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In this article, a new method for generating grid multi-wing chaotic attractors from
fractional-order linear differential systems is proposed. In order to generate grid multi-
wing attractors, we extend the method of constructing heteroclinic loops from classical
differential equations to fractional-order differential equations. Firstly, two basic fractional-
order linear systems are obtained by linearization at two symmetric equilibrium points of the
fractional-order Rucklidge system. Then a heteroclinic loop is constructed and all
equilibrium points of the two basic fractional-order linear systems are connected by
saturation function switching control. Secondly, the theoretical methods of switching
control and construction of heteromorphic rings of fractal-order two-wing and multi-wing
chaotic attractors are studied. Finally, the feasibility of the proposed method is verified by
numerical simulation.
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1 INTRODUCTION

At present, chaotic dynamics is gradually transitioning from the basic theoretical research of
mathematics and physics to the practical engineering application field. For example, chaotic theory
has been greatly developed in the fields of memristor [1–6], secure communication [7–11], image
encryption [12–17], neural network [18–29], so chaotic dynamics has a wide application prospect. A
key factor in the application of chaos in engineering is to improve the complex dynamic
characteristics of chaos. In recent years, many scholars have deeply analysed and studied the
complex dynamic characteristics of chaos, and found many chaotic attractors with complex
dynamics. Some research results show that chaotic systems with multi-wing or multi-scroll
attractors can show richer and more complex dynamic characteristics [30–35].

Fractional calculus has a history of more than 300 years, but its applications in engineering and
physics have only aroused interest in recent decades [36–38]. With the deepening of scientific
research, some researchers were surprised to find that these systems have complex chaos and
bifurcation phenomena when studying fractional-order nonlinear differential systems [39–45]. In
[42], the author designed a method to eliminate chaos in the system trajectory through state feedback
controller. In order to form multi-scroll attractors, the potential nonlinearity of fractional-order
chaotic systems is changed. In [43], it is proved that the fractional-order system coupled by two
fractional Lorentz systems can produce four-wing chaotic attractors. In [44], a series method of
saturation function is proposed, which can enable fractional-order differential systems to generate
multi-spiral chaotic attractors, including multi-scroll chaotic attractors in three directions. In [45], a
suitable nonlinear state feedback controller is designed by employing the four construction criteria of
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the basic fractional-order differential nominal linear system to
generate multi-wing chaotic attractors for the controlled
fractional-order differential system. However, these multi-wing
chaotic systems all contain product terms, which makes their
circuit implementation complicated. In [46], Petras proposed a
fractional-order Chua’s model based on memristor. Through
digital simulation, it is found that the fractional-order Chua’s
circuit can also produce two-scroll chaotic attractors. However, it
is still a very challenging problem to find how to generate grid
multi-wing attractors in fractal-order chaotic systems.

In this article, a new design method of generating grid
multi-wing chaotic attractors from fractional-order
differential system is proposed by switching control of
saturation function and constructing heteroclinic loops.
Because the fractional-order derivative is a nonlocal
operator with weak singular kernel, the multi-wing
attractors generated in fractional-order differential system
are very different from the multi-wing attractors generated
in the classical differential system. In addition, it can be seen
from [47–52] that shil’nikov theorem can be used to construct
two-wing and multi-wing chaotic attractors in classical
differential systems. In this paper, the classical differential
system construction method is extended to the fractional-
order differential system construction method based on
shil’nikov theorem [47]. Firstly, the heteroclinic loops are
constructed from the fractional-order piecewise linear
differential system, and then a method to generate various
grid multi-wing attractors through switching control is
proposed. Two basic fractional-order linear systems are
constructed by linearization at two symmetrical
equilibrium points of fractional-order Rucklidge system
[53]. After switching the control, in order to connect all
the equilibrium points of the two basic fractional-order
linear systems [54], we design a heteroclinic loop. Under
appropriate conditions, according to shil’nikov theorem, a
variety of grid multi-wing attractors can be obtained. We use a
predictor-corrector numerical simulation algorithm to
confirm the effectiveness of the proposed method [55].

