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The hydrodynamic coupling of inverted flexible flags in side-by-side, left triangular and right
triangular configurations in a uniform flow is investigated numerically. Various
arrangements can be characterized by the lateral and longitudinal gaps, i.e., H and G,
respectively. For the side-by-side configurations, three typical modes are identified in
flapping region, i.e., in-phase quasi out-of-phase (QOP) and out-of-phase (OP) modes,
corresponding to 2P, irregular and 4(P + S) wake patterns, respectively. Further analysis on
the mean drag coefficient (Cd) and bending energy (Eb) indicates that the side-by-side
flags can not harvest more bending energy from surrounding flows than the isolated one,
except for a narrow range ofH ∈ (1.8, 2.5). Moreover, an additional inverted flag is placed in
front or rear of the side-by-side flags to explore possible favorable arrangements for
bending energy enhancement. Three typical modes have been identified in the H − G
planes for both left and right triangular configurations, i.e., the regular-coupled (RC),
irregular-coupled (IC) and decoupled (DC) modes, respectively. For left triangular
configurations, the overall system may experience significant performance
enhancement in some favorable configurations, corresponding to harvest
enhancement region (HER) in the G − H plane; For the case in HER, especially, the Eb

of the rear flag may increase by up to 30% than isolated flag. While for right triangular
configurations, no HER is observed. The unsteady flow characteristics are further explored
to reveal themechanism of hydrodynamic coupling in system. The present studymay shed
some light on understanding the dynamics of this multi-flag system.

Keywords: flow structure interactions, vortex interactions, drag reductions, immersed boundary method (IB
method), lattice Boltzmann method (LBM), energy harvesting (EH)

1 INTRODUCTION

Fluid-structure interaction (FSI) phenomenon is ubiquitous in our daily life, such as bird/insect flight
[1], fish swimming [2], vascular flow [3], and vibration of vocal fold [4]. Due to its important
signification for understanding the fundamental principles in nature, and its extensive engineering
applications, the FSI has been a topic of great attentions for a long time [5–8]. The flow-induced
vibrations of flexible plates or flags in a flow is one of the typical examples for FSI problems that have
been widely studied in recent years [9–13]. For a long time, people have been working to eliminate or
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reduce the flow-induced vibration of the plate-fluid coupling
system to alleviate its disadvantages in engineering production
and life [9], such as the snoring induced by the soft tissue in the
human upper airway [14], the flutter of paper during printing
process [15], and the flutters in aeronautics [16]. While, a recent
concern for the plate-fluid systems is how to achieve the hydro- or
aerodynamic advantages and/or performance enhancements
from FSI. For examples, a flapping plate/filament immersed in
fluids, which is used to mimic the motion of biological propellers
such as insect wings and fish fins, have been studied numerically
and experimentally [1, 5, 17]. One of the most important issues in
these studies is about the role of varying kinematics and passive
deformations in optimizing the propulsive performances [17, 18],
e.g., improving thrust and saving energy.

Besides their application as propellers, this kind of flapping-
based systems are also adopted as the potential devices for
harvesting energy from surrounding flows [20–22], such as the
uniform streams, vortices, and free-surface waves. The earlier idea
of the energy harvesting devices was proposed by using a flapping-
foil system. The harvesting performance and the underlying
mechanism of this system at different conditions have been
investigated widely in literature [23–25]. It is noting that in the
studies above, the flapping rigid foils were only forced to heave
and/or pitch in the flow, but did not undergo a passive
deformation. However, a variety of studies have indicated that
the passive flexible deformation may affect many aspects of the
flapping-based systems, including the wake structures and the
hydrodynamic performances [18, 19, 26–28]. Therefore, an
nature-inspired energy harvesting system using the conventional
flapping flexible plate with a piezoelectric material attached to its
surface has been proposed [29]. In this system, the flexible plate is
fixed at the leading edge, while the remainder of plate are free. It is
found that for realistic coupling coefficients, as much as 10% of the
fluid kinetic energy flux can be transmitted to the output circuit at
certain parameters, suggesting that the flexible flapping system
may be a promising approach for energy harvesting.

Moreover, further researches indicates that compared to the
conventional flexible plate, an inverted flexible plate or flag with a
free leading edge and a fixed trailing edge may be a better
intermediary for the conversion of fluid kinetic energy to
elastic strain energy. Kim et al. [10] have been studied
experimentally the dynamics of a inverted flexible plate in a
uniform flow. It is found that the behaviors of inverted flag can be
classified into three regimes, i.e., the straight, flapping, and
deflected modes, respectively. It is also suggested that a
inverted flag in flapping mode can produce elastic strain
energy several times larger than a sheet of the deformed
mode, and the energy conversion ratio R may reach to 0.4 in
some cases. Further, the experimental results have been verified
by Ryu et al. [30] through simulations. Meanwhile, by using a
combination of mathematical theory, scaling analysis and
measurement, Sader et al. [31] give out that the large-
amplitude flapping motion of the inverted flag is a vortex-
induced vibration. Inspired by Kim et al. [10], to further
reveal the dynamics and underlying mechanisms, more
analytical [32], numerical [33–35], and experimental studies
[32, 36] on the inverted flag have been conducted.

