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We present an improved method for in-vivo proton range verification by

prompt gamma-ray timing based on multivariate statistical modelling. To

this end, prompt gamma-ray timing distributions acquired during pencil

beam irradiation of an acrylic glass phantom with air cavities of different

thicknesses were analysed. Relevant distribution features were chosen using

forward variable selection and the Least Absolute Shrinkage and Selection

Operator (LASSO) from a feature assortment based on recommendations of

the Image Biomarker Standardisation Initiative. Candidate models were defined

by multivariate linear regression and evaluated based on their coefficient of

determination R2 and root mean square error RMSE. The newly developed

models showed a clearly improved predictive power (R2 > 0.7) compared to the

previously used models (R2 < 0.5) and allowed for the identification of

introduced air cavities in a scanned treatment field. These results

demonstrate that elaborate statistical models can enhance prompt gamma-

ray based treatment verification and increase its potential for routine clinical

application.
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1 Introduction

Compared to conventional photon-based radiotherapy, proton therapy offers the

advantage of a pronounced dose maximum at the Bragg peak, which can be tailored to a

predefined tumour volume while sparing healthy tissue behind the tumour [1]. However,

the steep gradient of this peak and the dependence of its position on the traversed material

in the patient make the dose distribution very sensitive to inter- and intrafractional

uncertainties resulting from setup errors and anatomical variations [2]. These

OPEN ACCESS

EDITED BY

Magdalena Rafecas,
University of Lübeck, Germany

REVIEWED BY

Fernando Hueso-González,
University of Valencia, Spain
Sara Marcatili,
Institut National de Physique Nucléaire
et de Physique des Particules (CNRS),
France

*CORRESPONDENCE

Sonja M. Schellhammer,
sonja.schellhammer@oncoray.de
Toni Kögler,
toni.koegler@oncoray.de

†Present address:
Julia Wiedkamp , St. Josef-Hospital,
Universitätsklinikum der Ruhr-
Universität Bochum, Bochum, Germany

‡These authors have contributed equally
to this work and share senior authorship

SPECIALTY SECTION

This article was submitted to Medical
Physics and Imaging,
a section of the journal
Frontiers in Physics

RECEIVED 30 April 2022
ACCEPTED 05 July 2022
PUBLISHED 19 August 2022

CITATION

Schellhammer SM, Wiedkamp J, Löck S
and Kögler T (2022), Multivariate
statistical modelling to improve particle
treatment verification: Implications for
prompt gamma-ray timing.
Front. Phys. 10:932950.
doi: 10.3389/fphy.2022.932950

COPYRIGHT

© 2022 Schellhammer, Wiedkamp ,
Löck and Kögler. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 19 August 2022
DOI 10.3389/fphy.2022.932950

https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.932950&domain=pdf&date_stamp=2022-08-19
mailto:sonja.schellhammer@oncoray.de
mailto:toni.koegler@oncoray.de
https://doi.org/10.3389/fphy.2022.932950
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.932950


uncertainties currently translate into restrictions in the applicable

beam angles and treatable tumour sites, as well as into safety

margins around the tumour, which can limit treatment efficacy.

Although pretreatment image guidance (e.g. in-room or on-

board cone-beam computed tomography) is becoming more

accessible, this approach may cause additional dose to the

patient and interrupt the treatment workflow. Also, it cannot

fully account for intrafractional motion and deformation, which

can be especially relevant for moving tumours e.g., in the thorax

and abdomen region [3].

A complimentary strategy to reduce these uncertainties is on-

line monitoring of secondary radiation generated in the patient

during irradiation. The spatial, temporal and energy distributions

of prompt gamma-rays have been shown to correlate strongly

with the Bragg peak position in the patient [4]. As a light-weight,

collimator-free technique, that can be easily integrated into

existing systems, prompt gamma-ray timing (PGT) [5] has

gained increasing interest for this purpose in recent years

[6–8]. A longer proton range translates into a longer time-of-

flight of the particles. Therefore, the temporal distribution of

prompt gamma-rays measured with scintillation detectors can be

used to reconstruct the delivered proton range in the patient.

However, the uncertainty in the range reconstructed with this

method is still more than 5 mm at 5,000 processed gamma rays

[6]. One of the main reasons for this is seen in the range

reconstruction method, which is currently based on a simple

univariate linear regression of either the mean or the standard

deviation of the timing distributions. Yet, timing distributions

acquired with differing material compositions exhibit complex

shape changes, such as dips and changes in curvature, which are

not sufficiently represented by the mean and standard deviation

(cf. Figure 2).

Therefore, the aim of this work is to develop an improved

reconstruction method that is capable of increasing the precision

of proton range prediction for the prompt gamma-ray timing

method and transferable to other range verificationmethods. The

presented approach is based on a standardised distribution

feature assortment, out of which strongly predictive

parameters are objectively selected and combined to

multivariate regression models. The method is introduced in

the following section, validated and compared against the current

method in section 3 and conclusively discussed in section 4.

