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This research focuses on the analysis of the model and performance of

lightweight metastructures encompassing a distributed array of internal

homogenous oscillators, integrated into the host structure to create a

single-piece element. This metastructure performs longitudinal vibrations,

whose axis is colinear with the direction of the transverse vibration of the

internal oscillators. First, themechanical models of the separate elements of the

metastructure and the metastructure as a whole are created and considered.

The first modal frequencies of longitudinal vibrations of the metastructure with

blocked and free internal oscillators are tuned to the first modal frequency of

transverse vibration of one internal oscillator, yielding the optimal number of

internal oscillators for this to be achieved, which is a new result for the proposed

design. This theoretical result is then checked experimentally with the

metastructures produced by 3D printing technology, comprising a different

number of internal oscillators, all of which have the same natural frequency.

Besides validating the theoretical results, experimental investigations with

blocked and freely vibrating internal oscillators of the constant natural

frequency are used to explore other performance characteristics, such as

the width of the regions where the reduced amplitude is achieved. Finally,

based on the theoretical and additional numerical results, the internal oscillators

are modified in two ways, which is an original approach: their natural frequency

is increased linearly and nonlinearly along themetastructure in accordancewith

the previous new theoretical results. The benefits of such new redesigns for the

multi-modal performance characteristics of the metastructure are discussed.
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Introduction

Low-frequency noise and vibrations occurring in nature and

industry can adversely affect the environmental and occupational

conditions, including human health and working regimes of

various engineering systems. One of the recent solutions for

their mitigation involves the design of metastructures, developed

from ametamaterial-inspired concept. Metamaterials encompass

the integration of additional elements into the basic

constituent(s) to achieve a certain desired feature

fundamentally different from the one that the constitutive

elements have and from those already existing in nature.

Analogously, metastructures involve the integration of internal

oscillators (also referred to in the literature as resonators,

absorbers, or tuned-mass dampers) into the basic structure to

achieve its desirable dynamic behavior, such as vibration

mitigation in a certain frequency region or along a wider

frequency band.

The metastructures developed so far can be distinguished as

containing internal, external, or attached oscillatory elements [1],

utilizing mass-in-mass or mass-on-mass principles. Of interest

for this work is the case of mass-in-mass systems. Such systems

can have only one or multiple internal oscillators. The case with

only one internal oscillator has been considered when the

internal mass is movable [2, 3] or fixed [4]. The case of

multiple internal oscillators has been investigated, with them

being arranged in parallel [5] or in series inside one mass [6, 7].

Additionally, they can be divided into two groups with

respect to the material of these masses, which is of interest for

this work. The pioneering studies [8, 9] investigated the locally

resonant systems made of lead spheres coated with rubber, being

the first to discover the low-frequency bandgap. Yu et al. [10]

confirmed the existence of low-frequency bandgaps using an

aluminum beam with periodically attached rubber and copper

rings as vibration absorbers. In order to demonstrate an

engineering application of an aluminum metastructural plat in

a low-frequency bandgap range, the anisotropic inclusions with

the material properties of lead, epoxy, and rubber were proposed

[11]. The metastructure composed of tungsten columns and

rubber placed in a chiral lattice, yielding a very low-frequency

bandgap, was presented in [12]. However, such additions to

metastructures carry considerable weight, which limits their

potential engineering applications in lightweight structures.

The intensive development of advanced manufacturing

technologies, such as 3D printing, has provided the possibility

to create complex structures in a relatively easy way, including

lightweight metastructures. The transverse vibrations of a

metastructural beam whose sheets are laminates and core is

foam with built-in resonators were investigated in [13]. It was

shown therein that, by tailoring the local resonance frequency of

the resonator, the range and the location of the bandgap can be

selected. Longitudinal vibrations of a metastructural rod with

periodic absorbers made of 3D polymer printing were studied in

[14], with the tunability realized at a locally resonant frequency.