To harvest kinetic energy of ambient fluid efficiently, the
coupling dynamics and performances of multiple flags in
various configurations should be studied in depth and
systematically. In recent years, there are some works that have
made efforts in this direction [37–45]. Huang al et [37]. have
investigated numerically the performance of two inverted flags in
tandem configurations. It is observed that the drag coefficient and
bending energy of the rear flag were usually reduced due to the
destructive merging mode of vortices. But in some cases, such as
the periodic arrangement, they may be enhanced due to the flow
interactions between the front–rear flags, which may be even
higher than those of an isolated case. Further, the experimental
study [38] on the side-by-side inverted flags have shown that
there may be five typical states in the flapping regime, i.e., the in-
phase, anti-phase, staggered, alternating, and decoupled flapping
modes. Compared to a isolated flag scenario, the increases in
flapping amplitude and frequency were observed for the two-flag
system in side-by-side configuration. Ryu et al. [39] numerically
investigated flapping dynamics of the two side-by-side inverted
flags in a uniform flow using the immersed boundary method. It
is observed that the flapping motions of the flags, including the
in-phase and out-of-phase modes, were determined from the
spanwise gap between the trailing edges of the two flags. The large
peak-to-peak amplitude and mean strain energy were achieved
due to the intensified flapping motions of each flag. These
conclusions are consistent with those observed in the
experimental investigation [38]. Jia et al. [41] studied the
effects of the initial conditions on the motion state formations
for two flags in side-by-side configurations. Hu et al. [42]
proposed a linear analysis for parallel inverted flags as an
extension of previous studies [46–48]. The theoretical results,
which is consistent with the experiments, indicated that the range
of the in-phase flapping mode becomes smaller with an increase
in the separation distance, and a multiple flapping state may
occur. For n ≥ 2 parallel inverted flags, the theoretical results show
that two of all coupled flapping modes are dominant with most
parameters. Mazharmanesh et al. [43] numerically investigated
the energy harvesting ability of two inverted piezoelectric flags in
the tandem, side-by-side and staggered arrangements. It is found
that the largest overall electric power coefficient will be achieved
in the staggered arrangement, which indicats that this
arrangement may be optimal for energy harvesting of two
inverted flags.

However, compared to the rich literature on the single or
two inverted flags in a flow, the studies on multi-flag systems,
which consist of multiple inverted flags with more complex
configurations, are very rare [44]. At present, the in-depth
understanding of the coupling dynamics and performances of
multiple flags in various configurations is still lacking. The
question arises how to arrange each flag in configuration to
enhance and optimize the overall energy harvesting. In the
present study, we have numerically investigated the coupling
dynamics of flow past inverted flags in three type of
arrangements, i.e., the side-by-side, left triangular, and
right triangular configurations, respectively. The purpose
of this study is to explore the possible hydrodynamic
performance, and reveal the underlying mechanism of

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9362682

Zou et al. Hydrodynamic Coupling of Inverted Flags

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


lateral and longitudinal flow interactions in multi-flag
systems.

The outline of present paper is as follows. The physical
problem and mathematical formulation are described in
Section 2.1, the numerical method and validation are
presented in Section 2.2, the results are discussed in Section
3, and the conclusion remarks are addressed in Section 4.

2 PROBLEM DESCRIPTION AND
NUMERICAL METHOD
2.1 Physical Problem and Mathematical
Formulation
Schematic diagram for fluid flows past flexible inverted flags in
side-by-side, left triangular, and right triangular
configurations in the present study is shown in Figure 1.
The plates with the length L are immersed in a uniform
inflow with speed U in the x-direction. The trailing edges of
the flags are fixed, and the other parts can move freely and
deform passively due to the flow-structure interactions. The
geometry of the three configurations can be characterized by H
and G, where H is the vertical distance between the parallel
inverted flags, and G is the horizontal distance from the
trailing edge of the front flag to the leading edge of the rear
flag at the initial positions. φ(t) is the instantaneous flapping
angle that can be defined as the angle from the negative
direction of the x-axis to the line joining the fixed edge and
the free edge of the flag, as shown in Figure 1C.

In this system, the viscous fluid flow is governed by the
incompressible Navier-Stokes equations,

zv
zt

+ v · ∇v � −1
ρ
∇p + μ

ρ
∇2v + f , (1)

∇ · v � 0, (2)
where v = (u, v) is the velocity, v is the fluid velocity, ρ is the fluid
density, p is the pressure, μ is the dynamic viscosity of thefluid, and f is
the body force term. A uniform velocityU is set at the inlet boundary
and the side boundaries of the fluid computational domain. A
Neumann condition is specified at the outlet boundary. The flags
are considered to be two-dimensional thin elastic beams and the
deformation of the flags in a Lagrangian coordinate system can be
described by the structure equation [37], i.e.,

ρsh
z2X
zt2

� z

zs
Eh 1 − zX

zs
· zX
zs

( )−1/2⎛⎝ ⎞⎠ zX
zs

− z

zs
EI

z2X
zs2

( )⎡⎢⎢⎣ ⎤⎥⎥⎦
+ FL,

(3)
where ρsh is the linear mass density of the flag, s is the Lagrangian
coordinate along the flag, X is the position vector of the flag, FL is
the Lagrangian force exerted on the flag by the surrounding fluid.
Eh and EI are the stretching and bending stiffness, respectively.
The boundary conditions at the free edge of the flag can be
described as

−Eh 1 − zX
zs

· zX
zs

( )−1/2⎡⎣ ⎤⎦ zX
zs

+ EI
z3X

z3s
� 0, 0( ), z2X

zs2
� 0, 0( ).