2 Material and methods

2.1 Experimental setup

The data used for this study were taken from measurements

described in detail by Werner et al. [6, 9]. The setup is depicted

schematically in Figure 1. A homogeneous cylindrical phantom

comprised of poly(methyl methacrylate) was used (PMMA,

acrylic glass, [C5O2H8]n). Air cavities of varying thickness

ΔR ∈ {0 mm, 5 mm, 10 mm, 20 mm} were successively

introduced into the phantom to mimic anatomical variations

leading to range deviations. For each air cavity thickness, the

phantom was irradiated with proton pencil beams of two

different kinetic energies (E1 = 162 MeV and E2 = 227 MeV)

and a micropulse repetition rate of 106.3 MHz. Prompt-gamma

ray timing distributions were measured with a detection unit

consisting of a∅ 2″×2″ CeBr3 crystal by Scionix1, a Hamamatsu2

R13089-100 photomultiplier and a U100 digital spectrometer by

Target Systemelektronik3, which was placed at a backward angle

of 130° [6]. Two experiments were performed with different beam

characteristics:

Static beam experiment: In a first experiment, a static pencil

beam was directed centrally at the phantom. The beam was

pulsed in spots with a spot duration of 69 ms, a period of 72 ms

and 109 protons per spot4. One measurement consisted of

100 spots. The data of the first 30 spots were omitted due to

the phase oscillation effect [6].

FIGURE 1
Schematic representation of the experimental setup. A
proton beam impinged on a polymethyl methacrylate (PMMA)
phantomwith air cavities of varying thickness. Emitted gamma rays
weremeasured under a backward angle of 130°. The detector
axis crossed the beam axis at a depth of half the proton range.
Details on the experiment can be found in [6].

1 Scionix Holland B.V., Regulierenring 5, 3981 LA Bunnik, Netherlands

2 Hamamatsu Photonics K.K., 325–6, Sunayama-cho, Naka-ku,
Hamamatsu City, Shizuoka Pref., 430–8587, Japan

3 Target Systemelektronik GmbH & Co. KG, Heinz-Fangman-Straße 4,
42287 Wuppertal, Germany

4 This number of protons corresponds approximately to that of
8 strongly weighted clinical pencil beam scanning spots (1.25 × 108

protons per spot) or the combined signal of 8 prompt-gamma ray
detectors for one strongly weighted clinical pencil beam scanning
spot. The currently envisioned PGT system consists of 8 detectors
attached in a circle around the treatment head [6].
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Scanning experiment: In a second experiment, pencil

beam scanning was applied [9]. For each measurement, the

distal energy layer of a treatment plan homogeneously

irradiating a cubic volume of 8 × 8 × 8 cm3 was applied.

The layer contained 225 pencil beam spots corresponding to

225 scanning positions, and the number of protons per spot

ranged between 1 × 108 in the centre of the layer

(corresponding to a clinical pencil beam scanning spot

weight) and 4 × 108 at the field edges. The energy layer was

repeated eight times per measurement to simulate the

counting statistics acquired by a PGT system consisting of

eight detectors.

Each of the two experiments comprised eight measurements

covering the set of four cavity thicknesses ΔR and two beam

energies E1 and E2. The system was operated approximately at a

detector trigger count rate of 500 kcps, a dead time of 1 µs per

event, a pile up probability of 5%, and a proton beam current at

nozzle exit of 2 nA.

2.2 Data preprocessing

The raw data of each measurement was preprocessed

following the method established in [6]: The photomultiplier

gain drift and time digitalisation non-linearities were corrected

for, the integral signal charge was converted into deposited

energy and all events with an energy deposition below 3 MeV

or above 5 MeV were discarded. For the remaining events, the

detection time relative to the accelerator radiofrequency was used

to populate spot-wise PGT histograms h(ti). The histograms had

a bin width of 4.6 ps (i.e., the accelerator period of 9.4 ns divided

by 2048) and a mean event count of approximately 5,000 events

per spot for the static beam experiment and 500–2,000 events per

spot for the scanning experiment. Finally, the long-term time-

dependent phase shift was corrected for and background events

were removed, as detailed in Supplementary Section S1. An

example of the preprocessed histograms h(ti) is depicted in

Figure 2.

