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The diffusion of negative information, such as rumours, misinformation and computer
viruses on Online Social Networks (OSNs), may lead to serious losses and consequences.
And there are always some rational malicious spreaders, who strategically spread negative
information. Therefore, how to control the information diffusion of the malicious spreader is
a great challenge. In recent years, some studies have analyzed the controlling problem
which belongs to the issue of influence blockingmaximization (IBM) from the perspective of
the large-scale strategy set on the game theory. However, the aforementioned methods
cannot timely solve the controlling diffusion problem on high-speed OSNs. In this study, we
achieve the purpose of effectively controlling diffusion on OSNs by blocking information
under typical strategies. Based on the existing two-player Stackelberg zero-sum game
model and evaluation methods of node’s importance on the network, we analyze the
typical strategic dynamic game in which the blocker moves first and the spreader moves
later on scale-free networks with different power exponent. Experimental results show that
the absolute dominance strategy of the blocker is Leader Rank with 90.16% probability.
And using Leader Rank can be relatively effective against malicious spreaders with 98.33%
probability. When the power exponent of the network is smaller, it is more conducive to
blocking information dissemination with fewer seed nodes.
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INTRODUCTION

With the advent of social media platforms, such as Facebook, Twitter, Weibo, etc., any piece of
information has the potential to spread to millions of people in a few minutes [15, 31]. The rapid
spread of information over OSNs poses a problem: public opinion and misinformation may greatly
affect different aspects of our lives, such as the economy, national defense, fashion, politics, and even
personal affairs. For example, public opinion can damage the image of a candidate, potentially
altering the outcome of an election [35]. During crisis situations (e.g., terrorist attacks, earthquakes,
etc.), misinformation can cause wide spread panic and general chaos [1]. Information diffusion on
OSNs is achieved via diverse types of users, which typically have various motives, some unwittingly,
however, some with particular motives. Since any potentially malicious influence upon the opinion
distribution in a society is undesirable, it is important to design methods to prevent external attacks
upon it. In order to counter the rational malicious spreader efficiently, we need to deploy the
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information blocking strategy in advance and analyze the
robustness of the OSNs against the malicious information
diffusion.

Referring to previous work on controlling information
diffusion which belongs to the influence blocking
maximization (IBM) problem [2, 19, 24, 32, 37, 38, 40], we
define our model as a two-party dynamic game. The purpose of
the controlling information diffusion problem is to block the
path of influence diffusion through a selected set of nodes or
edges [12, 13, 21, 36, 39, 41]. Some studies [17, 29] have
analyzed controlling diffusion problem from the perspective
of large-scale strategy set using game theory, but the
computational complexity of this method increases
exponentially with the increase of network size. Jason Tsai
et al. (2012) designed an algorithm called Double Oracle to
solve the problem [29, 30], whose major advantage is the ability
to divide the problem into best-response components.
However, using this algorithm still requires the design of
heuristic Oracle for both sides, and sophisticated heuristic
Oracle is needed for less interconnected social networks.
Now we propose a game-theoretic method to solve this
controlling diffusion problem from another perspective. In
real life, players do not necessarily use large-scale policy sets
to find the best strategies. The calculation results of the above
methods are the best, but the blocker and the spreader are more
likely to use representative typical strategies to get effective
results quickly [27, 34].

The meaning of a typical strategy is to select the most
influential nodes to combine into a seed node set. So far, the
academic community has proposed many typical methods for
identifying high-impact nodes of influence in networks, including
Degree Centrality (DC) [8], Betweenness Centrality (BC) [25],
Closeness Centrality (CC) [28] and Eigenvector Centrality (EC)
[20]. In addition, K-shell [14], H-index [10], Leader Rank [16],
Semi-local Centrality (LC) [5] and Eccentricity Centrality (ECC)
[26] are also commonly used methods. In this study, we establish
a Stackelberg dynamic game model to solve the previous
challenge [9, 18], based on the existing node influence
evaluation methods. In our work the blocker is on the right
side and the spreader is on the wrong side, so we focus on which
typical strategies the blocker uses better. Our works and
contributions can be summarized as:

• Firstly, we build a Stackelberg dynamic game model in
which the blocker selects the seed nodes first. And we
uses the maximum and minimum backward induction
method to find the equilibrium path.