Ametastructural panel made of built-in resonators and sandwich

panels was proposed to block out-of-plane vibration in [15]. Two

different boundary conditions were tested: cantilevered and

free–free, confirming that the metamaterial core reduces the

peak dynamic response at the natural frequencies of the

sandwich panel. In [16], single-piece elastic metamaterial

beams and plates with interconnected resonators were

proposed. Therein, the resonators create a chain so that their

interaction leads to a large bandgap at the transverse vibration

frequency of the independent resonators and a small bandgap at

higher frequencies. The authors observed that more unit cells are

needed to produce a significant transmission reduction. A

metastructure composed of evenly spaced non-symmetric

resonators attached to a beam with a Π-shaped cross-section

was investigated in [17] to detect the influence of the change in

periodicity caused by additive manufacturing variability. It was

shown therein that the mistuned resonators could change the

vibration attenuation performance of the metastructure when

even small levels of variability exist. The system under

consideration in [18] consisted of beams with evenly attached

resonators, and the effects of the variability introduced by 3D

printer manufacturing (Selective Laser Sintering) on locally

resonant metastructures produced were examined. The

authors combined a correlation technique for frequency

response measurements and a Bayesian framework to estimate

the design parameters (the mass ratio and the resonators’ natural

frequency) for vibration attenuation. The approach used in [19]

is based on liquid-solid interaction: instead of using cohesive

material, the authors proposed using the internal liquid as

scattering core and thin layers as coatings, enabling easy

modification of the system and its capability to block

vibration in the broad low-frequency range. The hierarchical

metastructures with bi-walled beams were fabricated and

assembled using a 3D printing technique in [20]. Experiments

were conducted, and the results were validated with the analytical

and numerical models with a satisfactory agreement. The

tunability and recoverability of the architected metastructures

under tension and compression were explored, pointing out

future possibilities to utilize structurally unstable elements. In

[21], an hourglass-shaped lattice metastructure consisting of two

oppositely oriented coaxial domes was presented. Such an

approach yields higher customizability and tailorability of its

dynamic response. Six classes of hourglass-shaped lattice

metastructures were developed by combining solid shells,

honeycomb lattices, and auxetic lattices to achieve tunable

metastructures over a wide range of operating frequencies.

Inman et al. proposed a concept in which the absorbers and

the base are made of the same material [22–24], forming a

continuous one-piece metastructure, improving it gradually

from the first form applicable to longitudinal vibrations [22]

to the version that is suitable for longitudinal, transverse, and

torsional vibrations [24].
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Our paper analyzes the originally proposed concept [22] in

detail in terms of the corresponding mechanical models, tuning

between the first modal frequencies of the internal oscillators and

the metastructure as a whole. The primary focus is on the

fundamental natural frequency of the structure given the

interest of plenty of engineering applications to suppress the

response near the fundamental mode of vibration as it typically

results in the highest magnitude response. This study, in its first

part, compares the effectiveness of a structure with no absorbers

(i.e., the case when the in-built resonators are blocked) with the

one with multiple active absorbers. Theoretical, experimental,

and numerical investigations are included subsequently.

Theoretical considerations are carried out to define certain

guidelines for modeling as presented in Section 2, whereas the

optimal number of the internal oscillatory elements needed to

achieve the frequency tuning is given in Section 3, which have not

been provided for this concept so far. Our experimental

validation of this optimal number is presented in Section 4,

also yielding additional insight into the characteristic dynamic

behavior of the metastructures with respect to their vibration

mitigation performance. Based on the theoretical results from

Section 2 and some additional insight gained numerically in

COMSOL Multiphysics, two types of newly redesigned

metastructures are created in the second part of the study,

Section 5, to improve their multi-modal behavior. The

redesign is done in two approaches: first, the natural

frequency of the internal oscillators is changed linearly along

the metastructure and then nonlinearly. It should be pointed out

that this change is not done arbitrarily but in accordance with the

preceding theoretical results, which is an original approach.