The other parts of this paper are organized as follows. In
Section 2, we first introduce some preliminary knowledge about
fractional-order differential systems. Two fundamental fractional
differential linear systems are deduced from Rucklidge system in
Section 3. In Section 4, we study the theoretical method of
designing fractional-order two-wing and multi-wing chaotic
attractors by switching control and constructing heteroclinic
loops. Finally, the conclusions of this paper are given in Section 5.

2 FRACTIONAL-ORDER DIFFERENTIAL
SYSTEM

Unlike ordinary differential equations, due to the lack of
appropriate mathematical methods, the research on the
theoretical analysis and numerical solution of fractional-order
calculation is still a difficult topic. In recent years, Caputo type
fractional-order differential equations have aroused great interest.

Under the promotion of Adams [56], we choose Caputo version
of Adams prediction correction algorithm. Next, we will give a
brief introduction to the fractional-order algorithm.

Fractional-order differential equation is generally expressed by
the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα1
t x(t) �

dα1x(t)
dtα1

� f1(x, y, z)
Dα2

t y(t) �
dα2y(t)
dtα2

� f2(x, y, z) 0≤ t≥T
Dα3

t z(t) �
dα3y(t)
dtα3

� f3(x, y, z)
(1)

When the initial values are chosen as
x(0) � x0, y(0) � y0, z(0) � z0, αi ∈ (0, 1), i � 1, 2, 3, Eq. 1
forms the following Volterra integral equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) � x(0) + 1
Γ(α1) ∫

t

0
(t − τ)α1−1f1(x(τ), y(τ), z(τ))dτ

y(t) � y(0) + 1
Γ(α2) ∫

t

0
(t − τ)α2−1f2(x(τ), y(τ), z(τ))dτ

z(t) � z(0) + 1
Γ(α3) ∫

t

0
(t − τ)α3−1f3(x(τ), y(τ), z(τ))dτ

(2)
where Γ(αi) is the Gamma function, which can be defined as
Γ(αi) � ∫∞

0
e−ttαi−1dt. Set h � T

N, tn � nh(n � 0, 1, 2, . . .N), then
Eq. 2 can take discretization as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xh(tn+1) � x(0) + hα1

Γ(α1 + 2)f1(xp
h (tn+1), yp

h (tn+1), zph (tn+1)) + hα1

Γ(α1 + 2) ∑ a1,j,n+1f1(x(tj), y(tj), z(tj))
yh(tn+1) � y(0) + hα2

Γ(α2 + 2)f2(xp
h (tn+1), yp

h (tn+1 ), zph (tn+1 )) + hα2

Γ(α2 + 2) ∑ a2,j,n+1f2(x(tj), y(tj), z(tj))
zh(tn+1) � z(0) + hα3

Γ(α3 + 2)f3(xp
h(tn+1), yp

h (tn+1), zph (tn+1)) + hα3

Γ(α3 + 2) ∑ a3,j,n+1f3(x(tj), y(tj), z(tj))
(3)

where αi,j,n+1 is given by:

αi,j,n+1 �
⎧⎪⎨⎪⎩

nαi+1 − (n − αi)(n + 1)αi , j � 0,
(n − j − 2)ai+1 + (n − j)ai+1 − 2(n − j + 1)ai+1 , 1≤ j≤ n, (i � 1, 2, 3)
1, j � n + 1

, and the predicted value xp
h(tn+1) is determined by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xp
h(tn+1) � x(0) + 1

Γ(α1)∑
n

j�0
b1,j,n+1f1(xh(tj))

yp
h(tn+1) � y(0) + 1

Γ(α2)∑
n

j�0
b2,j,n+1f2(xh(tj))

zph(tn+1) � z(0) + 1
Γ(α3)∑

n

j�0
b3,j,n+1f3(xh(tj))

(4)