• Secondly, we select seven typical point selection strategies
with low similarity, and the random (R) point selection
strategy is added as the total research object.

• Finally, we conduct extensive experiments on scale-
free network by changing the number of seed nodes on
both parties and the power exponent of the network.
We analyzed the absolute dominance strategy and the
utility values at equilibrium under different
conditions.

ONLINE INFORMATION DIFFUSE
DYNAMIC GAME MODEL

We formulate the controlling diffusion problem as a Stackelberg
zero-sum game, in which the players are one blocker and one
spreader. The blocker chooses a subset of nodes to block, and then
the spreader chooses some nodes to spread in the target network.
Both players are assumed to have the complete information of the
target network and the spreader have the full knowledge of the
blocker. In other words, the spreader solves the influence
maximization problem after observing a network modified by
the blocker. For each seed node selected by the blocker, all edges
of that node are broken off [13] and then the spreader selects its
seed nodes on the new modified network.

LetG = (V, E) be an online social undirected graph. Each node v ∈
V represents an agent where V is the set of nodes in the network. An
edge eij= (vi, vj) ∈E denotes the friendship between vi and vj, whileE⊆
V × V is the set of edges. Suppose n = |V| be the number of nodes in
the network. We denote A(G) � (aij)n×n as the adjacency matrix of
G, where aij = aji = 1 if nodes vi and vj are adjacent, and aij = aji = 0
otherwise. N(v) is the set of first-order neighbors of v. The blocker
selects a set of nodes Vb ⊆ V as seed nodes and breaks off all their
edges ~E ⊆ Ewhere each edge in ~E is connected to at least one node in
Vb. The graph Ĝ � (V̂, Ê) obtained by removing all nodes in Vb and
all associated edges in ~E from G is expressed as follows:

Ĝ � G − Vb. (1)
And then a spreader selects an initial set of seeds Vs to maximize
the influence. The number of seed nodes selected by the blocker is
Kb � |Vb|, Kb ∈ {1, 2, 3, . . . , �n2�}. The same for the spreader is
Ks � |Vs|, Ks ∈ {1, 2, 3, . . . , �n2�}.

Strategy
For the blocker, a pure strategy B =< bv > is a selection of the seed
nodesVb = {v ∈V|bv = 1}, that is,∑v∈Vbv =Kb, where bv ∈ {0, 1}. bv = 1
indicates the node v is chosen by the blocker and will never take that
view. The blocker’s strategy space is defined as B. We modify the
adjacency matrix of the network G to obtain the new network Ĝ, that
is, aij = aji = 0 if vi ∈ VT

b . Next, the spreader can choose a subset of
nodes Vs to spread. For the spreader, a pure strategy is defined as a
vector S � < sv > ∈ S, whereS represents the spreader’s strategy space
and∑v∈V̂sv � Ks. If v ∈Vs, then sv= 1; otherwise, sv= 0. The strategies
can be divided into typical seed node selection strategies T and
random seed node selection strategy R. So we have B � S � T ∪ R.

Utility
Now we define the utilities for both players in terms of the results
of adversarial influence on the network. To formalize, we denote
the utilities of the blocker and the spreader as ub(VB

b , V
S
s ) and

us(VB
b , V

S
s ), respectively. The influence of the spreader is the

proportion of the number of affected nodes to the total number of
nodes in the network resulting from a specified diffusion model,
denoted by σ(VS

s |Ĝ). We consider it is a zero-sum game in which
the spreader has us(VB

b , V
S
s ) � σ(VS

s |Ĝ) and the blocker has
ub(VB

b , V
S
s ) � −us(VB

b , V
S
s ) � −σ(VS

s |Ĝ).
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A key concept in this model is the influence maximization
problem, the spreader’s problem. To make our problem more
tractable, we transform the number of affected nodes resulting
from a diffusion model into the cardinality of the dominated
node set with respect to VS

s , denoted by D(VS
s |Ĝ). The

dominanted node set of a node consists of itself and its
first-order neighbor nodes. The effectiveness of this
transformation had been proved [11]. Moreover, node
domination is itself a natural influence measure. So the
dominated node set of VS

s is defined as

D VS
s |Ĝ( ) � ⋃

vi∈VS
s

vi ∪ N̂ vi( )( ) (2)

where N̂(v) is the set of neighbors of v on the network Ĝ.
And we obtain the influence function using the cardinality of
this set:

σ VS
s |Ĝ( ) � |D VS

s |Ĝ( )|
n

. (3)

Hence, the utility function of the spreader us(VB
b , V

S
s ) is

defined as follows:

us VB
b , V

S
s( ) � σ VS

s |Ĝ( ) � |⋃vi∈VS
s
vi ∪ N̂ vi( )( )|
n

∈ 0, 1( ) (4)
and the blocker’s utility function ub(VB

b , V
S
s ) is given as follows:

ub VB
b , V

S
s( ) � −σ VS

s |Ĝ( ) � −|⋃vi∈VS
s
vi ∪ N̂ vi( )( )|
n

∈ −1, 0( ). (5)

All together, we define them as (us, ub).

Equilibrium
After the utility matrix is obtained, we begin to solve this
zero-sum game and find its equilibrium. The aim of the
blocker is to control the spread of public opinion to
maximize his minimum utility and minimum the
spreader’s maximum utility. The optimization object is
defined as follows:

min
B∈B

max
S∈S

us VB
b , V

S
s( ). (6)

In the paper, we use backward induction (BI) to solve this
zero-sum game and find its equilibrium [4]. Every strategy of the
blocker or the spreader is a BI choice, and hence all possible
outcomes of the game are BI outcomes.

In the dynamic game, the blocker select seed nodes first while
the strategy selection of the spreader in the later step must be
taken into account. The spreader make a direct choice of
strategy without constraint. When the seed node selection
strategy of the spreader in the later stage is determined, the
seed node selection strategy of the blocking party in the previous
step can be easily determined. We give the algorithm to solve the
equilibrium path and the equilibrium utility value of our
dynamic game model by backward induction. It is sketched
in Algorithm 1.

Algorithm 1. The algorithm of backward induction to find the

equilibrium path.

In the Algorithm 1, Line4-Line5 gets the maximum spreader
utility of blocker under each defined strategy. And then Line7-
Line9 records the best response and maximum utility of spreader
under each blocker’s strategy. Line13 gets the minimum utility
from the spreader’s best response, i.e., the equilibrium utility E.
All blocker and spreader’s antagonistic strategy pairs equal to this
utility are equalization strategies.

An example is given in Figure 1 to demonstrate the process of
solving dynamic equilibrium, in which the size of the strategy set for
both players N is only three. Firstly, each backward induction tree is
obtained under the premise of the same network and fixed number of
seed nodesKb,Ks. Since we are a zero-sum game, blocker’s utility ub is
the maximum when spreader’s utility us is the minimum. If the
blocker chooses strategy 1, then the spreader chooses strategy 1,
because (0.9, −0.9) > (0.8, −0.8) > (0.6, −0.6); If the blocking party
chooses strategy 2, then the spreader chooses strategy 2, because
(0.8,−0.8)> (0.7,−0.7)> (0.6,−0.6); If the blocker chooses strategy 3,
then the spreader chooses strategy 3, because (0.7, −0.7) >
(0.5, −0.5) > (0.4, −0.4). Then, among the choices of the spreader,
the least choice for the blocker is strategy 3, because (0.7, −0.7) <
(0.8, −0.8) < (0.9, 0.9). The equilibrium return is (0.7, −0.7), and the
equilibrium path is blocker (strategy3) − spreader (strategy3).

In this case, only one equilibrium path exists, and the rest are
disequilibrium paths. However, when the strategy set increases,
there may be multiple equilibrium paths, that is, there are
multiple equilibrium solutions.

TYPICAL NODE SELECTION STRATEGIES

Now let’s talk about typical node selection strategies. We first
explain the process of calculating the utility matrix, and then
introduce seven node influence evaluation methods used in our
model. Note that these are measures for node influence, not
strategies. Strategies are chosen according to a specific measure.