FIGURE 2
Measured prompt gamma-ray timing spectra h(ti) for an initial proton beam energy of 162 MeV (left) and 227 MeV (right) for the static beam
experiment after preprocessing. Top: When adding a 20 mm cavity (red), less prompt gamma-rays are produced in the cavity and longer times of
flight are more probable than in the case without cavity (blue). For better visibility, the data of seventy static spots were accumulated and smoothed
with a Gaussian filter (σ = 5 bins) for this graph. The unsmoothed data are underlaid semi-transparently. Bottom: Data of a single spot (without
accumulation). The unsmoothed data of single spots was used for analysis. The histogram bin width was 4.6 ps
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2.3 Model generation

The data of the static beam experiment was split into a

training dataset of 50 spots per measurement and a validation

dataset of 20 spots per measurement. The training dataset was

used for model generation.

First, the two models presented by Werner et al. [6] were

reproduced to enable a comparison with the newly developed

models. These two models were generated by a univariate linear

regression of either the mean or the standard deviation of the

timing histograms as regressor and the cavity thickness ΔR as

dependent variable.

The new multivariate models were generated in three steps:

parameter definition, parameter selection and multivariate linear

regression. This process was performed three times: once for the

dataset of each proton energy separately (energy-specific models)

and once for both proton energies combined (energy-

overarching models). The model generation process is

depicted in Figure 3.

2.3.1 Parameter definition
The aim of the parameter definition is to generate a broad

and varied parameter assortment out of which independent,

highly predictive features can be selected by selection

algorithms in the next step. For this, an assortment of

23 parameters was used, following the recommendations of

the Image Biomarker Standardisation Initiative for one-

dimensional histograms (see [10], Section 3.4, and

Supplementary Section S2). The following parameters were

added to this assortment:

• the area under the curve, as defined by the sum of all

histogram entries ∑ih(ti),

• the T1-to-T2 distance, as defined by Marcatili et al. [11],

• the standard deviation of the histogram σ(ti),

• the position of the fall-off of the distribution, as defined by

the highest negative slope of the histogram curve (in a

moving interval of 64 bins width),

• five further interquantile ranges Fiqn = Pb − Pa, where Pa
and Pb are the ath and bth percentile of the times ti,

respectively, and (a, b) ∈ {(20, 80), (30, 70), (35, 65),

(40, 60), (50, 90)},

• two further robust mean absolute deviations, i.e. the mean

absolute deviations between two percentiles Pa and Pb,

where (a, b) ∈ {(20, 80), (50, 90)}, and

• one additional quantile coefficient of dispersion

Fqncod � Pa−Pb
Pa+Pb

, where (a, b) = (35, 65).

The addition of these parameters was motivated as follows.

When adding a cavity, longer times of flight are more probable

than in the case without cavity (cf. Figure 2). As a result, the

position of the fall-off increases and was therefore added to the

parameter assortment. The same process leads to an increase in

the width of the distribution. Since it is a priori not clear which

measure of the width is most predictive, four symmetric

interquartile ranges as well as a further symmetric robust

mean absolute deviation and quantile coefficient of dispersion

were added. The T1-to-T2-distance was defined in [11] as a

further measure of the distribution width. A second physical

effect is the reduced gamma-ray yield in the cavity. This leads to a

dip in the PGT distribution, as visible in the right half of the

timing distribution for 227 MeV (see Figure 2). For this reason,

the asymmetric interquartile range and robust mean absolute

deviation describing the right half of the distribution (50–80%)

were added. Furthermore, the peak intensity is reduced, which

motivated the inclusion of the area under the curve.

Three parameters suggested in [10] were excluded in this

work since they were constant for all timing histograms h(ti): the

FIGURE 3
Schematic representation of the model generation process as applied by Werner et al. [6] and as presented in this work. The process was
repeated for each individual proton energy and for both proton energies combined.
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minimum discretised intensity (min(ti) = 0 ns), the maximum

discretised intensity (max(ti) = 9.4 ns), and the discretised

intensity range (max(ti)–min(ti) = 9.4 ns). Furthermore, the

maximum and minimum histogram gradients h(ti) − h(ti+1)

and their respective intensity were excluded from analysis,

since these highly local parameters are dominated by

statistical noise (see Figure 2, bottom row). The remaining

parameter assortment comprised 28 parameters, as listed in

Supplementary Section S2. For all parameters, the p-value of

univariate linear regression and the Pearson correlation matrix

were calculated.

2.3.2 Parameter selection
To generate a model with high predictive power for the

proton range based on a reduced subset of the 28 considered

parameters, two established parameter selection methods were

compared (see Supplementary Figure S8 in Supplementary

Information):

Forward variable selection: Forward variable selection is an

iterative method that successively adds the parameter with the

highest p-value of multivariate linear regression to the selected

parameter set in each iteration step [12]. An inclusion p-value of

p = 0.2 was used to ensure that enough parameters are included.

The Nsel selected parameters were ranked according to their

importance using the number of the iteration step during which

they were added, a lower rank indicating a higher importance.