(4)
At the fixed edge of the flag, the boundary condition is

FIGURE 1 | Schematic diagram for fluid flows past flexible inverted flags in side-by-side (A), left triangular (B) and right triangular (C) configurations. The plates are
immersed in a uniform inflow with speed U in the x-direction. The trailing edges of the flags are fixed, and the remainders are free to move due to the flow-structure
interaction. H is the vertical distance between the parallel inverted flags, and G is the horizontal distance from the trailing edge of the front flag to the leading edge of the
rear flag at the initial positions. φ(t) is the instantaneous flapping angle that can be defined as the angle between the x-axis and the secant connecting the leading-
edge to the trailing-edge.
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X � Xo,
zX
zs

� −1, 0( ), (5)

where Xo is the coordinates of the fixed trailing edge of the
flag [37].

The characteristic quantities, ρ, L, and U, are chosen to
normalize the above equations. Thus the following
dimensionless governing parameters are introduced: the
Reynolds number Re = ρUL/μ, the bending stiffness K = EI/
ρU2L3, the stretching stiffness S = Eh/ρU2L, the math ratio of the
flag and the fluid M = ρsh/ρL, the vertical gap H/L, and the
horizontal gap G/L. For the sake of simplicity, H and G is used to
represent the dimensionless quantity H/L and G/L in the
following descriptions.

2.2 Numerical Method and Validation
The governing equations of the fluid flow are solved
numerically by the lattice Boltzmann method (LBM) [49].
The structure equation is solved by the finite element method
(FEM). The boundary conditions mentioned above are
imposed for each flag in the configurations. The immersed
boundary method [50] is used to couple the motions of flag
and fluid. The body force f in Eq. 1 represents an interaction
force between the fluid and the immersed boundary to
enforce the no-slip velocity boundary condition. The
Lagrangian force FL in Eq. 3 can be obtained by the
penalty scheme

FL � α∫t

0
Vf s, t′( ) − V s s, t′( )[ ]dt′ + β Vf s, t( ) − V s s, t( )[ ],

(6)
where α and β are negative large penalty parameters which are
selected based on the previous studies [17, 37, 51]. Here α = −10
and β = −1 are chosen by the parameter trials. Vs = zX/zt is the
velocity of the Lagrangian material point of the flag, and Vf is the
fluid velocity at the position X obtained by interpolation

Vf s, t( ) � ∫ v x, t( )δ x − X s, t( )( )dx. (7)

Then the body f on the Eulerian points is

f x, t( ) � −∫ FL s, t( )δ x − X s, t( )( )ds. (8)

Bases on our convergence studies with different computational
domains, the computational domain for the fluid flow is chosen as
60L × 30L in the x and y directions. The domain is large enough so
that the blocking effects of the boundaries are not significant. The
mesh is uniform with spacing Δx = Δy = 0.01L. The flags is
discretized with a mesh size of Δs = 0.01L. The time step here is
Δt = T/10000 with T = L/U.

To further validate our numerical methods, an isolated
inverted flag in a uniform flow is simulated with parameters
Re = 250, K = 0.25, M = 1.0, S = 1,000. The parameters are
identical to those in Huang et al. [37]. Figure 2A shows the
time history of the lateral displacement of the leading edge of
the inverted flag. It is seen that the results from our

simulation are consistent with those in the work of Huang
et al. [37].

The time step and grid independence studies are also
performed. Figure 2B shows the time-dependent drag
coefficient calculated under the different grid spacings and
time steps for the case with Re = 200, M = 2.9, K = 0.3, S =
1,000. It is confirmed that Δx/L = 0.01 and Δt/T = 0.0001 are
sufficient to achieve accurate results. Hence, in all our
simulations, Δx/L = 0.01 and Δt/T = 0.0001 are adopted.

In addition, the above numerical strategy has been successfully
applied to a wide range of fluid-structure interaction problems,
such as flow over a circle flexible plate [52], tandem flexible loops
in a viscous flow [51], locomotion of one or more flexible flapping
plates [19, 53–55].

3 RESULTS AND DISCUSSION

In the present study, the flexible inverted flags in side-by-side, left
triangular and right triangular configurations are considered. In
our simulations, the gaps H and G are allowed to vary to achieve
different configurations. The stretching stiffness is chosen a large
value, i.e., S = 1,000, so that the flags can be regarded as
unextensible. The Reynolds number and the mass ratio are
fixed at Re = 200 and M = 2.9, respectively, which are
consistent with those in Huang et al. [37]. When the above
parameters are fixed, the flapping mode of an isolated flag would
be achieved for the bending stiffness K ∈ (0.1, 0.4), according to
the previous studies [30, 33, 37]. Thus, K = 0.3 is adopted in our
simulations for two or more flags, at which the flapping modes
with large amplitude are achieved.

