can be tailored [13]. Researchers have
reported different approaches to opening up an electronic bandgap in graphene. For instance, patterning
nanomesh, chemical modification, applying strain, and cutting graphene into nanoribbons [14–17].
Fabricating graphene nanoribbons (GNRs) is the easiest andmost elegant method of bandgap engineering
of graphene andmakes the study of this material more interesting [18]. GNRs are nanometer-scaled quasi-
1D stripes of graphene with a width of less than 50 nm [19]. GNRs are made by cutting graphene sheets or
unzipping carbon nanotubes, resulting in various edge structures [20, 21]. In GNRs, the spatial
confinement and edge effects lead to an electronic energy band gap opening without drastically
affecting the mobility of charge carriers [18, 22].

Zigzag and armchair shapes are the two most basic edge structures of GNRs. The electronic
energy band gap of GNRs depends on their width and edge structure [7, 18]. Edge boundaries
have a remarkable effect on the physical properties of GNRs [23, 24]. Experimentally,
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significant progress has been achieved in producing graphene
nanoribbons. However, producing nanoribbons of well-
defined size and shape remains a significant challenge [7,
25, 26]. It is observed that ZGNRs show metallic behavior,
whereas nanoribbons with armchair edges show metallic or
semiconducting behavior depending upon their widths [7,
18]. Díez et al. have shown that the electronic energy gap of
GNRs varies inversely proportional to their widths [27].
Therefore, one can easily tune the electronic energy band
gap by tuning the width of GNRs [20]. The width and edge
arrangement of GNRs significantly impact their charge
transport properties [28, 29]. Various methods can
effectively modify these transport properties, viz., oxygen
edge decoration, chemical functionalization, and
application of an electric field across edges [28–31]. As a
result, to make GNRs more beneficial for their various
potential applications, a detailed and systematic study of
transport properties is required. It has been shown that
ZGNRs have edge states close to Fermi energy [3]. In
contrast, no edge states form in armchair graphene
nanoribbons (AGNRs) [32]. In ZGNRs, at Fermi energy,
these edge states contribute significantly to the density of
states (DOS) [3, 24]. Edge states have a substantial influence
on the electrical and magnetic characteristics of ZGNRs [24].
In strained ZGNRs, the LDOS exhibits a crossover between
decaying and oscillating behavior as the distance from the
edges increases [33]. Moreover, the spin-polarized states at
the edges of ZGNRs are predicted, making them appropriate
for spintronics and planar interconnect applications [7, 18].
According to the findings, ZGNRs have a spin-polarized
ground state with zero net spin [22]. Edge states cause spin
polarization in ZGNRs by introducing high DOS near Fermi
energy [22, 34]. These localized spins exhibit ferromagnetic
coupling within each edge and antiferromagnetic coupling
between opposite edges [22, 34]. In narrower ZGNRs ( <
7 nm), the spin-polarization at two edges results in band
gap opening (0.2–0.3 eV) and switching ZGNRs from metal
to semiconductor [35]. It is also predicted that the spin-
polarization in ZGNRs can be stable at room temperature,
thus opening the possibility of room temperature ZGNR
based spintronic devices [22, 35].

The inclusion of the spin-orbit coupling (SOC) effect
converts the GNRs into a new class known as topological
materials [36–38]. In our case, we have not considered the
SOC effect and external magnetic field. Therefore, no
topological edge states appear in our case [39, 40]. Several
research groups have proposed graphene nanoribbon field-
effect transistors (GNRFET) as a substitute for silicon-based
transistors and future terahertz (THz) operation [41, 42]. The
electrical performance of these GNR-based devices is
measured by the transport properties such as electrical
conductivity [43], thermal conductivity [44] etc. The
electrical conductivity (σ) measurements are important in
GNRs because they depend on electron transmission
modes, i.e., the exact number of current channels and
pathways available for electron transport [43]. It is also
investigated that current fluctuations are observed in the

current passing through nano-scaled GNR devices such as
GNRFET [45, 46]. These current fluctuations should be a
minimum for nanoscale devices to have practical applications
[47]. Therefore, it is indispensable to know the magnitude of
these current fluctuations for advancement in nanoscale
electronics.