In which bi,j,n+1 � hαi
αi
((n − j + 1)αi − (n − j)αi)(i � 1, 2, 3),

0≤ j≤ n. The estimation error in this method is e �
max{max|x(tj) − xh(tj)|, max|y(tj) − yh(tj)|, max|z(tj) − zh(
tj)|} � o(hρ), where j � (0, 1, 2, . . . ,N), ρ � min{1 + α1, 1+
α2, 1 + α3}. By using this method, we can determine the
numerical solution of the fractional-order difference equation
system.
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3 DESIGN OF TWO FUNDAMENTAL
FRACTIONAL-ORDER LINEAR SYSTEMS

Considering the fractional-order version of Rucklidge system, it
can be expressed by the following formula:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα1
t x(t) �

dα1x(t)
dtα1

� −2x + 6.7y − yz

Dα2
t y(t) �

dα2y(t)
dtα2

(t) � x

Dα3
t z(t) �

dα3y(t)
dtα3

� y2 − z

(5)

where αi(i � 1, 2, 3) is the fractional-order satisfying 0< αi ≤ 1.
Clearly, system (Eq. 5) has three equilibria: E0 � (0, 0, 0),
E1 � (0, 

6.7
√

, 6.7), E2 � (0,− 
6.7

√
, 6.7). Linearizing system

(Eq. 5) at equilibrium point E1, one gets the following
fractional-order linear system:

⎛⎜⎝Dα1
t x1(t)

Dα2
t y1(t)

Dα3
t z1(t)

⎞⎟⎠ � ⎛⎜⎜⎝−2 0 − 
6.7

√
1 0 0
0 2


6.7

√ −1
⎞⎟⎟⎠⎛⎜⎝ x1

y1

z1

⎞⎟⎠ � J1X1 (6)

In the same way, we linearize system (Eq. 5) at equilibrium point
E2, and the following fractional-order linear system can be obtained:

⎛⎜⎝Dα1
t x2(t)

Dα2
t y2(t)

Dα3
t z2(t)

⎞⎟⎠ � ⎛⎜⎜⎝−2 0

6.7

√
1 0 0
0 2


6.7

√ −1
⎞⎟⎟⎠⎛⎜⎝ x2

y2

z2

⎞⎟⎠ � J2X2 (7)

Through the processing of the above method, systems (Eqs 6,
7) can be called basic fractional-order linear systems. Obviously,
the only equilibrium point of systems Eqs 6, 7 is
O0 � O1 � (0, 0, 0), and the corresponding eigenvalues are λ1 �
γ � −3.5145 and λ2,3 � σ ± jω � 0.2577 ± j1.9353. Therefore,
equilibrium points O1 and O2 become saddle focus with index
2. Moreover, λ1 < 0, Re(λ2,3)> 0 and |λ1|>Re(λ2,3), satisfy the
conditions of Shil’nikov Theorem [47]. If all eigenvalues of
Jacobian matrix A � zf/zx meet the following condition:∣∣∣∣arg(eig(A))∣∣∣∣> απ/2 (8)

According to the analysis in [56], the equilibrium points in
systems Eqs 6, 7 are locally asymptotically stable. If a system has
more memory, the system is usually more stable than those
systems with less memory [57]. It can be seen from inequality
(Eq. 8) that due to the large memory of fractional-order
differential equation systems, they are more stable than integer
order equation systems. Through analysis, we conclude that the
unstable regions are shown in Figure 1. It can be seen from the
figure that except for the unstable regions, other regions are stable
regions.