The drag coefficient Cd(t) and the bending energy Eb(t) as
functions of time are defined as

Cd t( ) � Fx t( )
1
2 ρU

2L
, Eb t( ) � K

2
∫L

0

z2X
zs2

· z
2X
zs2

ds, (9)

where Fx is the spatial integrated fluid force acting on flag
projection along the x-direction and K is the bending
coefficient. The mean drag coefficient Cd, bending energy Eb,

and flapping angle Φ are defined as Cd � (1/nT)∫t0+nT
t0

Cd(t)dt,
Eb � (1/nT)∫t0+nT

t0
Eb(t)dt, and Φ � (1/nT) ∫t0+nT

t0
φ(t)dt,

respectively, where T is the flapping period, and n is taken as
an integer greater than 10 in the calculation.

In our study, the two flags in side-by-side configuration are
investigated firstly. And then, an additional flag is placed in the
front and rear of the two parallel flags to explore the dynamic
performances of the flags in the left triangular and right triangular
configurations, respectively.

3.1 Two Inverted Flags in Side-by-side
Configurations
Based on a variety of simulations for the parameters considered
here, we have identified three typical modes in flapping region,
i.e., in-phase (IP), quasi out-of- phase (QOP) and out-of-phase

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 9362684

Zou et al. Hydrodynamic Coupling of Inverted Flags

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


(OP) modes, respectively. Figure 3A shows the time history of
flapping angle φ(t) for each flag in the case with H = 0.2,
corresponding to the IP mode. It is seen that, when the gap H
is small, e.g., H ≤ 0.3, φ(t) experiences a small-amplitude and
periodic variation with time in initial stage, and then flapping
amplitudes rapidly increase at t/T ≈ 200. Meanwhile, the phase
difference between φ1(t) and φ2(t) varies gradually from π to 0
(see Figure 3A), indicating that the two flags flap switching from
antiphase to in-phase at last. This mode transition is more clear
from the phase trajectory in the φ1-φ2 plane, as shown in
Figure 3C. Figure 3B shows the structure envelops in one
flapping period with the red solid lines denote the
instantaneous shapes for both flags. It is seen that, although

each flag flaps with a deflected average angle Φ, the two flags
together with a small gap H behaves like a single one.

As the gap increases, e.g., 0.3 <H ≤ 2.2, the systemmay operate
in a quasi out-of-phase flapping mode as shown in Figures
3D,E,F. From the phase trajectory in the φ1-φ2 plane in
Figure 3F, it is clear that the phase difference is close to π. It
should be noted that for the quasi out-of-phase mode with
narrow gap, the flags may collide with each other when they
flap towards each other and reach the transverse maximum
displacement (see Figure 3E), which is also observed in the
previous simulations and experiments [30, 40, 44]. The
collisions in these cases are harmful for bending energy
enhancement, and thus the corresponding configurations

FIGURE 2 | (A) Comparisons of the present and previous results [37] for the lateral displacement of the leading edge (yLE) of an inverted flag in a uniform (Re = 250,
K = 0.25 andM = 1.0); (B) The time step and grid independence studies for case with Re = 200,M = 2.9, K = 0.3, and S = 1,000. Time variations of drag coefficient Cd

calculated under Δx/L = 0.005, 0.01 and 0.02 and Δt/T = 0.00005, 0.0001 and 0.0002.

FIGURE 3 | Time history of the instantaneous flapping angle φ on the left (A,D,G), the superimposed views of the flags on the middle (B,E,H), and the phase
trajectories in φ1− φ2 planes on the right (C,F,I) for distinct modes in the side-by-side inverted flags, i.e., in-phase mode with H =0.2 (A,B,C), quasi out-of-phase mode
withH =0.9 (D,E,F) and out-of-phase mode withH =3 (G,H,I). The other governing parameters are as follows: Re =200,M =2.9, K =0.3 and S =1,000. Flag 1 and Flag 2
represent the upper and lower flags, respectively. The red beams on the middle column represent the instantaneous position of the flags at a certain instant. The
phase diagrams have been colored to represent time, with the curve being initially green and shifting to red as time advances.
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should be excluded from the potential applications. When the gap
H increases further, e.g., H ≥ 2.4, the two flags would flap in out-
of-phase with the phase trajectory appearing as a straight line, as
shown in Figures 3G,H,I. For each flag, the flapping amplitude is
similar to that for the isolated flag due to the flow interaction
between the two flags is greatly reduced (Figures 3G,H).

Figure 4 show the instantaneous vorticity contours for the
typical cases of the three modes. For the case with H = 0.1
corresponding to the IP mode, the two vortices with opposite
vorticity sheds from the leading and trailing edges of each flag,
respectively, over the half flapping cycle, forming a vortex pair
downstream in the wake. Thus, the vortical wake manifest itself in
a 2P mode in the far wake (see Figure 4A). Whereas for the case
with H = 0.9 corresponding to the QOP mode (see Figure 4B),
the non-periodical vortex shedding leads to an irregular wake in
the far field. Further, as illustrated in Figure 4C, the 4(P + S)
mode of vortex shedding is observed along the entire wake of the
flow field for the case with H = 3 corresponding to the OP mode.
It is also noted that for this mode the arrangement of vortices is
symmetric about y = 0.