LASSO method: The LASSO (Least Absolute Shrinkage and

Selection Operator) method optimises the number of parameters

during multivariate regression by minimising the sum of squared

differences and an additional penalty term (λ ·∑|βj|) consisting of

the sum of the regression coefficients βj and the regularisation

penalty λ [13].

The parameters were standardised by subtracting the mean

and dividing by the standard deviation. λ was defined by fourfold

cross validation, i.e., the training dataset was split into four

subsets to find and validate an optimal λ. Histogram

parameters with a coefficient of zero were discarded. The

remaining Nsel parameters were ranked by their absolute

regression coefficient, i.e., the parameter with the highest

absolute coefficient was assigned the lowest rank.

For both methods, N = min{Nmax, Nsel} parameter sets were

generated. Each parameter set consisted of the n parameters with

the lowest rank, where n ∈ {1, 2, . . . , N}. For example, if two

parameters were selected (Nsel = 2), two parameter sets were

generated (N = 2): One including only the parameter with the

lowest rank (n = 1), and one including the two parameters with

the two lowest ranks (n = 2). This way, the model performance

could be analysed as a function of the number of included

parameters. Nmax was set to 20 as an upper limit for the

number of parameters per model.

To evaluate the efficacy of the parameter selection, one

hundred further parameter sets were generated based on a

random choice of three parameters per model from the

parameter assortment. One further parameter set was defined

containing both the arithmetic mean and the standard deviation,

which were used only individually in [6].

2.3.3 Regression
For each parameter, the Pearson and Spearman correlation

with the cavity thickness were compared. Since no relevant

differences were found, the data was assumed to mainly

correlate linearly. Thus, models were defined by multivariate

linear regression of the n selected parameters as regressors and

the cavity thickness ΔR as dependent variable.

2.4 Evaluation

The last 20 spots of the static beam experiment were used for

model validation. The validation was performed by comparing

the cavity thickness predicted by the models from the timing

histograms to the actual cavity thickness in the phantom. This

was done quantitatively by calculating the respective coefficient

of determination R2 and the root mean square error RMSE. The

performance of the different models was compared and the most

often selected histogram parameters were identified.

To assess the capability of the models to detect air cavities in a

scanned treatment field, difference maps between the predicted

range of the reference measurement and the measurements with

air cavities of the scanning experiment were generated for all

models. The smoothing filter proposed in [6] was applied. The

analysis was performed once without accumulation and once

accumulating the data of all eight repetitions to mimick the

number of events acquired by a prompt gamma-ray timing

system consisting of eight detectors. The scanned beam data

was rated qualitatively by comparing the visibility of the air cavity

in the range difference maps reconstructed with the old and new

models. The RMSE between actual and predicted range deviation

was compared between the models for the five central scanning

spots.

The programming language used for this work was python

(version 3.9.7) and its associated modules [14]. The model

generation was based on the statsmodels and the scikit-learn

module (versions 0.12.2 and 0.24.2, respectively).

3 Results

3.1 Selected distribution parameters

The ranking of the selected parameters is depicted in

Supplementary Section S4 and the four most important

parameters are summarised for each model in Table 1. The

following observations can be made: 1) Most of the selected

parameters refer to the width of the distribution (T1-to-T2-

distance, median absolute deviation, variance, robust mean
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absolute deviation, interquartile range). This behaviour is

consistent with the fact that a longer path length

introduced by the air cavities leads to longer times of flight.

2) For the higher energy (227 MeV), the two selection

methods showed a very high agreement and the second half

of the timing distribution gained importance, as expressed by

the robust mean absolute deviation (50–90%) and the 90th

percentile. For this energy, a dip in the second half of the

timing distribution is present, as less gamma rays are

produced in the air cavity (see Figure 2). 3) For the energy-

overarching model, parameters that are normalised appeared

to be of high relevance to account for the energy-specific

variability in the distributions. This behaviour was expressed

in the selection of the quartile coefficient of dispersion and the

coefficient of variation, but only for the forward variable

selection method.

Correlation coefficients within the parameter assortment

close to zero were found, confirming that the parameter

assortment contained sufficiently independent distribution

features (cf. Supplementary Figures 12–14). The parameters

exhibited strong differences in their predictive value for the

cavity thickness, as displayed exemplarily for 227 MeV in

Figure 4 and expressed by variations in the p-value of

univariate linear regression (see Supplementary Figures 15, 16).

3.2 Multivariate models improve proton
range prediction for static beams

In comparison to the previously used univariate models

based on the mean and the standard deviation [6], the new

multivariate models showed a strongly improved coefficient of

TABLE 1 The first four selected parameters for both selection methods. At four parameters, most models were close to reaching their maximum
predictive power.