Shot noise (S), the measure of time-dependent fluctuations in
electrical current, occurs due to the discreteness of electrical
charge [48]. It provides the physical information of electronic
systems that is not measured by transport measurements, such as
conductance [49]. For instance, shot noise measurements can be
used to show the fermionic character of electrons, current-
carrying by fractional charges, and to investigate many-body
phenomena in mesoscopic physics [50]. Shot noise is absent in
macroscopic metallic resistors since electron-phonon interaction
smooths out current fluctuations [51]. It is not very significant at
high currents and longer time scales, but it becomes notable at the
nanoscale. Many solid-state devices exhibit these time-dependent
current fluctuations caused by the discrete nature and restricted
transmission of the electric charge, e.g., tunnel junctions, p-n
junctions, and Schottky barrier diodes [51]. Shot noise has also
been calculated in the case of GNRs [45, 52–54]. The Fano factor
(F), which indicates the strength of the noise power density,
depends on the frequency of the applied field, temperature, and
presence of disorder in graphene [51]. It is defined as the ratio of
noise current to mean current and gives valuable information
about electronic transport [51]. The Fano factor is also defined by
the ratio of its variance to its mean. When the variance count is
equal to the mean count, such a process is called the Poisson
process, in which F = 1. When the value of F < 1, it is in the sub-
Poissonian case, whereas when F > 1, it is in the super-
Poissonian case. Smaller values of F imply smaller variance
and less noise [55]. It is very well known that a lower value of
F implies better energy resolution.

Several theoretical and experimental studies have been
conducted on calculating shot noise and Fano factor in the
case of GNRs [46, 47, 54]. Recently, Marconcini et al.
calculated the Fano factor for disordered graphene samples
biased by two side gates. They concluded that the decrease in
aspect ratio (width/length) enhances the Fano factor (F = 1) for
fixed values of disorder parameters [46]. That same group also
studied the Fano factor in AGNR using randomly spaced
potential barriers [56]. However, there are only a few reports
available on the calculation of conductance, shot noise, and Fano
factor in the confined region of symmetrical and asymmetrical
wells [57].

In the present work, we have discussed LDOS, conductivity
(σ), shot noise (S), and Fano factor (F) using the tight-binding
Green’s function (TBGF) approach [58, 59]. Here, we noted that
edge states depend upon the effective number of atoms (N) per
unit cell and the nature of the potential well. In both the cases of
potential wells (see Figure 1), symmetrical conductivity plateaus
are observed. Our results show that F ≈ 1 for symmetrical and
asymmetrical potential wells. This enhanced value of F is due to
the confinement of electrons inside the potential well, which
behaves as a quantum dot. Our theoretically obtained value of F
matches with the experimental results obtained by Tan et al. [54].
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They have shown that in GNRs near the charge neutrality point,
the enhanced value of F (~ 0.7) is due to the formation of the
quantum dot. They also argued that depending upon the
tunneling transparency through the quantum dot, the value of
F can vary in the range 0.5–1 [54]. For ZGNRs, in the presence
and absence of edge effects, we have obtained the results from the
nanohub software [4] and compared them with our results. Our
study reveals that LDOS, shot noise, and conductivity are
sensitive to the nature of potential well and number of carbon
atoms and are useful for the study of the transport behavior of
GNR-based devices. This work is organized as follows: Section 2
is devoted to the theoretical formulation of the work; Section 3
comprises the detailed discussion of the obtained results; Section
4 comprises the detailed discussion of the results obtained from
nanohub; Section 5 summarizes the conclusions; and the last,
Section 6, provides the acknowledgments.

2 THEORETICAL FORMULATION

Motivated by the work studied by Pereira et al. [1], we have
theoretically constructed the potential well on the graphene
sheet along the zigzag direction. The region of the graphene
sheet in the potential well behaves as ZGNR as in our previous
work [3, 58]. The electrostatic potential profile for a potential well
with a Heaviside step function (Θ(x)) is defined as [3]

V x( ) � V0 Θ x( ) − Θ x − L( )[ ], (1)

where Θ(x) is defined as

Θ x( ) � 0, if x< 0
1, if x≥ 0{ . (2)

Therefore, using Eq. 1, 2, potential well can be defined as [3]

V x( ) � V0, if x< 0 and x> L
0, if 0≤x≤ L{ . (3)

Here, V0 and L represent the depth and length of the potential
well, respectively. As shown in Figure 1, the electron confined in
region (II) behaves as a quantum dot. Generally, conductance is
expressed in terms of tunneling probability, which is defined as
the ratio of the flux of a transmitted wave to that of an incident
wave [51, 60]. The tunneling probability depends on the applied
potential, the energy of the electron, and the width of the
quantum well [60].