The algorithm process of calculating the utility matrix in our
model is shown in Figure 2. In the calculation process, we redefine
i and j as index variables, and define Δ as the iteration step of the
number of seed nodes. Specifically, in the following experiment we
initialize Δ = 50, Kb = Ks = 50, i = j = 0, N = 8 and n = 1000.
According to the definition of Kb and Ks in Typical Node Selection
Strategies, we know that maximum_seed_node is equal to
�n2� � 500. In general, it is a four-tier loop, traversing Kb, Ks, i
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and j from the outer to the inner. In other words, we firstly traverse
the different seed nodes of blocker and that of spreader from the
outer to the inner, when Kb and Ks are determined, we continue to
iterate through all antagonistic strategy combinations of blocker
and spreader. Finally, we can get utility matrixes of the spreader
under different Kb and Ks in this network.

The content of the two parts in bold and black boxes in
Figure 2 is to rank the influence of all nodes in the network by
using different evaluation methods of node influence. By

comparing the similarity of node influence rankings obtained
by different influence evaluation methods, we select the following
seven typical methods as typical strategies T. The following is the
introduction of the seven typical strategies based on network
G (V, E).

Closeness Centrality
Closeness Centrality (CC) depends on the average distance
between each node and every other node in the network [28].

FIGURE 1 | Diagram of backward induction tree solving dynamic equilibrium process.

FIGURE 2 | The algorithm diagram of calculating the utility matrix of the spreader.
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We can use the following formula to represent the node’s
Closeness Centrality Ccc:

Ccc vi( ) � n − 1

∑
n

j�1
d vi, vj( )

,
(7)

where d (vi, vj) represents the shortest distance of node vi and vj.
The larger Ccc (vi) is, the more influence this node vi has.

H-Index
The H-index [10] of the node vi can be determined as follows:
Step1. Sort all of its neighbor nodes N(vi) by degree from highest
to lowest; Step2. Find the sorted list from front to back until the
sequence number of a node is greater than the degree of itself.
And the sequence number minus 1 is Ch−index (vi). The larger
Ch−index (vi) is, the more influence this node vi has.

K-Shell
Nodes are assigned to k shells according to their remaining degree,
which is obtained by successive pruning of nodes with degree smaller
than the Ck−shell value of the current layer [14]. Start by removing all
nodes with degree k = 1. After removing all the nodes with k = 1, some
nodes may be left with one link, so we continue pruning the system
iteratively until there is no node left with k = 1 in the network. The
removednodes, alongwith the corresponding links, forma k shell with
indexCk−shell= 1. Similarly, iteratively remove the next k shell,Ck−shell=
2, and continue removing higher k shells until all nodes are removed.
The higher the Ck−shell value of a node, the greater its influence will be.

Eigenvector Centrality
Eigenvector Centrality (EC) measures the importance of a node
by the importance of its neighbors [20]. Let x � [x1x2 . . .xn]T be
a vector of centrality scores. The calculation of Eigenvector
Centrality Cec is as follows:

Cec vi( ) � c∑
n

j�1
aijxj, (8)

where c is a proportionality constant. The larger Cec(vi) is, the
more influence this node vi has.

Leader Rank
The Leader Rank (LR) algorithm adds a node g to the network
and connects it with all nodes in the network, thus obtaining a
new network with n + 1 nodes which is strongly connected [16].
The process is iterated continuously according to the following
formula until a stable state is reached:

li t + 1( ) � ∑
n+1

j�1

aij
kj

lj t( ), (9)

where kj represents the degree of node j and aij/kj representing the
probability that a random walker at vi goes to vj in the next
step. In the initial state, l (0) = 1 for all nodes except l (0) = 0 for g.
In steady state, the resource value of node g is evenly distributed
to other n nodes. Thus we define the final score Clr of a node as
follows:

Clr vi( ) � li tc( ) + lg tc( )
n

, (10)

where lg (tc) is the score of the ground node at steady state and tc
represents the number of iterations when convergence is reached.
The higher the leadership score of a node, the greater the
influence of this node.

Semi-local Centrality
Semi-local C entrality (LC) involves the fourth-order neighbor
information of a node [5]. The Semi-local Centrality Clc of node vi
is defined as follows:

Clc vi( ) � ∑
vj∈N vi( )

∑
vw∈N vj( )

D vw( ), (11)

whereD (vw) is the second-order neighbor degree of node vw, that
is, the number of neighbors of nodes vwwithin two units distance.
The larger Clc(vi) is, the more influence this node vi has.