Forward selection LASSO selection

162 MeV T1-to-T2 distance Median absolute deviation

Area under the curve Variance

Median Kurtosis

Entropy Robust mean absolute deviation (10–90%)

227 MeV 90th percentile Robust mean absolute deviation (50–90%)

Robust mean absolute deviation (10–90%) Robust mean absolute deviation (10–90%)

Robust mean absolute deviation (50–90%) Arithmetic mean

10th percentile Interquartile range (50–90%)

Both energies Quartile coefficient of dispersion Robust mean absolute deviation (10–90%)

Coefficient of variation Median absolute deviation

Kurtosis 10th percentile

Area under the curve Interquartile range (35–65%)

FIGURE 4
Example for a highly predictive parameter, the robust mean absolute deviation [10–90%, (A)], and a weakly predictive parameter, themedian (B),
for 227 MeV. The distribution of the two parameters is shown as box plot in dependence of the range deviation introduced by the cavity.
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determination and root mean squared error. For the energy-

overarching model, R2 was improved from below 0.1 to more

than 0.6 by the new models and the RMSE decreased from more

than 7 mm to below 5 mm (35% reduction). For the energy-

specific models, R2 was improved from below 0.5 to more than

0.7 and the RMSE decreased from more than 5 mm to below

4 mm (30% reduction). The two feature selection methods

reached a similar coefficient of determination (agreeing

within 0.1).

The predictive power either saturated or decreased after a

certain amount of parameters on the validation dataset,

indicating that not all selected parameters were necessary to

predict the range shift (see Figure 5). Most models approached

their maximum predictive power at around 3–4 parameters

(except for the forward selection at 162 MeV). For the

univariate models, the coefficient of determination of the

energy-overarching models was strongly reduced in

comparison to the energy-specific models, underlining the

need for multivariate models to account for the energy-

specific distribution variation.

The predictive power of the energy-specific models (R2 ≈
0.75) was higher than for the energy-overarching models (R2 ≈
0.6) due to the energy-specific variability of the timing

distributions. This implies that energy-specific models will be

favourable in future applications.

The coefficient of determination for the training and

validation dataset of the static beam experiment is depicted

for both selection methods in Supplementary Section S4. The

difference in the coefficient of determination between the

training and validation datasets was small (below 0.1),

FIGURE 5
Coefficient of determination R2 (A) and root mean square error RMSE (B) between predicted and actual cavity thickness for the previously used
methods (violet, orange) and the newly developed statistical models (red, blue). The single data points of the new models are underlayed with a
smoothed line of the same colour to improve visibility. The newly developed models exhibit a clear improvement in predictive power.
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suggesting that overfitting was avoided. Both the multivariate

model of the arithmetic mean and the standard deviation and the

mean of the random choice models exhibited a lower predictive

power than the models defined by the first three parameters

selected by forward and LASSO selection. The RMSE decreased

by 0.5–1.4 mm, i.e., 10% to 30%. This confirmed that the

automated feature selection from the feature assortment

provided an improvement in prediction accuracy.

3.3Multivariatemodels identify cavities for
scanned proton beams

As most models had approached their maximum predictive

power at four parameters in the static beam experiment, the first

four parameters selected by both the LASSO and forward

selection methods were used to predict the proton range for

the scanned field. The influence of the cavity insert on the

reconstructed proton range can be observed on the range

difference maps, as depicted in Figure 6 and in

Supplementary Section S6.

At 227 MeV, the new models clearly detected all introduced

range deviations, the only exception being the smallest tested

cavity thickness (5 mm) without accumulation (Figure 6 and

Supplementary Figures 17, 18). Without accumulation, the new

models exhibited a tendency of overestimating the actual cavity

thickness, whereas the previously used models showed a

tendency of underestimation. With eight-fold accumulation,

the agreement between actual and predicted cavity thickness

was high for the new models, whereas the old models

underestimated the cavity thickness. A similar behaviour was

observed at the lower proton energy (162 MeV) for the model

based on forward selection (Supplementary Figures 19–21).

The RMSE between actual and predicted cavity thickness for

the central spots is given in Table 2. Themodels based on forward

selection outperformed all other models, except for the case of

227 MeV without accumulation. Here, the standard deviation

and the forward model performed comparably well.

Noticeably, the model defined by the LASSO selection exhibited

strong fluctuations at 162 MeV when applied without

accumulation, leading to an inaccurate range reconstruction

(Supplementary Figures 19–21, right). The parameters selected

by LASSO were strongly intercorrelated, as compared to those

defined by forward selection. Therefore, the number of parameters n

included in the LASSO model was successively reduced, revealing

that the cavity detectability was especially reduced by the inclusion

of the third parameter, i.e., the kurtosis (see Supplementary Figure

S22). When limiting the model to two parameters, the performance

of the LASSOmodel was comparable to that of the forward selection

model. The inclusion of highly correlated parameters in a linear

regressionmodel can cause instability in its predictions, especially in

a validation setting that differs from the training data, where

FIGURE 6
Range difference in the scanned treatment field of 227 MeV as reconstructed by the previously used methods (standard deviation, arithmetic
mean) and the newly developed statistical models (forward and LASSO selection). The actual cavity thickness was 10 mm inside the circle. The
colormap diverges from this actual cavity thickness in white to lower values in blue and higher values in red. The cavity was clearly detected by the
new models.
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extrapolation may be required. This may be the case for the model

application on data of the scanning experiment. This implies that

themodel based on the parameters selected by forward selectionwas

more transferable to the scanned treatment field than for those

selected by LASSO at this proton beam energy.

