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Purpose: This study aimed to investigate the relationship between dielectric properties
(permittivity and conductivity), thermoacoustic signals (TAS) and temperature of liver
tissues at 3.0 GHz.

Materials and Methods: An open-ended coaxial probe was used to measure the
dielectric properties of fresh porcine liver tissues in vitro, and a thermoacoustic imaging
(TAI) system was used to collect the TAS. Porcine liver tissues were placed on a heating
platform, and the dielectric properties measuring probe and temperature sensor were
inserted into the liver tissues separated by 1.5 cm. First, the liver tissues were gradually
heated by a heating platform from room temperature (30°C) to 60°C, and the dielectric
properties and TAS were measured as the temperature increased approximately every
1°C. Second, after the temperature of the porcine liver tissue reached 60°C, the heating
platform was turned off to naturally cool the porcine liver tissue to room temperature.
During the process, the dielectric properties and TAS were also measured as the
temperature decreased every 1°C. Finally, the changes in the dielectric properties and
TAS of the liver tissues with temperature at 3.0 GHz frequency were analyzed.

Results: During the process of heating the tissues up to 60°C, the conductivity of the
porcine liver tissues decreased while the permittivity and TAS of the porcine liver tissues
increased, and the relationships were nonlinearly correlated. Meanwhile, during the cooling
process, the conductivity of the porcine liver tissues increased, while the permittivity and
TAS decreased, and the relationships were also nonlinearly correlated.

Conclusion: The dielectric properties and TAS of porcine liver tissue changed significantly
with temperature, which makes it possible to differentiate the safety margin during liver
thermal ablation with thermoacoustic imaging (TAI). While the relationship between
temperature, dielectric properties and TAS needs to be further investigated, TAI has
the potential to be utilized for safety margin screening during thermal ablation.
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INTRODUCTION

Hyperthermia therapy is a medical treatment that exposes
biological tissue to high temperatures to destroy and kill cancer
cells, and has become an important tumor treatment modality
in addition to surgical treatment, chemotherapy, radiotherapy
and immunotherapy. The key to local thermal ablation is to
produce a necrotic area that completely covers the tumor.
Therefore, real-time evaluation of the ablation process and the
safety margin is essential. Thermal ablation is mainly used to
treat liver tumors smaller than 3 cm [1]; however, with the
expansion of indications, single liver tumors smaller than, for
example, 5 cm can also be treated with thermal ablation [2],
which makes the evaluation of safety margins more important
to ensure complete tumor ablation. The dielectric properties of
biological tissues carry abundant physiological and
pathological information, but they are sensitive to
environmental factors, especially the influence of
temperature [3, 4]. Therefore, changes in tissue dielectric
properties must be considered during thermal ablation.
Moreover, knowledge of the temperature-dependent
dielectric properties of liver tissues is important to imaging
modalities that generate images based on differences in
dielectric properties.

Since the importance of the dielectric properties of
biological tissues to the diagnosis and treatment of diseases
has been recognized, many researchers have studied the
dielectric properties of human or animal biological tissues
[5–7]. Although several studies have explored the dielectric
properties of liver tissues at different frequencies at room
temperature [8, 9], the dielectric properties of liver tissues
at different temperatures need further investigation. Recently,
there have been studies on the correlation between the
dielectric properties of liver tissues and temperature
[10–15]. Although most of these studies were limited to a
narrow frequency range of 460–480 kHz (RF frequencies), they
indicated that the dielectric properties of liver tissue are
temperature dependent. In recent years, the dielectric
properties of biological tissues under microwave frequencies
have also attracted more attention [14, 16]. However, the
temperature-dependent dielectric properties of liver tissues
within the temperature range of 30°C–60°C at 3.0 GHz have
been only partially studied. In clinical thermal ablation,
2.45 GHz is mainly utilized. Thus, it is necessary to further
explore the temperature-dependent dielectric properties of
liver tissues during the heating and cooling process.

Thermoacoustic imaging (TAI) is a novel imaging modality
that can reflect the biological characteristics (especially
dielectric properties) of tissues via thermoacoustic effects,
and has the advantages for high contrast of microwave
imaging and high resolution for ultrasound imaging [17].
Some studies have investigated the relationship between
thermoacoustic signals (TAS) and temperature in phantom
and biological tissues [18, 19], while a few studies have
explored the temperature-dependent TAS and dielectric
properties simultaneously in liver tissues [19, 20].
Meanwhile, the combination of temperature, dielectric

properties and TAS has certain guiding significance for the
theoretical study of TAI for the detection of ablation safety
boundaries. Furthermore, the frequency of TAI is 3.0 GHz,
which is close to the frequency used for microwave ablation
(2.45 GHz), and the dielectric properties of liver tissue are
similar at these two frequencies [5]. Therefore, this study
aimed to explore the dielectric property changes of ex vivo
porcine liver tissue during the heating and cooling process, as
well as the temperature dependence of TAS at 3.0 GHz.