απ/2When the values of αi < 1 (i = 1, 2, 3) change, system Eqs
6, 7 do not always remain chaotic. According to inequality (Eq.
8), if the system (Eq. 6) wants to maintain a chaotic state, in the
unstable regions, at each non original equilibrium point of the
system (Eq. 6), the Jacobian matrix must have two conjugate
eigenvalues [58]. According to this description, we have

αi > 2
π arctan(1.93530.2577) ≈ 0.916, for i = 1, 2, 3. Moreover, their

corresponding eigenvectors are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η1 � ⎛⎜⎝−0.4725
0.1737
0.7149

⎞⎟⎠ ± j⎛⎜⎝ 0.4050
0.2673
0

⎞⎟⎠
μ1 � ⎛⎜⎝−0.8381

0.2384
−0.4907

⎞⎟⎠ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η2 � ⎛⎜⎝ 0.4725
−0.1737
0.7149

⎞⎟⎠ ± j⎛⎜⎝−0.4050
−0.2673
0

⎞⎟⎠
μ2 � ⎛⎜⎝−0.8381

0.2384
0.4907

⎞⎟⎠

Through analysis and calculation, one-dimensional stable
eigenline ES(O1) and two-dimensional unstable eigenplane
EU(O1) of system (Eq. 6) at O1 can be obtained:

⎧⎪⎨⎪⎩
ES(O1): x

l1
� y

m1
� z

n1

EU(O1): A1x + B1y + C1z � 0

(9)

Here l1 � −0.8381, m1 � 0.2384, n1 � −0.4907, A1 � −0.1911,
B1 � 0.2895, C1 � −0.1966. Similarly, one-dimensional stable
eigenline ES(O2) and two-dimensional unstable eigenplane
EU(O2) of system (Eq. 7) at O2 can be obtained:

⎧⎪⎨⎪⎩
ES(O2): x

l2
� y

m2
� z

n2

EU(O2): A2x + B2y + C2z � 0

(10)

Here l2 � −0.8381,m2 � 0.2384, n2 � 0.4907,
A2 � 0.1911, B2 � −0.2895, C2 � −0.1966. Clearly, the stable
manifolds ES(O1) and ES(O2) are symmetric to a certain
extent, respectively, as are unstable manifolds EU(O1) and
EU(O2). Based on this symmetry, we can construct a
heteroclinic loop, and heteroclinic chaos can be generated
from fractional-order multi piecewise Rucklidge system, just

FIGURE 1 | Stability region of fractional-order linear system when
fractional-order is equal to απ/2.
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as heteroclinic chaos can be generated from integer multi
piecewise linear system [53].

4 DESIGN OF TWO-WING AND
MULTI-WING CHAOTIC ATTRACTORS

In this section, we construct heteroclinic loops, and then use
the switching control method to design two-wing and multi-
wing chaotic attractors in the two basic fractional-order linear
systems introduced earlier. Based on the fundamental
fractional linear systems Eqs 6, 7, extend the heteroclinic
Shil’nikov theorem [47], we can design a switch controller
and then connect the heteroclinic track of systems Eqs 6, 7 to
make the track form a heteroclinic loop. Set the switching
controller to w � F(x, y, z) and the switching plane to

S � {(x, y, z)|y � 0}. From systems Eqs 6, 7, the following
switching systems can be constructed:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝Dα1
t x(t)

Dα2
t y(t)

Dα3
t z(t)

⎞⎟⎠ � ⎛⎜⎜⎝−2 0 − 
6.7

√
1 0 0
0 2


6.7

√ −1
⎞⎟⎟⎠⎛⎜⎝⎛⎜⎝ x

y
z

⎞⎟⎠ − w⎞⎟⎠ � J1(X − w)V ∈ V1 � {(x, y, z)∣∣∣∣y> 0}
⎛⎜⎝Dα1

t x(t)
Dα2

t y(t)
Dα3

t z(t)
⎞⎟⎠ � ⎛⎜⎜⎝−2 0


6.7

√
1 0 0
0 −2 

6.7
√ −1

⎞⎟⎟⎠⎛⎜⎝⎛⎜⎝ x
y
z

⎞⎟⎠ − w⎞⎟⎠ � J2(X − w)V ∈ V2 � {(x, y, z)∣∣∣∣y> 0}
(11)

It should be noted here that according to Ref. [54], the
existence condition of heteroclinic loop in system (Eq. 11) can
determine the detailed mathematical expression of switching
controller
w � F(x, y, z) � [f1(x, y, z), f2(x, y, z), f3(x, y, z)]T. It is
obvious that the equilibrium points P2(x2, y2, z2) ∈ V2 and
P1(x1, y1, z1) ∈ V1 of system Eq. 11 are located on either
side of the switching plane S � {(x, y, z)|y � 0}.