Due to the lateral spot extension of 0.5–1.5 cm (full width at

half maximum [15]), relevant range mixing occurred around the

edges of the cavity for both energies, which is clearly visible in the

reconstructed rangemaps. This points to a detectability threshold

in the lateral size of the cavity.

4 Discussion

The aim of this study was to develop a range reconstruction

method for prompt gamma-ray timing distributions which

outperforms the methods used so far. This aim was achieved

by applying forward and LASSO variable selection on a

standardised histogram feature assortment and successive

multivariate regression. The newly developed models showed

a strongly improved predictive power (R2 > 0.7) compared to the

previously used models (R2 < 0.5), decreased the mean prediction

error by more than 1.5 mm (35%), and enabled the identification

of introduced air cavities in a scanned treatment field.

It was found that one single parameter is hardly enough to

reconstruct the proton range from the timing distributions.

Instead, a set of approximately four parameters proved

beneficial to represent the complex changes in the distribution

shape. The most prognostic distribution features were found to be

different measures of the distribution width, as a longer proton

range corresponds to a higher probability for longer times of flight.

The position of the timing peak, as represented by the arithmetic

mean used in previous work, was found to be less predictive. This

was most likely due to the sensitivity of the mean to outliers and

remaining uncertainties in the phase shift correction. The second

parameter used in previous work, the standard deviation, was

found to perform better than the arithmetic mean, but still worse

than the newly developed models. Especially for the higher proton

energy, the introduced cavity mostly affected the second half of the

timing distribution for the given phantom geometry, and this

behaviour is represented better by parameters referring only to the

data of the higher percentiles.

The forward and LASSO selection methods work with different

optimisation criteria. Due to the broad and varied parameter

assortment, the problem of finding accurate range predictors

may have multiple similar solutions. Therefore, both methods

did not select the same parameters but both solutions provided

an improved accuracy relative to the previously used model.

Due to variations in the initial timing distributions, models

trained specifically for one proton energy showed a stronger

predictive power than the energy-overarching models. In clinical

practice, it is possible to use energy-specific models, since the

proton energy of each spot is known from the treatment plan and

themachine log files. Therefore, the use of energy-specific models

appears favourable for clinical application.

The main limitation of this study was the confinement of the

experimental data to two irradiation scenarios (static beam and

scanned layer), two proton beam energies and a simplified

phantom. In this study, the phantom geometry was the same

for both the training and the validation dataset. In clinical

application, different anatomical changes may lead to the

similar changes in the timing distributions, which may reduce

the accuracy of the model prediction. The transferability of the

presented method to other beam energies, full treatment plans,

more anthropomorphic phantom geometries, and finally clinical

patients needs to be assessed in follow-up studies. This work

showed that the developed models were transferable to a scanned

treatment field after being trained only on a dataset with a static

beam and a different number of protons per spot. Therefore, the

translation of the method to these scenarios and the development

of a patient-independent model appear feasible. However, a

model trained and validated on more realistic and more

varied data than the static beam experiment used in this work

will be necessary for clinical translation. It is likely that such a

model will depend on different parameters than those selected for

the simplified phantom used in this study.

For this, a large dataset covering the majority of expectable

anatomical variations is required. Aside from experimental

measurements, Monte Carlo based particle transport

simulations may be a valuable tool to generate such a training

TABLE 2 RMSE between actual and predicted range deviation of the central spots in the scanned treatment field for the different parameter selection
methods in mm.

Standard deviation Arithmetic mean Forward LASSO

No accumulation

227 MeV 4.1 11.1 4.4 5.1

162 MeV 9.3 4.6 5.8 16.7

8-fold accumulation

227 MeV 5.9 8.2 3.5 3.7

162 MeV 6.5 4.3 2.6 3.3
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dataset. These simulations could furthermore enable the

calculation of ground-truth timing spectra for complex

geometries, taking into account different material compositions

and range mixing. Thus, deviations from the planned dose

distribution can be detected and interpreted in more detail.