To further explore the dynamic responses of the two side-by-
side inverted flags in a flow, the mean drag coefficient Cd and
bending energy Eb as a function ofH are shown in Figure 5A and
Figure 5B, respectively. It is seen that for each flag in the side-by-
side configurations with narrow gap (e.g.,H ≤ 1.6), the Cd and Eb

are much smaller than those of the isolated one, which indicates
that the two-flag system is unable to harvest more bending energy
from surrounding flows; WhenH > 2.5, theCd and Eb are close to
those of the isolated one, respectively, due to the weakened
interactions between the flags. Also, we note that for the flags
with H ∈ [1.8, 2.5], the fluid drag and bending energy,
respectively, may increase slightly by up to 5 and 10% with
respect to those of isolated flag. Moreover, the present results
are in agreement with the previous experiment [38]. According to
Huertas-Cerdeira et al. [38], an similar increase in amplitude has
also been observed for the side-by-side inverted flags withH ∈ [2,
2.8]. Further, the numerical study [43] on the two piezoelectric
inverted flags suggests that the elastic strain energy of flags is
nearly equal to or slightly lower than that of the isolated flag, and
the enhancement of elastic strain energy has not been found. This
conclusion is different from the present and experimental [38]
results, probably due to the presence of the piezoelectric patches
attached to the surfaces of the flags.

3.2 Three Inverted Flags in Left Triangle
Configurations
In this section, an additional inverted flag will be placed in
front of the side-by-side flags to form a three-flag system,
which is denoted as the left triangle arrangement, as illustrated
in Figure 1B. In this way, the longitudinal flow-mediated
interaction among the front and rear flags, which may affect
the coupling responses of the overall system, is considered. In
the present study, the distinct left triangle arrangements are
realized by varying the front-to-rear and up-to-down gaps,
i.e., G and H, respectively, as shown in Figure 1B. Based on the
results from our simulations, three typical modes of the
coupling system can be identified for varying H and G,
i.e., the regular-coupled (RC), irregular-coupled (IC) and
decoupled (DC) modes, respectively.

Figure 6A shows the time history of the angle φ(t) for the
typical case with G = 1 and H = 0.2, which corresponds to the RC
mode. It is seen that, when the gap H is small, the flapping
amplitudes of the rear flags, i.e., φ2 and φ3, experience anti-phase
and periodic variations with time initially; Meanwhile, the
flapping amplitudes increase obviously and the phase
difference shifts from φ ≈ π to φ ≈ 0 after t/T ≈ 100, which is
similar to that in the two-flag system (see Figure 3A). Also, it is
noted that the flapping amplitude for each rear flag is much less
than that in the two-flag system (Figure 3A). From the envelops
in one flapping period as shown in Figure 6B, the flapping angles
as well as the overall windward area of the rear flags are much less
than those of the front one, leading to a decrease in bending
energy harvesting by each flag (see Figure 8D). Further, the phase
trajectories in the φ3 − φ2 and φ1 − φ2 planes are also shown in
Figure 6C and Figure 6D, respectively. It is seen that the rear two
flags flap in the same phase after a time (Figures 6A,C), whereas

FIGURE 4 | The instantaneous vorticity contours in side-by-side
configurations: (A) the in-phasemode withH = 0.1; (B) the quasi out-of-phase
mode withH = 0.9; (C) the out-of-phase mode withH = 3. The 2P and 4(P + S)
mode are observed in the wakes for the in-phase and out-of-phase
modes, respectively. The vortex shedding and movement are non-periodic for
the quasi out-of-phase mode, which leads to an irregular wake.
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the front and rear flags flap in a fixed phase difference
(Figure 6D).

Figures 6E–H show the behavior of system in IC mode for
case with G = 1 and H = 2. In this mode, as shown in Figure 6E,
the flags flap with irregularly varying amplitudes and frequencies.
Also, it is shown in Figures 6G,H that the phase trajectories are
chaotic, indicating that the flapping phase differences between the
flags vary with time. Further, we note that for the rear flags, the
max amplitude is comparable to that of the isolated one (see
Figure 6F), whereas the mean flapping amplitude is much less
because the flags can not reach the pick in φ for most of the time
(see Figure 6E). This would result in a decrease in the mean drag
Cd and mean bend energy Eb (see Figures 8A,D).

For the case with G = 1 and H = 8, corresponding to the
decoupled (DC) mode, all the flags flap with the constant and
identical amplitudes as shown Figures 6I,J. Thus, the Cd and Eb

for each flag are almost equal to that of the isolated one (see
Figure 8A,D). Also, due to the large spacing among flags, the
flapping motions of flags seem to have not a strong correlation for
a long period from the initial, as shown in Figures 6K,L. At last,
the phase trajectories may gradually evolve to be similar to that in
RC mode (see Figures 6C,D). One should note that due to weak
interaction among the flags, the ultimate trajectories emerging
may depend on the perturbances and initial conditions. In the
other cases with large H and G, the ultimate phase trajectories
may be different from those in Figures 6K,L.

FIGURE 5 | The mean drag coefficient Cd (A) and the mean bending energy Eb (B) as a function of the gap H, respectively. Flag 1 and Flag 2 represent the upper
and the lower flag, respectively. The horizontal dash lines in (A) and (B) represent the Cd and Eb for an isolated flag, respectively.