FIGURE 2 | Double-wing buttery chaotic attractor of system (Eq. 12) When αi � 0.92.

FIGURE 3 | 12-wing chaotic attractor of system (Eq. 13) when αi � 0.92.
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Here, ES(P1) and ES(P2) are the eigenlines systems Eqs 6, 7 at
P1 and P2, EU(P1) and EU(P2) are the eigenplanes of systems Eqs
6, 7 at P1 and P2, respectively. Let:

Q1 � ES(P1) ∩ S � (x1 − l1
m1

y1, 0, z1 − n1
m1

y1),
Q2 � ES(P2) ∩ S � (x2 − l2

m2
y2, 0, z2 − n2

m2
y2),

L1 � EU(P1) ∩ S � A1(x − x1) + B1(0 − y1) + C1(z − z1) � 0,

L2 � EU(P2) ∩ S � A2(x − x2) + B2(0 − y2) + C2(z − z2) � 0.

If Q1 is at L2, there is heteroclinic orbital H1 �
EU(P2) ∪ Q1 ∪ ES(P1) between P2 and P1. Similarly, if Q2 is at
L1, there is heteroclinic orbital H2 � EU(P1) ∪ Q2 ∪ ES(P2)
between P1 and P2. Thus, if Q1 is located at L2, Q2 is located at
L1, then a heterotopic loop is formed by two heteroclinic orbitalsH1

and H2, which join P1 and P2 together. According to heteroclinic
Shil’nikov theory [47], if this situation exists, the system (6) has
chaotic state in the sense of Smale’s horseshoe.

From the transformation (x, y, z)→(−x,−y, z), it can be seen that
there is invariance of the system, so the switching plane S �
{(x,y, z)|y � 0} satisfying P1(x1, y1, z1) ∈ V1 and P2(x2, y2,
z2) ∈ V2 with x1 � −x2 � x0, y1 � −y2 � y0 > 0, and z1 � z2 �
z0 can be selected. Thus, one can deduce the necessary conditions of
Q1 ∈ L2 and Q2 ∈ L1 as follows: x0 � A1l2−B1m2+C1n2

2A1m2
y0 �

A2l1−B2m1+C2n1
2A2m1

y0.
Which indicates thaty0 depending onx0, and z0 can be any values.

In this case, let y0 � y1 � −y2 � 1 and z1 � z2 � z0 � 0, then one
gets x0 � x1 � −x2 � 0.0585, P1(x1, y1, z1) � P1(0.0585, 1, 0), and
P2(x2, y2, z2) � P2(−0.0585, −1, 0). Thus, the switching controller is
F(x,y, z) � (x0s(y), y0s(y), z0s(z))T with x0 � 0.0585, y0 � 1,
and z0 � 0, where s(y) (or s(z))is the saturated function, is
described by: s(y) � 1

2α (|y + α|− |y − α|).Where α decides the
slope of the saturated function, here we set α � 0.01.

According to the above theoretical analysis, switch controller
s0 � s(y), w0 � F(x, y, z) � (x0s(y), y0s(y), z0s(z))T can be
designed, where x0 � 0.0585, y0 � 1, and z0 � 0. From system
(Eq. 11), one gets

⎛⎜⎝Dα1
t x(t)

Dα2
t y(t)

Dα3
t z(t)

⎞⎟⎠ � ⎛⎜⎜⎝−2 0 −s(y) 
6.7

√
1 0 0
0 s(y)2 

6.7
√ −1

⎞⎟⎟⎠⎛⎜⎝⎛⎜⎝ x
y
z

⎞⎟⎠

− F(x, y, z)⎞⎟⎠
(12)

The simulation of various fractional-order double-wing
buttery chaotic attractor can be obtained when αi > 0.916, as
shown in Figure 2 when αi � 0.92.