However, the accuracy of simulations will be subject to

systematic uncertainties in the implemented physical models,

which may reduce the range prediction accuracy. The

development and validation of such a simulation model is

therefore of high importance and subject to future studies. As

an alternative, semi-empirical analytical models of the timing

distributions may prove useful. However, given the limited

number of detected events per spot, it is expected to be difficult

to accurately represent the various distribution shape changes,

which depend on both the beam and the target properties.

The two most advanced alternative range verification systems,

prompt gamma-ray imaging and spectroscopy, have been reported

to currently reach a spot-wise shift detection accuracy below 2 mm

[16, 17], whereas the accuracy of PGT found in this work with the

presented method was still approximately 4 mm (RMSE without

spot accumulation, 5 × 103 processed events). However, these

numbers are not immediately comparable since different metrics

acquired under different conditions were reported and direct

comparative studies are lacking so far. Both alternative methods

rely on a heavy and voluminous collimator, which may limit the

applicable beam angles and pose challenges for system integration

[15]. On the other hand, the limited system throughput, which

results in low counting statistics, is the main limiting factor for

PGT. However, this limitation can easily be overcome by adding

more detector units or segmented detectors [15] or optimising the

electronic throuhgput [18]. Further studies will be necessary to

conclusively evaluate the potential areas of application of the

different systems. Possibly, a combination of multiple systems

may be used, or the system choice may be entity-specific.

To further improve the range reconstruction method

presented in this work, more advanced machine learning

techniques than linear regression, such as support vector

machines and random forests [19], may prove useful.

Furthermore, the counting statistics may be improved by

extending the applied energy window to cover a broader

range of prompt gamma-ray energies. In addition, a

promising approach is the extension of this method to two-

dimensional distributions h(ti, ej), including the measured energy

deposition ej of the prompt gamma rays in addition to their

relative detection time ti [15]. These approaches are subject to

future studies.

An important asset of the method presented in this work is

that it is agnostic to the physical processes involved and the type of

input data. This renders the method transferable to any system

relying on a reconstruction of the proton range from one-

dimensional distributions, such as the spatial (prompt gamma-

ray imaging) or the energy distribution (prompt gamma-ray

spectroscopy) of the prompt gamma-rays. Thus, this work can

trigger future investigations to improve the prognostic value of

different treatment verification systems, ultimately lowering the

current limit of particle range verification accuracy.

In conclusion, this study shows that elaborate statistical

modelling is a valuable tool to enhance particle treatment

verification and increases its potential for routine clinical application.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials, further

inquiries can be directed to the corresponding authors

Author contributions

SMS, TK and SL were responsible for the conception and

design of the work. Data analysis was performed by JW and SMS.

All authours contributed to data interpretation. SMS drafted the

article. TK and SL critically revised the article. All authours

approved of the final version to be published.

Acknowledgments

The authors thank Joseph Turko (Helmholtz-Zentrum

Dresden—Rossendorf, Dresden, Germany) for linguistic

proofreading of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphy.2022.

932950/full#supplementary-material

Frontiers in Physics frontiersin.org10

Schellhammer et al. 10.3389/fphy.2022.932950

https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2022.932950/full#supplementary-material
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.932950


References

1. Jäkel O. Medical physics aspects of particle therapy. Radiat Prot Dosimetry
(2009) 137:156–66. doi:10.1093/rpd/ncp192

2. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment
uncertainties 2: The potential effects of inter-fraction and inter-field motions. Phys
Med Biol (2008) 53:1043–56. doi:10.1088/0031-9155/53/4/015

3. EngelsmanM, Bert C. Precision and uncertainties in proton therapy for moving
targets. In: H Paganetti, editor. Proton therapy physics. Florida: CRC Press, Taylor &
Francis Group (2011). p. 435–60.

4. Pausch G, Müller C, Berthold J, Enghardt W, Küchler M, Römer K, et al. Effect
of strong load variations on gain and timing of CeBr3 scintillation detectors used for
range monitoring in proton radiotherapy. In: IEEENuclear Science Symposium and
Medical Imaging Conference; 10-17 Nov 2018; Sydney, Australia (2018).

5. Golnik C, Hueso-González F, Müller A, Dendooven P, Enghardt W, Fiedler F,
et al. Range assessment in particle therapy based on prompt γ-ray timing
measurements. Phys Med Biol (2014) 59:5399–422. doi:10.1088/0031-9155/59/
18/5399

6. Werner T, Berthold J, Hueso-González F, Kögler T, Petzoldt J, Römer K, et al.
Processing of prompt gamma-ray timing data for proton range measurements at a
clinical beam delivery. Phys Med Biol (2019) 64:105023. doi:10.1088/1361-6560/
ab176d

7. Jacquet M, Marcatili S, Gallin-Martel ML, Bouly JL, Boursier Y, Dauvergne D,
et al. A time-of-flight-based reconstruction for real-time prompt-gamma imaging in
proton therapy. Phys Med Biol (2021) 66:135003. doi:10.1088/1361-6560/ac03ca