Mechanical models: Theoretical
considerations

A metastructure under consideration has a repetitive

structure, and its shape is defined in [22], which is plotted

here in the upper part of Figure 1. The panel with “A-A” in

this figure corresponds to a cross-section view of the structure.

For the sake of the subsequent consideration, the metastructure is

examined here as combining three systems (Systems 1–3), as

labeled in Figure 1.

Its basic structural unit has a hollow square cross-section,

labeled as System 1 in Figure 1. The transversal elements (plates)

shown in Figure 1, labeled as System 2, divide the structure into

parallelepipedal units. One internal oscillator is placed in each

unit, and it has the shape of a clamped beam with a concentrated

mass on the top (labeled as System 3 in Figure 1). The width of

the walls of the basic structure is labeled by u and the distance

between them by s; the width of the transversal elements is

FIGURE 1
Metastructure under consideration in different configurations: System 1 (fixed-free rod), System 2 (additional parts with transversal masses
connected in series), and System 3 (parts with internal oscillators).
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labeled by r. There are N identical internal oscillators, which are

integrated into the walls of the basic structure, composing a one-

piece metastructure. The width of each unit is defined as 2p, so

that the location where the oscillators are attached to the wall is

defined by the distance p from the transversal elements. A series

of these distributed internal oscillators, which play an essential

role in the vibration mitigation of the whole metastructure,

perform transverse (bending) oscillations in the direction that

is collinear with the direction of longitudinal (axial) oscillations

of the metastructure. The following sections of this paper contain

the considerations of the mechanical models of the metastructure

and the internal oscillators, as well as the determinations of their

fundamental frequencies of interest for this study. Although

separate analytical considerations are classical in the

mechanical sense, the authors believe that their combinations

have not been exploited in this way before.

Baseline (host) structure

Let us consider first System 1 from Figure 1, treating it as a

fixed-free hollow bar of length h = N (2p + r) that performs

longitudinal vibrations (System 1 will be abbreviated as S1 in the

subsequent text and equations). Knowing its modulus of

elasticity E and the mass density ρ, its fundamental frequency

of longitudinal vibrations is known as follows [25]:

ω(S1) � π

2h

��
E

ρ

√ (1 − π2

48
]2
α2

h2
) � π

2h

��
E

ρ

√
η (1)

In expression (1), the correction in relation to the ideal

isotropic rod of the infinitely small cross section is included,

where ] is Poisson’s ratio, while α is the radius of gyration of cross
section. Based on that, the correction factor η exists in Eq. 1.

Let us now consider System 2 (it will be abbreviated as S2 in

the subsequent text and equations), considering transversal

elements of mass m2 (they are shown in blue in Figure 1).

The corresponding units are attached mutually in series so

that their corresponding fundamental frequency can be

obtained as follows:

1
ω2(S2) � ∑N−1

i�0
ρsua[2p + r

2 + i(2p + r)]
E(a2 − sa)

� N(2p + 2Np +Nr)suρ
2(a − s)E (2)

Internal oscillators

The internal oscillators perform transverse vibration. Each

internal oscillator consists of two parts (Figure 2A): P1 denotes

the parallelepipedal part of mass M, which is treated as a

concentrated mass; P1 is attached to Part P2 of mass m, which

is considered as a column of length L (Figure 2B). Their 3D

model with all characteristic dimensions a, b, d, and e is shown in

Figure 2A.

The corresponding first modal frequency will be determined

by applying the theory of generalized coordinates [26]. The first

mode is considered only, and the variables x and t are separated

as follows w(x, t) � Φ(x)Z(t), where Φ(x) denotes the spatial

function and Z(t) is the time function.

Part P2 exhibits plane motion, and its kinetic energy contains

the translatory and rotational parts. The former depends on the

velocity vC of its center of mass C (Figure 2C) and the latter on

the moment of inertia JC for the axis passing though C. The

expression for this kinetic energy can be expressed as follows:

Ek(P1) � 1
2
Mv2C + 1

2
JCω

2 � 1
2
(M(ΦL + cΦ′

L)2 + JΦ′2
L ) _Z

2

� 1
2
Mp _Z

2
(3)

where its mass M is defined by M = ρ a b d, whereas the cross

section is given by A = a2−as. In Eq. 3, Mp stands for the

generalized mass. The complete process of how this parameter

can be obtained is described in Appendix.