FIGURE 5 | 6 × 4-wing chaotic attractor of system (Eq. 13) When αi � 0.93

FIGURE 4 | 2 × 2-wing chaotic attractor of system (Eq. 13)
when αi � 0.94
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αi � 0.92In the same way, we can design the following systems
according to systems (Eqs 6, 11):

⎛⎜⎝Dα1
t x(t)

Dα2
t y(t)

Dα3
t z(t)

⎞⎟⎠ � ⎛⎜⎜⎝−2 0 −T 
6.7

√
1 0 0
0 2T


6.7

√ −1
⎞⎟⎟⎠⎛⎜⎝⎛⎜⎝ x

y
z

⎞⎟⎠

− F(x, y, z)⎞⎟⎠ (13)

where F(x, y, z) is the equilibrium switching controller, and T �
T(x,y, z) is the parameter switching controller. F(x, y, z) and T(x, y,
z) are the sequence of saturation functions here, as shown below:

T(x, y, z) � s(y) + ∑M
m�1

(−1)m[s(y + 2my0) + s(y − 2my0)]
(14)

F(x, y, z) � ⎛⎜⎜⎝f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

⎞⎟⎟⎠

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0s(y) + ∑M
m�1

x0[s(y + 2my0) + s(y − 2my0)]
y0s(y) + ∑M

m�1
y0[s(y + 2my0) + s(y − 2my0)]

z0s(y) +∑N
n�1

z0[s(z + 2mz0) + s(z − 2mz0)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

where s(y + 2my0) � 1
2α (|y + 2my0 + α| − |y + 2my0 − α|).

The prediction correction algorithm is used to solve the fractional-
order differential system (Eq. 13), and the simulation results of the
fractional-order 12-wing buttery chaotic attractor are obtained when
αi > 0.916, x0 � 0.0585, y0 � 1, z0 � 0 N � 0 and M � 5, the
multi-wing attractors are shown in Figure 3 when αi � 0.92.

A grid multi-wing buttery chaotic attractor with a grid of 2 × 2
is obtained when x0 � 0.0585, y0 � 1, z0 � 1, M � 0, N � 0 and
αi � 0.94, as shown in Figure 4.

αi � 0.94A grid multi-wing buttery chaotic attractor with a
grid of 6 × 4 is obtained when x0 � 0.0585, y0 � 1, z0 � 1.125,
M � 2, N � 1 and αi � 0.93, as shown in Figure 5.

αi � 0.93Keeping other parameters unchanged, change the
order to αi � 0.95. The simulation results are shown in
Figure 6, it can be seen that the system (Eq. 13) can also
generate grid 6 × 4-wing chaotic attractors.

From the above simulation results, it can be seen that if the
appropriate parameters are set, when αi > 0.916, the system
can generate multi-wing and grid multi-wing chaotic
attractors.

5 CONCLUSION

In this paper, based on fractional-order linear differential
system, a novel grid multi-wing chaotic attractor is
proposed by switching saturation function control and
constructing heteroclinic loops. Firstly, the two symmetric
equilibrium points of the fractional Rucklidge system are
linearized to obtain two basic fractional-order linear systems.
Then all the equilibrium points of the two basic fractional-order
linear systems are connected by a saturation function switching
control and a heteroclinic loop. Finally, the effectiveness of the
proposed design method is verified by numerical simulation. Since
the proposed fractional-order chaotic system can generate multi-
wing chaotic attractors with complex dynamic characteristics,
however, it does not contain product terms and is easy to
implement in circuits, so the chaotic system proposed in this
paper has abundant potential engineering applications. In the
future, we will further design the circuit realization of the
fractional-order multi-wing chaotic system.
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