8. Pennazio F, Ferrero V, D’Onghia G, Garbolino S, Fiorina E, Villarreal OAM,
et al. Proton therapy monitoring: Spatiotemporal emission reconstruction with
prompt gamma timing and implementation with PET detectors. Phys Med Biol
(2022) 67:065005. doi:10.1088/1361-6560/ac5765

9. Werner T, Berthold J, Enghardt W, Hueso-González F, Kögler T, Petzoldt J,
et al. Range verification in proton therapy by prompt gamma-ray timing (PGT):
Steps towards clinical implementation. In: 2017 IEEE Nuclear Science Symposium
and Medical Imaging Conference; 21-28 October 2017; Atlanta, GA, USA. NSS/
MIC (2017). p. 1–5. doi:10.1109/NSSMIC.2017.8532807

10. Zwanenburg A, Leger S, Vallieres M, Löck S. Image biomarker standardisation
initiative reference manual. arXiv (2019). doi:10.48550/arXiv.1612.07003

11. Marcatili S, Collot J, Curtoni S, Dauvergne D, Hostachy JY, Koumeir C, et al.
Ultra-fast prompt gamma detection in single proton counting regime for range
monitoring in particle therapy. Phys Med Biol (2020) 65:245033. doi:10.1088/1361-
6560/ab7a6c

12. Draper NR, Smith H. Applied regression analysis. New York: John Wiley &
Sons (1966).

13. Kuhn M, Johnson K. Applied predictive modeling. New York: Springer (2013).
doi:10.1007/978-1-4614-6849-3

14. Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA:
CreateSpace (2009).

15. Pausch G, Berthold J, Enghardt W, Römer K, Straessner A, Wagner A, et al.
Detection systems for range monitoring in proton therapy: Needs and challenges.
Nucl Instr Methods Phys Res Section A (2020) 954:161227. doi:10.1016/j.nima.2018.
09.062

16. Nenoff L, Priegnitz M, Janssens G, Petzoldt J, Wohlfahrt P, Trezza A, et al.
Sensitivity of a prompt-gamma slit-camera to detect range shifts for proton
treatment verification. Radiother Oncol (2017) 60:P534–40. doi:10.1016/j.radonc.
2017.10.013

17. Hueso-González F, Rabe M, Ruggieri TA, Bortfeld T, Verburg JM. A
full-scale clinical prototype for proton range verification using prompt
gamma-ray spectroscopy. Phys Med Biol (2018) 63:185019. doi:10.1088/
1361-6560/aad513

18. Hueso-González F, Casaña Copado JV, Fernández Prieto A, Gallas
Torreira A, Lemos Cid E, Ros García A, et al. A dead-time-free data
acquisition system for prompt gamma-ray measurements during proton
therapy treatments. Nucl Instr Methods Phys Res Section A (2022) 1033:
166701. doi:10.1016/j.nima.2022.166701

19. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data
mining, inference, and prediction. New York, USA: Springer (2016).

Frontiers in Physics frontiersin.org11

Schellhammer et al. 10.3389/fphy.2022.932950

https://doi.org/10.1093/rpd/ncp192
https://doi.org/10.1088/0031-9155/53/4/015
https://doi.org/10.1088/0031-9155/59/18/5399
https://doi.org/10.1088/0031-9155/59/18/5399
https://doi.org/10.1088/1361-6560/ab176d
https://doi.org/10.1088/1361-6560/ab176d
https://doi.org/10.1088/1361-6560/ac03ca
https://doi.org/10.1088/1361-6560/ac5765
https://doi.org/10.1109/NSSMIC.2017.8532807
https://doi.org/10.48550/arXiv.1612.07003
https://doi.org/10.1088/1361-6560/ab7a6c
https://doi.org/10.1088/1361-6560/ab7a6c
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1016/j.nima.2018.09.062
https://doi.org/10.1016/j.nima.2018.09.062
https://doi.org/10.1016/j.radonc.2017.10.013
https://doi.org/10.1016/j.radonc.2017.10.013
https://doi.org/10.1088/1361-6560/aad513
https://doi.org/10.1088/1361-6560/aad513
https://doi.org/10.1016/j.nima.2022.166701
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.932950

	Multivariate statistical modelling to improve particle treatment verification: Implications for prompt gamma-ray timing
	1 Introduction
	2 Material and methods
	2.1 Experimental setup
	2.2 Data preprocessing
	2.3 Model generation
	2.3.1 Parameter definition
	2.3.2 Parameter selection
	2.3.3 Regression

	2.4 Evaluation

	3 Results
	3.1 Selected distribution parameters
	3.2 Multivariate models improve proton range prediction for static beams
	3.3 Multivariate models identify cavities for scanned proton beams

	4 Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