We have used the TBGF formalism to calculate the transport
properties of ZGNR in the confined region of the potential well
[3]. The symmetric and asymmetric potential wells are created
simply by using the Heaviside function as shown in previous
works [3, 58]. We can see from Figure 1 that there are three
regions of the well. The hexagonal unit cell with N = 12 (effective
number of atoms per unit cell) is shown in Figure 2 and the
hexagonal structure with a basis of two atoms A and B is shown in

FIGURE 1 | (A) Symmetric and (B) asymmetric potential well [63].

FIGURE 2 | Hexagonal unit cell with N = 12 atoms (as shown in
rectangle) [3].

FIGURE 3 | Hexagonal structure with a basis of two atoms, A and B [3].
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Figure 3. The Hamiltonian in the confined region can be
written as

Hk � H0,0 +H0,1e
ikx +H1,0e

−ikx. (4)
Here, k in Eq. 4 tells us about the confined region. If some real

parameter (α) replaces the phase factor, it would be in the outer
regions I and III rather than in the confined region (II) of the well.
H0,0 accounts for the unit cells that interact among themselves.
H0,1 and H1,0 mean that the unit cell having the name 0 is
interacting with 1 or vice versa. We have considered nearest
neighbor interaction only. Therefore, the sparse Hamiltonian
becomes like a tridiagonal [3]. We have obtained the
electronic band structure by diagonalizing the Hamiltonian
given in Eq. 4 and plotting it with k. The band structure for
small and large N is shown in Figure 4.

We have calculated the transmission coefficient and LDOS
with the help of Green’s function approach here. This method,
based on a tight-binding model, is a numerical method used to
simulate transport properties in graphene [56, 61]. The Green’s
function of a system is given by

G � EI −H( )−1, (5)
where H is the Hamiltonian of the entire structure [3, 62]. The
complete Hamiltonian of the system can be defined as

H �
HL HLD 0
H†

LD HD H†
RD

0 HRD HR

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (6)

Here, HL(R) represents the Hamiltonian of the isolated left
(right) lead,HD is the Hamiltonian of the system (device) without
leads, and HLD (HRD) represents the interaction Hamiltonian
between the device and leads.

In our calculations we have used the terms N (effective
number of atoms per unit cell), M (number of unit cells), Vl

(height of the potential well on the left side) and Vr (height
of the potential well on the right side). The values of Vl and
Vr will decide whether the potential well is symmetric or

asymmetric. When Vl = Vr, the potential well is symmetric
otherwise asymmetric. The system Green’s functions can be
expressed as

G �
GL GLD GLR

GDL GD GDR

GRL GRD GR

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (7)

With the help of Eqs. 5–7, we get

EI −HL( )GLD −HLDGD � 0, (8)
−H†

LDGLD + EI −HD( )GD −HDRGRD � I, (9)
−H†

DRGD + EI −HR( )GRD � 0. (10)
Therefore, using Eqs. 8–10, the device Green’s function can be

described as

GD � EI −HD − ΣL − ΣR( )−1, (11)
where ΣL and ΣR are the self-energy terms due to the coupling of
semi-infinite leads and defined as

ΣL � H†
LDgLHLD (12)

ΣR � H†
RDgRHRD. (13)

Here, gL(R) � (EI −HL(R))−1 represents the surface Green’s
function and can be calculated with the help of Lopez Sancho
algorithm [64]. E = E + i0+ is the energy (complex) of the
conducting electron with 0+ small arbitrary energy to shift the
poles of Green’s function from the real axis [3]. To calculate the
full Green’s function of the device, we need to compute the left
and right lead retarded Green’s function. These functions are
calculated by

gL
0,0 � E + i0+( ) −H0,0 −H†

−1,0 ~T[ ]−1, (14)
gR
M+1,M+1 � E + i0+( ) −H0,0 −H−1,0T[ ]−1, (15)

where H0,0, H−1,0, respectively, represent the tight-binding
Hamiltonian of a unit cell and the coupling between two
adjacent unit cells in lead. The transfer matrices (T and ~T)
can be iteratively computed with the help of elements of the
Hamiltonian matrix [58, 65, 66].