FIGURE 6 | Time history of the instantaneous flapping angle φ (A,E,I), the superimposed views of the flags (B,F,J), and the phase trajectories in φ3− φ2 plane
(C,G,K) and φ1− φ2 (d, h, l) plane for distinct modes in left triangle configurations, i.e., regular-coupled (RC) mode with G =1, H =0.2 (A,B,C,D), irregular-coupled (IC)
mode with G =1, H =2 (E,F,G,H) and decoupled (DC) mode with G =1, H =8 (I, J, K, L). The other governing parameters are as follows: Re =200,M =2.9, K =0.3 and
S =1,000. Flag 1 represents the front flag, and Flag 2 and 3 represent the rear upper and lower flags, respectively. The red beams in the second column figures
represent the instantaneous position of the flags at a certain instant. The phase diagrams have been colored to represent time, with the curve being initially green and
shifting to red as time advances.
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Figure 7 shows the phase diagrams for the three typical modes in
the G − H plane. The symbols △, □ and ○ denote the cases in
regular-coupled (RC), irregular-coupled (IC) and decoupled (DC)
modes, respectively. As one can see, the distinct mode regions can be
divided roughly byHwhenG≥ 1, namely, the RC, IC andDCmodes
mainly distributed in the regions with lower (e.g.,H < 0.6), moderate
(e.g., 1 < H < 3) and larger (e.g., H > 4) lateral spacing, respectively.

To provide a quantitative description for the system
performances, the Cd and Eb as a function of H for G = 1, 2
and 4 are shown in Figure 8. It is noted that all the Cd and Eb

curves in Figure 8 have similar trend for each flag, because there
is a strong correlation between Cd and Eb. For the rear flags in
cases with G = 1, as shown in Figure 8A (or Figure 8D), the Cd

(or Eb) first increases rapidly as the increase of H, and reaches a

peak value at H ≈ 0.9. After that, the Cd (or Eb) curves show a
sharp drop until the second threshold at H ≈ 1.2, where the rear
flags experiences a local maximum drag (or bending energy). As
H increases further, the Cd (or Eb) shows an increase again, and
approaches generally to that of the isolated flag at H ≈ 4,
indicating the flow interaction is insignificant when H > 4.

It is worthy noting that by interacting with the vortical wake
shedding from the front flag, the bending energy achieved by the
rear flags are much less than that of isolated flag for the cases with
H < 4 except forH ∈ (0.7, 1) (see Inset in Figure 8D). For the cases
withG = 1 and 0.7 <H < 1, the average bending energy of the rear
flags is enhanced greatly (up to ~ 30% with respect to that of
isolated flag). Thus, the overall system may experience bending
energy enhancement from these favorable configurations,
although the Eb for the front flag remains nearly consistent
with the isolated one. Meanwhile, according the present
simulations, we note that the harvest enhancement region
(HER) exists only in a small area in the G − H phase plane,
which is marked with gray color in Figure 7. Further, as shown in
Figure 7, the bending energy enhancement can only be observed
in the in-phase mode. The results obtained indicate that
hydrodynamic performance of the three-flag system is closely
related and highly sensitive to the parameters of arrangements.

To further explore the underlying mechanisms of the bending
energy enhancement of the flags in HER, Figure 9 shows the
unsteady behaviors for the case with G = 1, H = 0.9, where the
most enhancement for the rear flags is achieved. Figures 9A,B,C
shows the time variations of φ,Cd and Eb for each flag, respectively. It
is seen that although the amplitudes of φ are almost identical for the
front and rear flags (see Figure 9A), the mean values and amplitude
of Cd and Eb of the rear flags are much larger than those of the front
one, respectively (see Figures 9B,C). It is noted that the peaks in the
Cd and Eb curves are mostly occur at the same time for the rear flags,
respectively, due to the in-phase flapping.

Further, Figures 9D–L show the instantaneous vorticity and
pressure contours for the typical instants, i.e., A, B, and C, which

FIGURE 7 | Overview of the typical mode regions on the G-H plane for
the three flags in left triangle configurations. The symbols △, □ and ○ denote
the regular-coupled (RC), irregular-coupled (IC) and decoupled (DC) modes,
respectively. The harvest enhancement region (HER), where the average
bending energy of the system is enhanced due to the favorable arrangements.
The other governing parameters are as follows: Re =200,M =2.9, K =0.3 and
S =1,000.

FIGURE 8 | Drag coefficient Cd (A,B,C), and bending energy Eb (D,E,F) as a function of H for distinct G =1 (A,D), 2 (B,E) and 4 (C,F), respectively. The horizontal
dash lines represent the corresponding values for an isolated flag. Insets in (A,D): the enlarged view of the harvest enhancement region (with gray color).
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correspond to the peaks in drag curves. It is seen that the leading
edges of rear flags almost reach their maximum transverse
displacement at the instants (A, B, and C), leading to a larger
windward area (nearly doubled) compared to that of the front
flag. Thus, the lower pressure region (LPR) and higher pressure
region (HPR) on the front and back sides of the rear flags are
much enlarged and enhanced, as shown in Figures 9G–I. Also,
we note that at the instant A, B and C, the gap between edges of
rear flags are very small, and the flow across the gap is nearly
obstructed for this case with H = 0.9; This flow blocking effect is
greatly beneficial to the enhancement of the LPR and HPR, and
thus leads to a higher peak in the curves of Cd and Eb. Whereas, a
larger H would lead to a wider gap between the rear flags and
cause the transition from RC mode to IC mode, which may
weaken the flow blocking effects; and a smaller gap of the rear
flags would hinder the flapping of flags, resulting in the reduction
of the flapping amplitude. This is reason why the bending energy
enhancement appears merely at a narrow range of H ∈ (0.7, 1)
(see insets in Figures 8A,D).