Eccentricity Centrality
The Eccentricity Centrality (ECC) Cecc of node vi is expressed
as [26].

Cecc vi( ) � max
1≥j≥n

d vi, vj( ). (12)

The smaller the value of Cecc (vi), the greater the influence of
node vi.

EXPERIMENTAL RESULTS AND ANALYSIS

Based on the above model definition, we conduct experiments on
different networks with different initial numbers of seed nodesKb,Ks.
The complex networks that exist in real life are currently more often
abstracted by scale-free network models, and many practical scale-
free networks have a power exponent γ of degree distribution
distributed between two and 3 [6, 33]. A power-law distribution
of node degrees indicates that the network contains a few nodes that
have a very high degree and many with low degree. Specially, the
power exponents of social networks are mostly distributed between
2 and 2.5, such as the WWW network with γwww = 2.1, actor
collaboration network with γactor = 2.3 [33]. In addition, the power
exponent of the classical BA scale-free network model is γba = 3.0 [3].
Therefore, it ismore suitable to use the degree heterogeneity scale-free
network with different power exponents γ.

Now,we define the power exponents γ of the networks used in our
experiments as 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 respectively, and the number
of nodes n of the networks as 1000.We use the following two steps to
generate degree heterogeneous networks with different power-law
distributions: Step1. Generate a power-law distribution of node
degree sequences with given node number n and power-law
exponent γ; Step2. Generate a random network that matches the
node degree sequences as closely as possible [7, 23]. Then, we
simulate the Stackelberg game based on the spreading and
blocking strategies on each network, and the equilibrium utility
value and all equilibrium strategies are solved by backward
induction. We iterated the number of seed nodes on both players
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50→ 500 in steps of 50. For example, we use Kb: Ks to indicate that
the blocker chooses Kb seed nodes and the spreader chooses Ks seed
nodes.

Absolute Dominance Strategy for The
Blocker at Equilibrium
After experimentation, we obtained the equilibrium strategies
for both players in different cases, as shown in Figure 3. In

which, the combinations of strategy adversaries with the same
blocker strategy we mark with the same colour. It can be found
that the absolute dominant strategy of the blocker is mostly LR
for different networks and different number of seed nodes.
Also, when Kb � Ks � 500 � �n2�, there is always us = 0.5
regardless of the strategies adopted by both players and all
strategies are equilibrium strategies, i.e., absolutely dominant
strategies. This is the extreme ideal case and the equilibrium
strategy for this case is not fully presented in the diagram. In a

FIGURE 3 | The adversarial strategy pair at dynamic equilibrium obtained by backward induction solving. Where the horizontal axis denotes the number of seed
nodes Kb for the blocker and the vertical axis denotes the number of seed node Ks for the spreader. Each subplot shows the experimental results on the same scale-free
network. (A) Power exponent γ = 2.0; (B) power exponent γ = 2.1; (C) power exponent γ = 2.2; (D) power exponent γ = 2.3; (E) power exponent γ = 2.4; (F) power
exponent γ = 2.5.

FIGURE 4 | The difference between the maximum utility value and the equilibrium utility value under the branch of the Leader Rank decision tree for the 59 cases
where the blocker doesn’t choose the Leader Rank strategy.
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sense, this feature validates the correctness of our
experiments.

For the cases when the blocker doesn’t choose Leader Rank as
his point selection strategy, we analyse them below. The total
number of cases where the blocker doesn’t choose LR at
equilibrium is 59, representing 9.83% of the total. By analysing
the equilibrium utility values in these cases and the max _utility
(Algorithm 1) under the branch of the decision tree where the
blocker chooses the Leader Rank, we can find that their difference
is only 0.067 at the maximum and 83.05% of these 59 cases’
difference is within the range [0.001, 0.020], as shown in Figure 4.
Therefore, in these cases, the blocker can also obtain a desired
blocking effect by adopting Leader Rank.