T � t0 + ~t0t1 + ~t0~t1t2 +/ + ~t0~t1~t2 . . . tn, (16)
~T � t0 + t0~t1 + t0t1~t2 +/ + t0t1t2 . . . ~tn, (17)

where, to define ti and ~ti, the following recursion relations are
used

ti � I − ti−1~ti−1 − ~ti−1ti−1( )−1t2i−1 (18)
~ti � I − ti−1~ti−1 − ~ti−1ti−1( )−1~t2i−1 (19)

with

t0 � E + i0+( )I −H0,0[ ]−1H†
−1,0 (20)

~t0 � E + i0+( )I −H0,0[ ]−1H−1,0. (21)
This process is repeated until ti (~ti) becomes arbitrary small

[64]. Therefore, the total Green’s function of the device (Eq. 11)
was obtained with the help of retarded surface Green’s functions

FIGURE 4 | ZGNR band structure (A) for small N and (B) for large N.
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of the leads. Since Green’s function is in our hand, the
transmission coefficient can be calculated by [3, 52, 67]

T E( ) � Trace ΓLGrΓRGa( ) (22)
where ΓL and ΓR are the corresponding broadening matrices for
regions I and II, respectively, and can be written as

ΓL R( ) � i ΣL R( ) − Σ†
L R( )( ) (23)

and Gr is the corresponding retarded Green’s function, whereas
Ga � (Gr)† is called the advanced Green’s function. These
functions can be written as

Gr E( ) � E + i0+( )I −H[ ]−1 (24)
Ga E( ) � E − i0+( )I −H[ ]−1. (25)

Here, Gr and Ga differ from each other by the sign of an
infinitesimally small quantity.

LDOS in terms of Green’s function can be calculated by the
formula [19]

LDOS E( ) � −π−1Im Trace G( )[ ]. (26)
The Fano factor is expressed in terms of tunneling probability

(Tn) [51, 68] and is defined by [57]

F � ∑Nmax−1
n�0 Tn 1 − Tn( )
∑Nmax−1

n�0 Tn

. (27)

Here, Nmax is the maximum of propagating modes in the case
of leads. By knowing the Fano factor, we can also calculate shot
noise power (S), which can be defined as [48]

S 0( ) � 2eF〈I〉, (28)

where S (0), 〈I〉, and e represent the shot noise at zero frequency,
the total average current through the device, and the elementary
charge unit, respectively. The conductance (G) is calculated by
summing Tn over the modes.

G E( ) � g0 ∑Nmax−1

n�0
Tn , (29)

where g0 = 4e2/h and factor 4 gives the spin and valley degeneracy
[68]. The dependence of conductivity (σ(E)) on the transmission
can be defined as [50, 68]

σ E( ) � G E( )L/W, (30)
where L and W represent the length and width of the device,
respectively.

It is difficult to make GNRs with pure zigzag and armchair
edges, so most GNRs produced in experiments have chiral edge
geometries that include both zigzag and armchair sites [69]. In
GNRs, both the geometry of the edges and their width are given
by the chiral vector C. This vector is defined as [70]

C � n
a1
2
+m

a2
2
≡ n,m( )A/B , (31)

where a1 and a2 are the graphene’s lattice vectors and n,m are the
integers. Mechanical and electrical properties of chiral GNRs
have been observed theoretically as well as experimentally [71,
72]. It has been revealed that chirality can be used to tune the
electrical properties of GNRs [69, 72, 73]. A chiral vector (n,m) or
chiral angle θc is used to characterize the chirality of GNRs. For
the declaration of the GNR type, a beginning point known as the
origin of the chiral vector is required. The GNRs are classified as
type-A or type-B based on the origin point of the chiral vector.
GNR is said to be type-A if the tail of the chiral vector is fixed at

FIGURE 5 | LDOS for symmetric potential well with (A) N = 80, (B) N =
120, (C) N = 180, and (D) N = 240.

FIGURE 6 | LDOS for asymmetric potential well with (A) N = 80, (B) N =
120, (C) N = 180, and (D) N = 240.
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the center of a carbon atom positioned at sublattice A within the
unit cell. If the tail of the chiral vector is fixed at the center of a
carbon atom positioned at the B sublattice within the unit cell,
GNR is said to be type-B. ZGNR has a chirality vector (n, n),
i.e., n = m, whereas in armchair graphene nanoribbon (AGNR),
chirality is defined by (n, 0) [70]. The transport vector (T) lies
perpendicular to the chiral vector and can be written as [70]

T � p
a1
2
+ q

a2
2
≡ p, q( ), (32)

where p and q are integers. The chiral angle θc in terms of n andm
can be defined as [71]

θc � arctan
m

2n�
3

√ + m�
3

√( ). (33)

The values of θc = 0° and 30° define pure zigzag and armchair
edges, respectively. When the value of θc lies between 0° and 30°,

the chiral nanoribbons are formed. For θc = 0°, the chiral and
transport vectors lie along the armchair and zigzag directions,
respectively. Thus, the ribbon with zigzag edges is formed along
the transport vector direction, i.e., ZGNR. For θc = 30°, the
directions of these vectors interchange and form the armchair
edges along with the transport vector direction, i.e., AGNR
[70, 71].