3.3 Three Inverted Flags in Right Triangle
Configurations
In this section, an additional inverted flag is placed in the wake of
the front side-by-side flags to investigate the effect of flow-
mediated interaction among flags on the hydrodynamic
performance of the system. Here, we denote this type of the
arrangements as “right triangle configurations”, which is
illustrated in Figure 1C. The gaps, G and H, are variable, and

the other parameters are fixed and consistent with those in Sec. B.
Based on the results from our simulations, the RC, IC and DC
modes can also be identified in the G − H phase plane.

Figure 10A shows the time-variations of φ for each flag in the
case with H = 0.2 and G = 1, corresponding to the RC mode.
Similar to the side-by-side configurations, the two front flags
behaves like a single one flapping in the flow due to the narrow
lateral spacing (H = 0.2). It is noted that the flapping amplitude is
suppressed when the rear flag is located in the vortical wake of the
front flags. Further, it can be seen in Figures 10C,D that the front
side-by-side flags flap approximately in-phase, whereas the front-
rear flags flap approximately out-of-phase.

WhenH increases larger, e.g., the case withH = 2 and G = 1 as
shown in Figures 10E–H, the front flags switch from in-phase
flapping (see Figures 10A–C) to a quasi out-of-phase flapping;
Meanwhile, due to the strongly wake-plate coupling effects, the
rear flag flaps in an irregularly varying phase with respect to the
front flags (Figures 10E,H). Further, for the case with a
sufficiently large spacing (see Figures 10I–L), there seems no
strong correlation between the flags’ motions for a long period
from the initial. This observation is similar to the DCmode in the
left triangle configurations (see Figures 6K,L).

We note that compared to the isolated flag, the flapping
motion of the rear flag may be suppressed in the vortical wake
of front abreast flags (see Figure 10B,J), This may lead to smaller
windward area of rear flag, and reduce its fluid drag and bending
energy harvesting from the surrounding fluid.

Figure 11 shows the phase diagram for the three typical
patterns in the G − H plane. Each symbol in the phase

FIGURE 9 | The angle ϕ (A), instantaneous drag coefficient Cd (B) and bending energy Eb (C) for the case with H =0.9 and G =1 in harvest enhancement region
(HER), with the instantaneous vorticity (D,E,F) and pressure (G,H,I) contours for the typical instant A (D,G), B (E,H) and C (F,I), which are marked by the dashed lines in
(A,B,C). It is seen that the higher pressure region (HPR) and the lower pressure region (LPR) are marked by the arrows in (G,H,I).
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diagram represents one case we simulated. It is illustrated clearly
that the RC, IC and DCmodes occur in succession as the increase
of H for a certain G; And as one can see, the IC mode region
undergoes gradual expansions as the increase of G. Further, it is
worth noting that, unlike the left triangle configurations (see
Figure 7), the harvest enhancement region (HER), in which the

overall bending energy harvesting is enhanced due to the
favorable flow interactions, is not observed in the G − H plane.

Figure 12 shows the variations of Cd and Eb versus H for
various G. The results from Figure 12 indicate that for almost
cases withH < 4 and G = 1, 2 and 4, the fluid drags acting on each
flag, as well as the bending energy harvesting by each flag, are
reduced compared to those of a isolated one; Moreover, it can be
seen that the reductions inCd and Eb are much greater in lower-H
region, e.g., H < 2. Also, the rear flag (Flag 3) experiences smaller
Cd and Eb than the front flags. For examples, for an extreme case
with H = 0.6 and G = 2 (see Figures 12B,E), the Cd and Eb of the
rear flag are, respectively, nearly 23 and 26% of those of the front
flags (Flag 1 and 2), as well as 13 and 11% of those of the isolated
one. While when H > 4, the Cd and Eb for each flag in the
configurations is nearly equal to those for isolated one, which is
consistent with the conclusions in left triangle configurations (see
Figure 8).

Figure 13 shows the unsteady dynamics of the system for two
typical cases with G = 1, H = 0.2 and 2, respectively. From the time
variations of flags’ Cd and Eb for the two cases (see Figures
13A,D,G), it is clearly seen that the peaks in the Cd- or Eb-curves
of rear flag aremuch lower than those of the front flags, which results
in the obvious reductions inmean fluid drag and the bending energy
achieved by the rear flag (see Figure 12). To explore the underlying
mechanism for the hydrodynamic performance, the instantaneous
vorticity (Figures 13B,E,H) and pressure contours (Figure 13C,F,L)
are examined at the typical instants (A, B and C) where the peaks in
Cd-curves are observed for the rear flag. Results indicate that when
the local maximum Cd are achieved for the rear flag, the vortices

FIGURE 10 | Time history of the instantaneous flapping angle ϕ (A,E,I), the superimposed views of the flags (B,F,J), and the phase trajectories in ϕ1− ϕ2 plane
(C,G,K) and ϕ3− ϕ2 (d, h, l) plane for distinct modes in right triangle configurations, i.e., the regular-coupled (RC) mode withG =1,H =0.2 (A,B,C,D), the irregular-coupled
(IC) mode withG =1,H =2 (E,F,G,H) and decoupled (DC) mode withG =1,H =6 (I, J, K, L). The other governing parameters are as follows: Re =200,M =2.9, K =0.3 and
S =1,000. Flag 1 and 2 represent the front upper and lower flags, respecitvely; Flag 3 represents the rear flag. The red beams in the second column figures
represent the instantaneous position of the flags at a certain instant. The phase diagrams have been colored to represent time, with the curve being initially green and
shifting to red as time advances.