MATERIALS AND METHODS

In this study, fresh porcine liver tissue was obtained from a
local slaughterhouse. All porcine liver tissues used in the
experiment were acquired from different individuals to
minimize sampling error. Homogeneous blocks of porcine
liver, at least 3*3 cm2, were used for the experiments. Each
ex vivo porcine liver tissue was wrapped in aluminum foil to
keep it fresh before experiments. The initial temperature at the
beginning of the experiments was approximately 30°C.

Calibration of the Dielectric Properties
Measuring Device
The dielectric property measurement was conducted with an
open-ended coaxial system [21], as shown in Figure 1. In this
study, short standard calibration was attained by pressing the
coaxial probe on a thin copper sheet. Then, an open standard
was established by placing the probe in free space, and the load
standard was completed by immersing the probe into
deionized water. After calibration the performance of the
coaxial probe was verified by measuring the conductivity of
pure water during the heating and cooling process, which is
shown in Figure 2.

Dielectric Property Measurement of Liver
Tissues
Figures 1A,B shows the placement of the coaxial probe and
thermometer. The ex vivo porcine liver tissues were placed on a
heating platform (JF-956K, Tianjin, China), and the
temperature of the heating platform was controlled by an
external temperature regulating system. A digital
thermometer (Omega Engineering, Inc., Stanford, CT) was
used to measure the temperature of the liver tissues. The
dielectric property measuring probe was inserted 0.5 cm
deep into the center of the liver tissue, and two temperature
probes were inserted at the same depth in the same plane
approximately 1.5 cm away from the dielectric property testing
probe. The measuring system was kept stationary throughout
the experiment. In total, four liver tissues were used in the
study. The probe was wiped with clean test paper before the
measurement of the different liver tissues so that probe
residues did not affect the test results.
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Thermoacoustic Signal Measurement of
Liver Tissues
The thermoacoustic signal (TAS) was collected with a previously
reported array transducer-based system [22] [Figure 3A presents a
schematic of the TA imaging system]. Briefly, pulsed microwaves
emitted from a homemade microwave generator (frequency:
3.0 GHz, bandwidth: 50MHz, peak power: 60 kW, pulse
duration: 550 ns) were coupled to a handheld antenna [23] via a
semirigid coaxial cable (1.5 m long with 2.2 dB insertion loss). The
actual average microwave power density at the liver was only
approximately 15.0 mW/cm2 when a 50 Hz repetition frequency
and 550 ns pulse duration were utilized, which is below the IEEE
standard for safety levels (20mW/cm2 at 3.0 GHz) [24]. The excited
TAS was captured by a 128-element linear array transducer

(8.5MHz center frequency, SH7L38, SASET. Inc., China) and
further amplified by homemade 128 channel amplifiers
(bandwidth: 0.2–2.5MHz, gain: 56 dB). Finally, the TAS was
averaged 50 times and recorded by two 32-channel acquisition
cards (NI5752, NI Inc., United States) at a sampling rate of
50MPs. The TA images were recovered by using a delay and
sum algorithm created by MATLAB (Mathworks Inc., Natic,
MA) [25]. To investigate the relationship between TAS and the
temperature of liver tissue, the TA images were obtained (Figures
3B,C), and the sum of the area within the white square was regarded
as the TAS for further analysis.

During the heating process, the temperature of the liver tissuewas
gradually increased to 60°C by adjusting the power of the heating
plate. When the temperature of the liver tissue reached 60°C, the

FIGURE 1 | Schematic diagram (A) and image (B) of the experimental setup for dielectric property measurement in ex vivo liver tissues. The porcine liver tissue was
placed on the surface of a heating platform, and the dielectric properties testing probe and temperature probes were inserted into liver tissues at an interval of 1.5 cm.

FIGURE 2 | Conductivity changes of pure water with temperature. The conductivity of pure water decreased gradually in the heating process and increased
gradually in the cooling process.
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heating platform was turned off to naturally cool the liver tissue to
room temperature. The dielectric properties and TAS of ex vivo
porcine liver tissues at temperatures ranging from room temperature
(30°C) to 60°C at a frequency of 3.0 GHz (the frequency used for
thermoacoustic imaging) were measured. A temperature above 60°C
was not attempted because significant physiological changes were
expected in tissues above 56°C–60°C [26, 27], which is also an

indicator of effective tumor destruction during thermal ablation [28].
The dielectric properties and TAS were measured every 1°C
throughout the heating and cooling process. The relationship
between dielectric properties (permittivity and conductivity), TAS
and temperature of the liver tissue at 3.0 GHz frequencies was
expressed by polynomial curve fitting. Higher correlations have
correlation coefficient, R2, closer to 1.