3 RESULTS AND DISCUSSION

Theoretically, we study LDOS, Fano factor, shot noise and
conductivity of ZGNR for different cases like symmetric and
asymmetric potential wells. We have employed the TBGF
approach to investigate the transport properties of ZGNRs.
We have calculated LDOS in different cases, and it is observed
from Figure 5 and Figure 6 that edge states occur in this system

TABLE 1 | Calculated values of Fano factor for different cases.

Structure of the
potential well

Graphene ribbon parameters Calculated values of
Fano factor (F)

Symmetric well with Vl = 50 meV and Vr = 50 meV N = 80, M = 30 F ≈ 1
N = 120, M = 30 F ≈ 1
N = 180, M = 30 F ≈ 1
N = 240, M = 30 F ≈ 1

Asymmetric well with Vl = 50 meV and Vr = 80 meV N = 80, M = 30 F ≈ 1
N = 120, M = 30 F ≈ 1
N = 180, M = 30 F ≈ 1
N = 240, M = 30 F ≈ 1

FIGURE 7 | Shot noise power for (A) symmetric potential well with N = 20, (B) asymmetric well with N = 20, (C) symmetric potential well with N = 40, and (D)
asymmetric potential well with N = 40.
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[74]. In the symmetric potential well (Vl = Vr) (Figure 5A),
perfect edge states occur when N = 80 and M = 30. When we
increased N up to 120 in a symmetric well and kept M fixed, edge
states disappeared from the system. So, we conclude here that
edge states depend on N. We further increased our N = 180 and
240 and kept the other parameters the same, like Vl, Vr, and M. It
is clear from the observed results that edge states are not there.
We can see that edge states, also called surface states, exist in this
system, which is very well known. These states result from zigzag
edges, which have localized non-dispersive states at the Fermi
energy [75]. In a particular case when N = 80,M = 30, and the well
is symmetric (with potential heights Vl = Vr = 50meV), edge
states are present in this geometry. We have further increased N
and varied the width of the well by keeping the potential well
symmetric; still, perfect edge states remain present in this system
(Figure 5A). When we have kept all parameters the same and
made the potential well asymmetric (with potential heights ofVl =
50meV and Vr = 80meV on the left and right side of the well),
edge states are no longer there. It proves that edge states depend
upon N and the nature of the potential well (Figure 6). Also, the
asymmetric nature of LDOS arises due to the increase in the value
of N andM in the symmetric potential well. In our previous work,
in Figure 3 of Ref. [58], we have observed the symmetric behavior
of the LDOS in the symmetric potential well. The presence of
peaks in the density of state (van-Hove singularities) is frequent
in one-dimensional (1D) materials, but it is not always related to
edge states. van-Hove singularities appear in DOS but no edge
state is present; all depends on where the states localize.

The calculated values of the Fano factor for different cases are
shown in Table 1. When we keep the potential well symmetric as
shown in Figure 1A, with a potential height of 50meV on each
side and taking N = 80, M = 30. We see from our data that the

maximum value of F is approximately 1. Even though we have
changed the potential well to asymmetric (Figure 1B) (Vl =
50meV and Vr = 80meV) and kept all other parameters
unchanged, but the value of the Fano factor does not exceed 1
(Table 1). Our calculations show that F is always below 1, which is
physically accepted also [76, 77].