The velocity of Point C can be determined via the velocity of

Point B with the assumption that the angle φ is small

(Figures 2C,D):

vC � vB + vBC � zw(L, t)
zt

+ c
z

zt
(zw(L, t)

zx
) � ΦL

_Z + cΦ′
L
_Z

� (ΦL + cΦ′
L) _Z (4)

The following dimensionless parameters are introduced now:

ξ � x

L
,φ � Φ

L
, η � Z

L
, τ � Tt (5)

where T is the fundamental period of this oscillator.

The normalized kinetic energy of Part P1 can be represented as

�Ek(P1) � Ek(P1)T2

ρV1L4
� 1
2
[(φL + β1φ

′
L)2 + β2φ

′2]η′2 (6)

where

β1 �
c

L
, β2 �

Jc
ρV1L2

(7)

and the volume of Part P1 is V1 � abd.

The kinetic energy of Part P2, which is considered as a

system with distributed mass and stiffness, can be obtained as

follows:

Edm
k (P2) � 1

2
dm(zw

zt
)2 � 1

2
dmΦ2 _Z

2 → Ek(P2) � ∫Edm
k

� 1
2
∫L

0
�mΦ2 _Z

2
dx (8)

where the mass per unit and length of Part P2 are, respectively,

given by �m � ρae and L.
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The normalized kinetic energy �Ek of Part P2 can be

represented as

�Ek(P2) � EkT2

ρV2L4
� 1
2
∫1

0
φ2(ξ)dξη′2 (9)

The potential energy of the internal oscillator resonator

stems from the flexural strain energy of Part P2. By using φ �
zw
zx � Φ′Z and zφ

zx � z2w
zx2 � Τ

EI, this potential energy can be

represented as

V � 1
2
∫Τ(x)dφ � 1

2
∫Τ(x)2dx � 1

2
∫L

0
EIΦ″2Z2dx � 1

2
kpZ2

(10)
where I denotes the moment of inertia I = ae3/12, while kp stands

for the generalized stiffness, whose calculation is also described in

Appendix.

Similarly, the normalized potential energy of the resonator

reads as

V

EIL
� 1
2
∫1

0
φ″2dξζ2 (11)

Based on Eqs. 3,8,10, the fundamental frequency of the

internal oscillators can be represented as

ωr �
���
kp

Mp

√
(12)

By using Eqs. (5, A1–A5) from Appendix, as well as the

dimensions from Figure 2A, this first modal frequency is found

to be

ωr � 6
�
7

√ ������������������������������������������
3e2L4 + 5bdeL2(4c + 3L) + 20b2d2(3c2 + 3cL + L2)E

Θ1

√
(13)

where

Θ1 � ρL{420a3bd(b2 + d2)(eL2 + 3bd(2c + L))2
+ 315abd(aeL2(4c + 3L) + 8abd(3c2 + 3cL + L2))2
+ a3eL3(728e2L4 + 9bdeL2(568c + 413L)
+ )144b2d2(63c2 + 91cL + 33L2)]} (14)

Metastructure with internal oscillators

The metastructure is created by attaching internal oscillators

to the transverse elements of the baseline structure (System 3 in

Figure 1). When blocked, they can be treated the same way as the

transversal elements of System 2. By using their dimensions and

volume defined in Section 2.2, the corresponding frequency is

found to be

FIGURE 2
Internal oscillator: (A) 3Dmodel; (B) presentation as a clamped beam with a concentrated mass on the top; (C) kinematics of the concentrated
mass; (D) deformed configuration.
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1
ω2(S3 blocked) � ∑N−1

i�0 M((2i + 1)p + ir

AE
) (15)