FIGURE 3 | Schematic of the TA imaging system (A), and the corresponding TA images of porcine liver tissue at 35 and 60°C (B,C).

FIGURE 4 | Changes in the conductivity properties of ex vivo liver tissue during the heating and cooling process. The red lines in the figures (A–D) represent the
polynomial curve fitting of the conductivity of liver tissue during the heating process, with an R2 values of 0.955–0.9948. The black line represents the polynomial curve
fitting of conductivity of liver tissue during the cooling process, with an R2 of 0.99–0.9994. The results show an almost nonlinear relationship between the conductivity of
liver tissues and temperature.
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RESULTS

The Relationship Between the Conductivity
of Pure Water and Temperature
The conductivity of pure water decreased gradually in the
heating process and increased gradually in the cooling
process, which is consistent with other studies [29]
(Figure 2). This may be related to higher temperatures,
resulting in more intense thermal motion of water

molecules, making it more difficult to induce uniform
polarization.

Temperature-Dependent Dielectric
Properties and Thermoacoustic Signals of
Ex Vivo Porcine Liver Tissue
In general, the dielectric properties and TAS changes of liver tissues
with temperature were consistent in all the test groups. During the

FIGURE 5 | The permittivity changes of ex vivo liver tissue during the heating and cooling process. The red lines in the figures (A–D) represent the polynomial curve
fitting of the permittivity of liver tissue during the heating process, with an R2 values of 0.9825–0.9952. The black line represents the polynomial curve fitting of permittivity
of liver tissue during the cooling process, with an R2 of 0.9839–0.9948. The results show an almost nonlinear relationship between the permittivity of liver tissue and
temperature.

FIGURE 6 | The thermoacoustic signals changes of ex vivo liver tissue during the heating and cooling process. The red line in the figure (A,B) represents the
polynomial curve fitting of thermoacoustic signal of liver tissue during the heating process, with an R2 values of 0.8745–0.9714. The black line represents the polynomial
curve fitting of thermoacoustic signal of liver tissue during the cooling process, with an R2 of 0.7509–0.9178. The results show that almost a nonlinear relationship
between thermoacoustic signal of liver tissue and temperature.
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process of heating to 60°C, the conductivity of the porcine liver
tissues decreased with temperature (Figure 4), the permittivity
(Figure 5) and TAS (Figure 6) of the porcine liver tissues
increased, and the relationships were nonlinearly correlated.
Meanwhile, during the cooling process, the conductivity of the
porcine liver tissues increased with temperature, while the
permittivity and thermoacoustic signals decreased, and the
relationships were also nonlinearly correlated.

In addition, during the processes of heating and cooling
the liver tissues, the change rates of the conductivity per

degree were 0.0035 ± 0.0025 and 0.0038 ± 0.0043,
respectively. The change rates of the permittivity per
degree were 0.0274 ± 0.0130 and 0.0263 ± 0.0105,
respectively. The change rates of the conductivity and
permittivity of the liver tissues during the heating and
cooling process are presented in Figure 7.

During the process of heating and cooling, the
conductivity and permittivity at the same temperature
point are different, and Figure 8 shows the change curve
of the difference.

FIGURE 7 | The change rate of conductivity and permittivity of liver tissues during the heating and cooling process. During the heating and cooling process of liver
tissues, the change rate of conductivity per degree was 0.0035 ± 0.0025 and 0.0038 ± 0.0043, respectively (A), and the change rate of permittivity per degree was
0.0274 ± 0.0130 and 0.0263 ± 0.0105, respectively (B).

FIGURE 8 | The difference between conductivity (A–C) and permittivity (D–F) of liver tissues at the same temperature point during the heating and cooling process.
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DISCUSSION

This study explored the change in dielectric properties and TAS
of fresh ex vivo porcine liver tissue with temperature. The results
showed that the permittivity, conductivity and TAS of porcine
liver tissues changed regularly with temperature at 3.0 GHz.
Recently, an increasing number of studies have been
conducted on the dielectric properties of the liver in the
radiofrequency (RF) and microwave (MW) frequency ranges
with changes in temperature.