In conclusion, in the cases of different networks and seed
resources, the dominant strategy of the blocker in blocking the
dissemination of adverse information is LR (Leader Rank). The
probability that LR (Leader Rank) is the optimal strategy is
90.16%, and the probability of blocking adverse information
effectively using LR (Leader Rank) is 98.33%.

Analysing the process of evaluating the influence of nodes
using the Leader Rank algorithm, we can see that it is actually
quite similar to the process that public opinion spreads through
online social networks. In the design thinking of the Leader Rank
algorithm, not only the transmission of information from high-
influence nodes to low-influence nodes is considered, but also the
opposite flow of information [16]. Meanwhile, the design of
Leader Rank is based on the overall network topology, while
the other six typical point selection strategies are evaluated based

only on the shortest path or number of neighbours. Most
typically, both CC (Closeness Centrality) and ECC
(Eccentricity Centrality) only consider the shortest distance
between nodes and do not consider the number of neighbours
of different orders of nodes. The Closeness Centrality algorithm is
designed based on the average shortest path of the nodes [28],
while the Eccentricity Centrality algorithm is designed based on
the longest shortest path of the nodes [26]. The former is more
comprehensive in extracting information about the network
topology than the latter, which may also be the reason why
ECC has never been chosen by blockers as the absolute dominant
strategy as shown in Figure 3.

Effect of Different Parameters on
Equilibrium Utility Value
We draw the contour diagrams according to equilibrium
utility values E. By analysing Figure 5, we can see that the
equilibrium utility value is significantly influenced by Ks. The
equilibrium utility value increases significantly as Ks increases,
with the maximum variation spanning around the range [0.4,
0.5], while the maximum variation span of the equilibrium
utility value due to Kb changes is only around the range [0.2,
0.4]. However, when the value of Ks is not very large, the
blocker can still control the value of the spreader’s utility at
equilibrium to < 0.5 when the blocker adopts the optimal
blocking strategy and deploys a large number of seed nodes.
Also, we can find that the sensitivity of the equilibrium utility

FIGURE 5 | Contour plots of equilibrium utility values with the number of blocker’s and spreader’s seed nodes Kb, Ks on degree heterogeneous networks with
different power exponents. (A) Power exponent γ = 2.0; (B) power exponent γ = 2.1; (C) power exponent γ = 2.2; (D) power exponent γ = 2.3; (E) power exponent
γ = 2.4; (F) power exponent γ = 2.5.
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value E to the number of seed nodes Kb of the blocker increases
as the network power-law exponent γ increases. That is,
networks with higher network degree heterogeneity are
more conducive to blockers’ blocking of negative
information dissemination.

We plot line graphs of the change in equilibrium utility values
for networks with different power exponents Figure 6. It can be
found that the size of the power exponent γ of the network has a
relatively large effect on the equilibrium utility value when the
number of seed node resources Kb of the blocker is small. And
when the number of seed node resources Kb of the blocker is

larger, the size of the power exponent γ of the network has almost
no effect on the equilibrium utility value.

Simulation of Adversarial Dissemination on
Real Networks
To verify the correctness and effectiveness of the blocker’s choice
of Leader Rank strategy to block the spread of public opinion, we
conducted the dynamic game on a real online social network
(Facebook [22]). The statistics of the online social network are
shown in Figure 7.

FIGURE 6 | Plot of the growth of equilibrium gain values for different numbers of blocker’s seed nodes Kb on scale-free networks with different power exponents γ
as the number of spreader’s seed nodes Ks increases. (A) Kb = 50; (B) Kb = 100; (C) Kb = 150; (D) Kb = 200; (E) Kb = 250; (F) Kb = 300; (G) Kb = 350; (H) Kb = 400; (I)
Kb = 450; (J) Kb = 500.

FIGURE 7 |Main statistical properties of the Facebook online social network. The URL to obtain this network data is http://snap.stanford.edu/data/ego-Facebook.
html.

Frontiers in Physics | www.frontiersin.org August 2022 | Volume 10 | Article 9347418

Liu et al. Controlling Information Diffusion

http://snap.stanford.edu/data/ego-Facebook.html
http://snap.stanford.edu/data/ego-Facebook.html
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


We iterate the number of seed nodes of the blocker 50→ 2019
in steps of 50. Consider the imbalance in the impact of the
number of seed nodes on the equilibrium utility value for both
spreader and blocker observed in Figure 5, we iterate the number
of seed nodes of the spreader 50 → 2019 in steps of 50. Based on
the analysis in Simulation of Adversarial Dissemination on Real
Networks, we removed the point selection strategy based on the
ECC method from both sides of the strategy set.