Thus, the frequency of the metastructure with blocked

internal oscillators is defined by

1
ω2
MS blocked

� 1
ω2(S1) +

1
ω2(S2) +

1
ω2(S3 blocked) (16)

To treat the case when the internal oscillators are free to

oscillate, Dunkerley’s method [27, 28] is utilized. Based on the

geometry shown in Figure 2, the position of the i-th resonator is

defined by (2i + 1) p + i r, as shown in Figure 3. The equivalent

model of series-connected springs is created (Figure 3, right

part), and the following expression for the fundamental

frequency is derived:

1
ω2(S3 free) � ∑N−1

i�0 M(1
κi
+ 1
Mω2

r

)
� ∑N−1

i�0 M⎛⎝ 1
AE

(2i+1)p+ir
+ 1
Mω2

r

⎞⎠
� 5bd(20p + 9r)

a − s

ρ

E
+ N

ω2
r

(17)

where M is the mass of each of them, κi and kr are the stiffness

constants from the equivalent model (Figure 3, right part),A is its

cross-section, and ωr is defined by Eq. 13.

The frequency of the metastructure with free internal

oscillators is given by

1
ω2
MS free

� 1
ω2(S1) +

1
ω2(S2) +

1
ω2(S3 free) (18)

Tuning

The tuning condition is defined in a way that the first modal

frequency of transverse vibrations of internal oscillators should

be equal to the first modal frequency of longitudinal vibrations of

the metastructure, which means that Eqs. 13,16 are used to derive

ωMSblocked � ωr. Instead of using it directly, this equality is

expressed in terms of the frequency of the metastructure with

FIGURE 3
Mechanical models of the internal oscillator in a
metastructure.

FIGURE 4
Ratio fMSblocked/fr (red dashed line) and fMS free/fr (blue solid
line) versus the number of internal oscillators N.

TABLE 1 System parameters.

Parameter Value (m)

s 0.03

u 0.0065

a 0.04

b 0.02

d 0.017

e 0.004

L 0.0065

p 0.014

r 0.0065

FIGURE 5
3D printed specimens (from left to right) with the support
added for the sake of experimental analysis): one internal oscillator
and the metastructures with 6, 8, and 10 internal oscillators.
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blocked internal oscillators normalized with the frequency of

internal oscillators to get:

fMSblocked

fr
�

�������������������������
1

N(0.405N(2p+r)2+bdnp
a−s +

0.5(2(1+N)p+Nr)su
a−s )√

6
�
7

√ �������������������������
3e2L4+5bdeL2(4c+3L)+20b2d2(3c2+3cL+L2)

Θ1

√ (19)

This ratio is plotted in terms of the number of internal

oscillators N in Figure 4, while other parameters are taken from

Table 1, as defined in [22]. In addition, Poisson’s ratio ] needed
for Eq. 1 is 0.3. It should be noted that this ratio does not depend

on the ratio (E/ρ)1/2. For the ratio defined by Eq. 19 to be equal to

unity and satisfy the tuning condition, the theoretical analysis

shows that N needs to be equal to 8, as labeled in Figure 4.

FIGURE 6
Experimental setup.

FIGURE 7
Experimentally obtained amplitude-frequency characteristics of one internal oscillator.
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Analogously, based on Eqs. 13,18, the ratio of the frequency

of the metastructure with free internal oscillators normalized

with the frequency of internal oscillators is derived:

fMS free

fr
�

�����������������������������
1

N(0.81N(2p+r)2+1.bdNp
a−1.s +

0.5(2(1+N)p+Nr)su
a−s + N

abdfr2
)√

6
�
7

√ �������������������������
3e2L4+5bdeL2(4c+3L)+20b2d2(3c2+3cL+L2)

Θ1

√ (20)

This ratio is plotted in Figure 4, too. It is interesting to note

that it becomes equal to unity when N is close to 8, but the exact

value is slightly less than the one obtained for blocked absorbers.