In the RF frequency range, [10] explored the temperature-
dependent in-vivo and ex-vivo conductivity at 470 kHz, and
the results showed that conductivity increased continuously
and uniformly from body temperature to 77°C, and a
continuous reduction in conductivity was observed during
the cooling phase. In addition, [11] measured the dielectric
properties of porcine liver ex vivo up to 100°C at 480 kHz and
found increasing conductivity with temperature.
Furthermore, [12] measured the conductivity of liver tissue
at 500 kHz at temperatures ranging from 40 to 90°C. They
found that the conductivity increased with temperature, and
the change was irreversible above 60°C. The study of [30]
indicated that at 915 MHz, the permittivity of ex vivo bovine
liver decreased with temperature, while the conductivity
gradually increased.

However, the frequency of RF ablation is lower than that of
microwave ablation. To date, only a few studies have been
found on the temperature-dependent conductivity properties
of liver tissues at a higher frequency (1–3 GHz). [14] showed a
significant decrease in conductivity (approximately 33%) in
liver tissue at 2.45 GHz when the temperature increased to
over 60°C, with a dramatic drop when the temperature was
close to 100°C. [31] explored the changes in the dielectric
properties in liver tissue at 915 and 2.45 GHz with
temperatures up to 100°C. Their study indicated that
permittivity and conductivity decrease substantially and
irreversibly at high temperatures. Interestingly, as seen from
the graphs presented in their results, when the temperature
was below 60°C, the conductivity increased with increasing
temperature at 915 MHz and decreased with increasing
temperature at 2.45 GHz. The electrical conductivity results
of liver tissues with temperature increases at higher
frequencies are consistent with our study. It seems that at a
lower frequency (below 1 GHz), the conductivity of liver tissue
increases with temperature, and at a higher frequency
(1–3 GHz), it decreases with temperature. This is related to
the fact that the ionic loss increases with temperature, and the
relaxation process is dominated by ionic losses at low
frequencies and dielectric losses at higher frequencies.

Our study showed that the permittivity and conductivity
changes of the liver tissues with temperature were nonlinear at
3.0 GHz. Furthermore, previous studies have reported that
dielectric properties are not always linear over a wide range
of temperatures and frequencies [15, 32]. However, studies
have proposed that the temperature coefficients of permittivity
and conductivity are linear, which can be used to further

deduce the dielectric properties of biological tissues [30,
33]. Further studies are needed to determine whether there
is a linear relationship between temperature and the
permittivity and conductivity of biological tissues. In
addition, we found that as the temperature increased, the
dielectric properties of the liver tissues changed irreversibly;
that is, at the same temperature point during the heating and
cooling process, the conductivity and permittivity were
different. This change is most obvious when the
temperature reaches 45°C, which may be related to the
aggravation of tissue cell damage after the temperature
exceeds 45°C [34, 35], rather than tissue dehydration, as
significant tissue dehydration occurs when the temperature
reaches 100°C. In this study, we further explored the changes in
the thermoacoustic signals of liver tissues with temperature.
The results showed that the TAS of liver tissues increased with
temperature and decreased during the cooling process. [19]
explored the relationship between TAS and temperature in
porcine livers in vitro, and the results showed that the
thermoacoustic signal increased with temperature
(30°C–50°C), and the relationship was nonlinear, which is in
agreement with our results. The changes in TAS were
consistent with the changes in permittivity with
temperature, which could provide theoretical guidance for
thermoacoustic imaging to distinguish ablation tissue from
normal tissue.

However, the current study has some limitations. The
microwave ablation uses 2.45 GHz for thermal ablation,
which was slightly different from the frequency used for
TAI (3.0 GHz). However, according to a previous study [36]
and an open data site “Calculation of the Dielectric Properties
of Body Tissues in the frequency range 10 Hz–100 GHz” [5],
the dielectric properties of the liver at 2.45 GHz (s = 1.6864 S/
m, εr = 43.035) and 3.0 GHz (s = 2.0755 S/m, εr = 42.165) are
close. In addition, the results were obtained from in vitro
porcine liver tissue, which may differ from in vivo experiments.
Finally, the porcine liver tissues used in the experiment were
acquired from different individuals, but the resulting dielectric
properties and thermoacoustic signals showed a consistent
trend with temperature.

CONCLUSION

In this study, we explored the temperature-dependent
dielectric properties and TAS of porcine liver tissue at
3.0 GHz. The experimental results indicated that the
dielectric properties and TAS of porcine liver tissue
changed significantly with temperature, which makes it
possible to differentiate the safety margin during liver
ablation by thermoacoustic imaging. However, the
relationship between temperature, dielectric properties and
TAS needs to be further investigated, especially the
quantitative correlation between TAS and temperature,
which will be useful in the quantitative evaluation of
clinical thermal ablation boundaries.
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