FIGURE 11 | Overview of the typical mode regions on the G-H plane for
the three flags in right triangle configurations. The symbols△, □ and ○ denote
the regular-coupled (RC), irregular-coupled (IC) and decoupled (DC) modes,
respectively. The other governing parameters are as follows: Re =200,
M =2.9, K =0.3 and S =1,000.
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shedding from the front flags move just to the vicinity of the leading
edge of rear flag for both cases withH = 0.2 and 2, e.g., V1 and V2 at
instant A (Figure 13B), V3 at instant B (Figure 13E) or V4 at instant

C (Figure 13H). These vortices may induce lower pressure regions
(LPRs) between the rear and front flags, and weaken and compress
the higher pressure regions (HPRs) on the windward surface of the

FIGURE 12 | The mean drag coefficient Cd (A,B,C) and bending energy Eb (D,E,F) as a function of H for distinctG =1 (A,D), 2 (B,E) and 4 (C,F), respectively. The
horizontal dash lines represent the corresponding values for an isolated flag.

FIGURE 13 | The unsteady dynamics of the system for the typical cases with G =1, H =0.2 (A–F) and 2 (G–I). For case with G =1 and H =0.2, the instantaneous
drag coefficient Cd (A) and the bending energy Eb (D) as a function of time for each flag are provided; Also, the instantaneous vorticity (B,E) and pressure (C,F) contours
at the typical instant A (B,C) and B (E,F) are plotted. For case with G =1 and G =2, the time-variation of Cd for each flag (G), and the instantaneous vorticity (H) and
pressure (I) contours at the typical instant C are provided.
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rear flag. FromFigure 13C,F,I, the intensity and area ofHPRs on the
surfaces of rear flags are greatly reduced compared to those of the
front flags. This vortex-flag interaction causes a massive reduction in
pressure difference across the rear flag and thus leads to a lower peak
of Cd-curves (Figures 13A,G). Also, a lower pressure difference is
not conducive to increasing the flapping amplitude, and thus causes
a reduction in the bending energy harvesting (Figure 13D).

4 CONCLUSION

In summary, we carried out a numerical investigation on the
dynamics of fluid flow past inverted flexible flags by an immersed
boundary-lattice Boltzmannmethod for the fluid flow and a finite
element method for the flag motion. For the inverted flags, their
ends are fixed with their heads freely flapping. Large flapping
amplitude as well as large drag force is preferred to achieve more
bending energy. To explore the hydrodynamic performance of
the flags in various arrangements, the flags are arranged in side-
by-side, left triangular, and right triangular configurations, which
can be obtained by varying H and G.

For the side-by-side configurations, three typical modes are
identified, i.e., in-phase (IP), quasi out-of-phase (QOP) and out-
of-phase (OP) modes, which correspond to 2P, irregular and 4(P
+ S) wake patterns, respectively. Further, an additional inverted
flag is placed in front or rear of the side-by-side flags to explore
possible favorable arrangements for bending energy
enhancement. Based on our numerical results, three typical
modes can be identified for both left and right triangular
configurations, i.e., the regular-coupled (RC), irregular-coupled
(IC) and decoupled (DC) modes, respectively; meanwhile, the
phase diagrams for the typical modes in the G − H planes are
provided. It is found that the RC, IC and DCmodes mainly occur
in the regions with lower, moderate and larger lateral spacings
(H), respectively.

For left triangular configurations, it is found that the overall
system may experience significant enhancement of bending
energy in some favorable configurations, which are marked in
harvest enhancement region (HER) in the G −H phase plane. For
the case in HER, with respect to those of isolated one, the Eb of the
rear flags may increase by up to 30% due to the streamwise wake-
body interaction, whereas the Eb of the front flag remains nearly

unchanged. To further explore the underlying mechanisms of the
energy enhancement in HER, the instantaneous vorticity and
pressure contours for the typical cases are analyzed. It is found
that due to the fluid blocking effect induced by the nearly doubled
windward area, the lower and higher pressure regions (LPRs and
HPRs) on the front and back sides of the rear flags are much
enlarged and enhanced, which leads to higher peaks in Cd curves.

Our results suggest that more bending energy can be generated
when coupled inverted flags are arranged properly; whereas, it is
also indicated that the favorable flow-mediated interaction is
closely related and highly sensitive to the geometric parameters of
arrangements (e.g., G and H), indicating that the parametric
studies for different arrangements are essential for seeking
optimal configurations. An appealing extension of the present
findings would be the consideration of larger groups with more
complex arrangements and three-dimensional flows, so as to
approach practical applications. The present study may shed
some light on understanding the hydrodynamic performances
of multi-flag systems, and provide a guide for design of energy
harvesting device using inverted flags.
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