Therefore, we can conclude that the maximum possible
current fluctuation for our system at low energy is limited to
the mean current. The F = 1 case arises due to the transportation
of a maximum number of non-interacting electrons and is known
as the Poisson limit, where Pauli’s principle is not functional [52].
As we increase the energy, the Fano factor value decreases. This
decrease in the value of the Fano factor is attributed to an increase
in several interacting electrons. As per Pauli’s interaction, two
electrons cannot occupy the same state. Therefore, the Fano
factor value is not more than 1 [52]. The larger value of the
Fano factor corresponds to the minimum conductivity. However,
we have taken two different cases, when the left potential is not
equal to the right potential and vice versa. We further calculated
shot noise in our simulations [48]. It is visible from Figure 7 that
when N = 20, M = 30 and the potential well is symmetric, a long
peak (≈ 0.2 A2s) occurs at an energy scale of 0.1 eV. One small
peak (≈ 0.02 A2s) is also observed at nearly −0.1 eV. A similar
trend was observed in the system when we kept the parameters
same and changed the well to an asymmetric one. However, for
N = 40 and M = 30, we got a shot noise power of 0.18 A2s in the
case of the symmetric potential well, which is almost double as
compared to the shot noise value of 0.09 A2s for the asymmetric
one (Figure 7). It is observed that the maximum value of shot
noise depends upon the nature of the potential well, N and M
values. We can see very clearly from Figure 8, 9 that transmission

FIGURE 8 | Transmission for symmetric potential well with (A) N = 80,
(B) N = 120, (C) N = 180, and (D) N = 240.

FIGURE 9 | Transmission for asymmetric potential well with (A) N = 80,
(B) N = 120, (C) N = 180, and (D) N = 240.
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increases with N for both symmetric and asymmetric cases
because more subbands take part in conduction as N
increases. We have also studied the conduction behavior. For
a fixed value of the length and width, we have calculated
conductivity in the confined region of the well. The behavior
of conductivity and transmission appear almost same in our
results. Since conductivity is related to transmission linearly, the
conductivity behavior is the same as transmission/conductance.
In Figure 10, when the potential well is symmetric, conductance
plateaus are found to be present in this system at different
energies. These plateaus in conductance remain in the case of
asymmetric wells also. The spectrum of conduction plateaus has a
symmetric structure. When we changed the geometry of the well
and made it asymmetric, these plateaus were still there in the
system. We further increased our N and M and kept well

symmetric. We observed that perfect transmission occurs in
terms of plateaus, i.e., no scattering is actually there and
electron behaves like a bullet only (ballistic behavior). This
shows the metallic behavior. For the same parameters, the
spectrum remains symmetrical and perfect transmission occurs
in this asymmetric case only [3]. Therefore, conductivity remains
symmetrical independent of the nature of the potential well, but a
dip in conductivity occurs in symmetric cases only, as observed in
our earlier work [3].

4 RESULTS WITH NANOHUB

We have done our simulation for ZGNR (type-A & type-B) with
the nanohub software (CNTbands) of Purdue University [4].

FIGURE 10 | Conductivity for (A) symmetric potential well with N = 8, (B) asymmetric well with N = 8, (C) symmetric potential well with N = 12, and (D) asymmetric
potential well with N = 12.

FIGURE 11 | When edge effects are not considered, (A) GNR type-A with tight-binding energy (3 eV), c-c spacing (1.42 A°), chirality (7,7), (B) density of state
plotted with energy, and (C) band structure. We have plotted these results from the nanohub software of Purdue University [4].
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With the help of nanohub software, we have considered edge
effects in both types (type-A & type-B) of ZGNR by varying
chirality. We have calculated the density of states, band structure,
and spin-resolved density in the presence or absence of edge
effects. In type-A ZGNR with chirality (7,7) (Figure 11), when no
edge effects are considered, the system shows perfect edge states.
The presence of these edge states is reflected by the formation of
the sharp peak at zero energy, as shown in Figure 11B. Also, in
the absence of edge effects, the band structure remains degenerate
at zero energy (Figure 11C). This shows the metallic behavior of
the ribbon. These results exactly match the results obtained in the
preceding section without taking into account the edge effects
(See Figures 4, 5A).

Next, we considered the type-A ZGNR with chirality (8,8) and
considered the edge effects (Figure 12). The increase in chirality
only changes the width of the ribbon, i.e., the number of atoms in
the width of GNR. As a result, the number of subbands in the

energy spectrum increases. The bandgap appears in the energy
spectrum when edge effects are considered, as shown in
Figure 12D, and no sharp peak appears in the density of state
at zero energy (Figure 12B). In the presence of the edge effects
due to spontaneous magnetic ordering, the opposite spin states
accumulate at the edges of the ribbons. The interaction between
these spin-polarized states gives rise to a bandgap opening in
system [22]. For type-A, the variation in the spin-resolved density
(Ne) of these states at different edges with atomic index is shown
in Figure 12C. It can be seen that as we move from one edge to
another, i.e., atom index increases, one kind of the spin density
(spin up or spin down, as shown by blue or red color
(Figure 12C) decreases, whereas the opposite kind increases.
The interaction between these opposite spin-polarized edge states
lifts the degeneracy of the zero flat bands and produces a band gap
[22]. Therefore, in type-A ZGNR, a change in chirality only
changes the number of subbands in the energy spectrum when
edge effects are not considered. In contrast, the presence of the
edge effect changes the behavior of the ribbon, that is, from
metallic to semiconducting.