However, the obtained results are very close to each other. This

analytical result for the metastructure under investigation is

novel, and, as far as the authors are aware, it has not been

known as such so far. It should also be noted that the region on

the righthand side of the first dot labeled in Figure 4 corresponds

to fMS free/fr <1, that is, fMS free < fr , meaning that the first

frequency of the metastructure with free internal oscillators is

lower than that of the first frequency of the internal oscillator.

Future research should consider the coupling between the

internal oscillators and the metastructure to examine its

influence on this result.

FIGURE 8
Experimentally obtained amplitude-frequency response curve of the metastructure with internal blocked (red dashed line) and free (blue solid
line) internal oscillators.

FIGURE 9
Experimentally obtained amplitude-frequency response curve of the metastructure with eight internal blocked (red dashed line) and free (blue
solid line) internal oscillators.
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Experimental investigations

Practical realizations

One internal oscillator and different versions of the

metastructure were made by 3D printing (fused filament

fabrication) with a resolution of 0.1–0.3 mm and 100% filling

of acrylonitrile butadiene styrene (ABS) with E = 1490 MN/m2

and ρ = 1.05 g/cm3 (these two values have been obtained from the

manufacturer as the material characteristics). The internal

oscillator is printed with support added for the sake of

experimental analysis, whereas the metastructures are printed

with 6, 8, and 10 internal oscillators (Figure 5).

Performance characteristics

To examine the transverse oscillations of the internal

oscillator and the longitudinal oscillations of the

metastructures, they are exposed to the excitation of the base

in the vertical direction. The excitation was created, and the

response of the top of the metastructure was recorded by the

vibration test system (Figure 6), which includes one LDS vibrator

type V408,10/32UNF; one LDS amplifier type LPA100; two

accelerometers type 4534-B; one COMMETUSB controller

type COM-200, and software package SCO-107 for “Sine,

Random & Shock” excitation (the first type of excitation was

applied with the magnitude equal to unity).

First, one internal oscillator is experimentally tested

(Figure 7). The accelerometer is placed on the top, yielding

the amplitude-frequency characteristic for the non-

dimensional amplitude shown in Figure 7 (the non-

dimensional amplitude is obtained by dividing the vibration

amplitude by the length L of the clamped beam, i.e., Part 2,

Figure 2B). It is seen that the first modal frequency of its

transverse oscillations is 588 Hz. It is of interest now to

compare this value with the one obtained theoretically. For

the values of E and ρ given by the manufacturer given above,

based on Eqs. 13,14, we get that the first modal frequency is

650 Hz. This difference with respect to the experimental value

can be explained by the fact that the values for E given by the

manufacturer differ from the values for the modulus of elasticity

of a structure due to its exposure to the technological process and

the dynamic loading. On the contrary, the experimentally

obtained value for the modal frequency can be used for a

more precise estimate of the modulus of elasticity for a

predetermined value of density. Thus, using Eqs. 13,14 for the

FIGURE 10
Experimentally obtained amplitude-frequency response curve of the metastructure with 10 blocked (red dashed line) and free (blue solid line)
internal oscillators.

FIGURE 11
Influence of the height of Part 2 (parameter e) on the first
bending frequency fr of one internal oscillator and the annotation
of the two versions of the redesigned metastructure.
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frequency of 588 Hz and ρ = 1.05 g/cm3, we get that E =

1170 MN/m2. This value can be treated as the corrected value

of the modulus of elasticity obtained based on analytical and

experimental approaches.

Then, the metastructure with 6, 8, and 10 internal oscillators

is tested in two configurations (Figures 8–10), with blocked

absorbers and free (active) internal oscillators. Note that all of

them are equal, that is, with the same natural frequency. Blocking

was achieved by inserting thin and light pieces of foam between

them and the horizontal surfaces of the structure above and

below the concentrated masses, as seen in the left parts of Figures

8–10. By placing the accelerometer again on top of both

configurations, the corresponding amplitude-frequency

characteristics for their normalized amplitude are obtained, as

shown in Figures 8–10. In this case, the non-dimensional

amplitude is obtained by dividing the vibration amplitude by

the overall height of the metastructure.