Through experiments, we obtain the absolute dominant
strategy pair at equilibrium as shown in Figure 8. In which
the blocker has 86.88% probability of choosing the Leader Rank
strategy and sometimes also chooses the Closeness Centrality

strategy when Kb is small, with 13.12%. We analyse the cases
where the blocker doesn’t choose the Leader Rank strategy in
Table 1. It can be found that the maximum utility values under
the LR branch are still mostly not very different from the
equilibrium utility values, and the difference is within [0.001,
0.020] in 14 cases out of 21 cases, i.e. the effect of using Leader
Rank to select seed nodes for blocking is also possible in these
conditions. Thus, overall, there is a 95.63% probability that the
blocker will achieve good blocking results on the real network by
choosing the Leader Rank strategy.

Observe and analyse the equilibrium utility values for both
players with different numbers of seed nodes, as shown in

FIGURE 8 | The adversarial strategy pair at dynamic equilibrium obtained by backward induction solving on real online social network from Facebook. Where the
horizontal axis denotes the number of seed nodes Kb for the blocker and the vertical axis denotes the number of seed node Ks for the spreader.

TABLE 1 | The equilibrium utility value when the blocker doesn’t selected Leader Rank and the maximum spreader’s utility value under the blocker’s Leader Rank branch in
the decision tree. And their differences.

Kb: Ks 50:150 50:200 100:100 100:150 100:200 150:100 150:200 200:50 200:200 250:50

us E 0.595 0.656 0.422 0.579 0.640 0.451 0.641 0.307 0.589 0.306
LR 0.608 0.661 0.454 0.583 0.648 0.475 0.647 0.349 0.627 0.330

minus 0.013 0.005 0.032 0.004 0.008 0.024 0.006 0.042 0.038 0.024
250:150 250:200 350:150 350:200 400:200 500:50 500:200 550:50 600:100 700:50 800:100

us 0.523 0.613 0.486 0.573 0.570 0.306 0.546 0.306 0.407 0.306 0.361
0.532 0.615 0.488 0.583 0.588 0.321 0.566 0.338 0.418 0.323 0.363
0.009 0.002 0.002 0.010 0.018 0.015 0.020 0.032 0.011 0.017 0.002

FIGURE 9 | Contour plots of equilibrium utility values with the number of blocker’s and spreader’s seed nodes Kb, Ks on real online social network from Facebook.
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Figure 9. We can find that as the number of spreader’s seed nodes
grows, the increment of blocker’s seed nodes is much larger than
the increment of spreader’s if we want to achieve the same
equilibrium utility value.

DISCUSSION

We focus on the hot issue of controlling information diffusion
on OSNs and analyze several typical selection strategies by
establishing a dynamic game model. Firstly, we select seven
typical point selection methods as the typical strategy set. Then
we carry out dynamic game experiments on scale-free
networks with different power exponent. We use the
backward induction tree to analyze the equilibrium utility
value and the absolute dominance strategy of the blocker.
Through our experiments, we found that the absolute
dominance strategy for the blocker is Leader Rank with
90.16% probability and using Leader Rank can be relatively
effective against malicious spreaders with 98.33% probability.
At the same time, since the equilibrium utility value is much
more sensitive to the number of seed nodes of the malicious
spreader than that of the blocker, opinion control can be
performed by typical strategy only when there are fewer
malicious spreaders. In addition, when the number of seed
node resources of the blocking party is small, the network with
a smaller power exponent of the degree distribution will
facilitate the blocking of dissemination.

Note that our experiment assumes that both players know all
the information of the target network, and the spreader can get
the defensive node deployment information of the blocker.
However, in the real-life setting, malicious spreaders on the
network may not be able to obtain complete information

about the target network and defensive deployment. This
assumption may be a limitation in the model we have
developed, but the blocker should be more effective in
blocking public opinion in situations where the spreader does
not have access to defensive and network information.
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