In type-B GNRs having chirality (8,8), when edge effects are
absent, no spin splitting of the edge states occurs. The band
structure remains degenerate at zero energy, as shown in
Figure 13C. The edge states remain in the system, which is
clearly shown by the peak in the density of state at zero energy
(Figure 13B). Therefore, a change in the ribbon type does not
affect the presence of edge states when edge effects are not
considered, and the system remains metallic. When edge
effects are considered in type-B ZGNR with chirality (8,8), the
accumulation of the opposite spin states occurs at the opposite
zigzag edges of the ribbon. Here also, the interaction between
opposite spin-polarized edge states gives rise to a finite gap in the
energy spectrum (Figure 14D) of the system, which was absent
before [22]. In the density of state behavior shown in Figure 14B,
due to the presence of edge effects, no sharp peak appears at zero
energy. The spin-resolved densities of the opposite kind formed at
the opposite edges of the ribbon in the presence of edge effects.
The behavior of the spin-resolved density with atom index is
shown in Figure 14C. It is clear from Figure 14C that these
densities decrease as we move away from the edges, i.e., from the
edge to the center of the ribbon. Therefore, changes in the type
and chirality of the ZGNRs only change the number of subbands

FIGURE 12 | When edge effects are considered, (A) GNR type-A with
tight-binding energy (3 eV), c-c spacing (1.42 A°), chirality (8,8), (B) density of
states plotted with energy, (C) spin resolved density with atom index, and (D)
band structure. We have plotted these results from the nanohub
software of Purdue University [4].

FIGURE 13 |When edge effects are not considered (A)GNR type-B with tight-binding energy (3 eV), c-c spacing (1.42 A°), chirality (8,8), (B) density of state plotted
with energy, and (C) band structure. We have plotted these results from the nanohub software of Purdue University [4].
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and do not affect the existence of the edge states in the system
when edge effects are absent. However, in the energy spectrum of
both types of ribbons having different chirality, finite band gap
opening takes place due to edge effects. The behavior of the spin-
resolved densities is independent of type-A or type-B ZGNR, and
these densities decrease for both types as we move away from the
edge toward the ribbon center.

5 CONCLUSION

To summarize, we have numerically investigated the quantum
transport behavior of ZGNRs in the confined region of the
potential well. In the symmetric potential well, the study
reveals that perfect edge states appear when N = 80 and
M = 30, and disappear when N = 120, and M = 30. Also, in
the case of the asymmetric potential well, no edge states appear
in the system when N = 80, 120 and M = 30. Therefore, the
existence of the edge states depends on N and the type of the

potential well (symmetric or asymmetric). The presence of
edge states at zero Fermi energy exhibit van-Hove singularity
in DOS. No van-Hove singularity appears at zero Fermi
energy in the presence of edge effects. Therefore, at zero
Fermi energy, the presence of edge states is associated
with the van-Hove singularity in DOS. Moreover, perfect
conductance/conductivity plateaus are observed in both
symmetric and asymmetric potential wells. However, a dip
appears in the conductivity at zero Fermi energy in the
symmetric case only. For symmetrical and asymmetrical
potential wells, we found that the Fano factor is
approximately 1, which corresponds to the minimum
conductivity. Also, the value of the Fano factor does not
exceed one, which is physically acceptable [54, 76, 77].

On the other hand, the results obtained from the nanohub
show the existence of edge states in the absence of edge effects,
and the system shows metallic behavior. In the presence of
edge effects (both type-A and type-B GNRs), the magnetic
ordering between spin-polarized states gives rise to band gap
opening in the energy spectrum. Therefore, the system shows
semiconducting behavior in the presence of edge effects.
Moreover, in the absence of edge effects, the increase in the
chirality (n, n) of both GNRs (type-A & type-B) does not change
the behavior of the system except by adding more subbands to the
band structure.
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