In all three cases (Figures 8–10), the response with blocked

and free resonators is plotted and compared mutually. The

shaded region corresponds to the attenuation region where

the reduction of the non-dimensional amplitude around the

first modal frequency exists, i.e., where the performance of the

metastructure with free internal oscillators outperforms the one

with blocked ones. This region corresponding to the case with six

internal oscillators is relatively narrow. As labeled in Figure 8, it

stretches from 521 to 571 Hz, so it covers 50 Hz only. This

attenuation region becomes considerably wider for the case of

8 and 10 internal oscillators, as labeled in Figures 9, 10,

respectively. Thus, for the case of eight internal oscillators

(Figure 9), the attenuation region is between 565 and 738 Hz,

so it is more than three times wider. For the metastructure with

10 internal oscillators (Figure 10), the attenuation region is

placed between 519 and 712 Hz, which is almost four times

wider than for the case of six internal oscillators. This fact about

the apparent change for the case of eight internal oscillators

supports the theoretically obtained optimal number of internal

absorbers labeled in Figure 4. It is of interest again to compare the

analytical and experimental results for the first modal frequency.

Using the corrected value for E, as well as Eq. 20, it was obtained

that, for a structure of 10 resonators, the value of the first modal

frequency is 480 Hz. If the value given by the material

manufacturer is taken as E, the frequency obtained is 530 Hz.

It should be noted that the frequency of 530 Hz is within the

attenuation range, which confirms the justification of the

application of the corrected value of the modulus of elasticity.

Modified metastructure

The previously investigated behavior of the metastructure

from [22] with various numbers of internal oscillators, all of

which have the same natural frequency, regards the bandgap

around the first resonance only, as considered in [22]. However,

it is interesting to explore the performance characteristics of the

metastructure under consideration in a wider frequency region

and at other resonances as well, as this has not been done before

for this type of metastructure from [22]. To that end, the

metastructure with 10 internal oscillators with the parameters

defined in Table 1 is imported and analyzed in the software

COMSOL Multiphysics. The dynamic behavior of internal

oscillators at various frequencies is analyzed, and it is found

that some of them are not as active as would be desirable given

their role. This was the motivation to modify them, trying to

make them more active, with a general aim to improve the

performance characteristics of the metastructure. For the sake of

their redesign, the theoretically obtained result for their first

angular frequency, Eq. 13, is utilized. It has been decided to

change the parameter e—the height of the clamped beam of the

internal oscillators (Figure 2A)—as this is the most convenient

for practical reasons.

This parameter is changed for the pairs of internal oscillators

to create balanced torques in each pair in the static equilibrium

position around which they oscillate. The redesign is done using

two strategies for creating two new versions of the metastructure

(it should be noted that the original version will be labeled as

Version 0 subsequently). For the new Version I, the parameter e

is increased linearly by 1 mm in each pair. Consequently,

following its influence on the fundamental frequency

(Figure 11), this yielded the nonlinear increase in the

fundamental frequency of the paired internal oscillators, as

shown in Table 2. For the new Version II, the fundamental

frequency is increased linearly by a constant step between each

pair of internal oscillators. Calculating the parameter e from Eq.

13, its nonlinear increase is obtained, as given in Table 2. The

other geometric and material parameters of the metastructure are

kept constant as in Version 0. As far as the authors are aware, this

TABLE 2 Modified parameter e of the pairs of internal oscillators (No.) and the corresponding fundamental frequency f in two versions: Version I
(linearly increasing e, nonlinearly increasing f) and Version II (linearly increasing f, nonlinearly increasing e).

Version I Version II

No. 1, 2 3, 4 5, 6 7, 8 9, 10 1, 2 3, 4 5, 6 7, 8 9, 10

e (mm) 0.003 0.004 0.005 0.006 0.007 0.003 0.0042 0.0052 0.0061 0.007

f (Hz) 381 587 820 1078 1359 381 632 870 1105 1359
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FIGURE 12
Numerically obtained results for the dynamics of internal oscillators for Versions 0, I, and II; (A) amplitude-frequency response curves; (B)
presentations of the dynamics at the resonance RA; (C) presentations of the dynamics at the resonance RB.
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is a novel idea of how the change of the natural frequency of

internal oscillators can be achieved.

The corresponding amplitude-frequency response curves for

the top of such metastructures are calculated in software

COMSOL Multiphysics and plotted together with Version

0 in Figure 12A. Rayleigh damping is chosen as direct input

of mass damping parameter of 18.0716 and stiffness damping

parameter β of 0.00003 (alternatively, one can define it at two

frequencies of 588 and 938 Hz, with the damping ratio of 2.5%).

It is seen that both Versions I (cyan dotted line) and Version II

(magenta dashed-dotted line) are characterized by considerably

lower resonance peaks at the resonances labeled by RA and RB. At

resonance RA, the peak amplitude is decreased by 81% in Version

I and 49% in Version II. At resonance RB, the peak amplitude

decreased more in Version I and Version II. The way how the

dynamics of internal oscillators contribute to this reduction is

illustrated for both resonances in Figures 12B,C. These

presentations enable one to recognize how the new versions

employ certain internal oscillators at resonances A and B in terms

of their (in)activity and amplitude of vibration.

Conclusion

This study first explored the basic theoretical concept of the

use of integrated internal homogenous oscillators that perform

transverse oscillations in a metastructure that exhibits

longitudinal oscillations. These theoretical considerations have

yielded the expressions for the corresponding first modal

frequency of the internal oscillators and the metastructure

with blocked or free oscillators. Posing the tuning condition

that the former and the latter are equal, the required number of

internal oscillators has been obtained analytically, and, as far as

the authors are aware, this result is novel for the proposed design.

This result has also been verified experimentally since the

metastructure having such or higher number of internal

oscillators showed a considerably wider region in which the

amplitude of vibrations is reduced. Besides the benefit related

to this attenuation region, the designed metastructures have the

first resonant peak reduced and moved to lower frequencies. The

theoretical investigations conducted have been used to modify

the internal oscillators, achieving either a nonlinear increase in

their fundamental frequency or a nonlinear increase in their

height, corresponding to the linear increase in their fundamental

frequency. The authors believe that this approach to the redesign

of the first form of the metastructure from [22] is also original

and novel. Such an approach has been utilized and incorporated

into COMSOL Multiphysics, providing the proof of concept

regarding the better-exploited dynamics of internal oscillators

for vibration attenuation at other modal frequencies, thus,

improving its multi-modal behavior. Further, the redesigned

metastructures can further be utilized for three-dimensional

vibration suppression as done in [24] and also as made from

metal, which will be done in future research.
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Appendix

The non-dimensional spatial function is taken in the

following form:

(x) � gx2

24EIL2
{6L2[2V1(c + L) + V2] − 4L(V1L + V2)x + V2x

2}
(A1)

where V1 � abd and V2 � aLe.

The effective stiffness and separate masses are obtained as

follows (please note that the overall mass M* is their sum):

kp � ∫L

0
EIΦ″2dx � g2L

60EI
[20(3c2 + 3cL + L2)V2

1 + 5(4c + 3L)V1V2 + 3V2
2]ρ2
(A2)

Mp
1 � ∫L

0
�mΦ2dx

� g2L4V2

181440E2I2
[144(63c2 + 91cL + 33L2)V2

1

+ 9(568c + 413L)V1V2 + 728V2
2]ρ3 (A3)

Mp
2 � M(ΦL + cΦ′

L)2
� g2L2V1

576E2I2
[8(3c2 + 3cL + L2)V1 + (4c + 3L)V2]2ρ3 (A4)

Mp
3 � JCΦ

′
L2 � (b2 + d2)g2L2V1(6cV1 + 3LV1 + V2)2ρ3

432E2I2
(A5)
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