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Using the power flow equation (PFE), this article investigates mode coupling in step-index
(SI) multimode (MM) polymer optical fiber (POF). This equation’s coupling coefficient was
initially fine-tuned so that it could appropriately reconstruct previously recorded far-field
(FF) power distributions. The equilibrium mode distribution (EMD) and steady-state
distribution (SSD) in the SI MM POF were found to be obtained at lengths Lc = 15m
and zs = 41m, respectively. These lengths are substantially shorter than their glass optical
fiber counterparts. Such characterization of the investigated POF can be used in its
employment as a part of the communication or sensory system. Namely, the POF’s
bandwidth is inverse linear function of fiber length (z−1) below the coupling length Lc.
However, it has a z−1/2 dependence beyond this equilibrium length. Thus, the shorter the
coupling length Lc, the sooner transition to the regime of slower bandwidth decrease
occurs. It is also important to be able to determine amodal distribution at a certain length of
the POF employed as a part of optical fiber sensory system.
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INTRODUCTION

Silica optical fiber has a lot of advantages such as a low loss, lightweight, and high bandwidth [1–4].
Although silica optical fiber has a lot of advantages, is not appropriate for short-distance applications
such as automotive [5], local area networks [6], and visible light communication (VLC) applications
[7]. On the other hand, POFs are made of poly (methylmethacrylate) (PMMA) [8, 9], polycarbonate
(PC) [10, 11], ZEONEX ® [12, 13], TOPAS ® [14, 15], poly dimethyl siloxane (PDMS) [16, 17] or
hydrogel [18, 19].

Apart from optical fiber material, optical fibers usually have step-index or graded-index refractive
index distribution, and can operate in a single-mode or multimode regime. There are several typical
commercial POFs, such as Mitsubishi Rayon’s Eska Extra EH 4001 SI MM POF [20] and CYTOP®
graded index (GI) POF [21], both of them could transmit a large number of modes, and have been
used for short-range communications and sensing area in fiber optic sensory systems [22].
Additionally, micro-structured polymer optical fiber which was first produced by Argyros’
group, is one very specific type of POF [23]. However, due to the transmission loss and but-
coupling with commercial silica optical fiber, only one Start-up Company supplied the commercial
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product [24]. PMMA SI MM POF is still the most common one
with lots of commercial products on the market.

Mode coupling has a significant impact on the transmission
performance of PMMA SI MM POF. The transfer of power
between nearby modes is represented by such coupling. It causes
the launched light’s angular power distribution to be disrupted [25,
26]. It is caused by the optical fiber’s intrinsic perturbation effects (for
example, variations of the refractive index distribution and
microscopic bends). The angular power distribution is predicted
to be influenced by the launch conditions and mode coupling
characteristics. Thus, a Gaussian beam launched at an angle θ0 in
respect to the optical fiber axis, at the output end of a short piece of
optical fiber, is seen as a sharp ring pattern (the ring diameter depends
on θ0). Mode coupling, on the other hand, causes such a ring pattern
to be distorted in longer fibers and finally transformed into disk. The
coupling length Lcmarks the fiber length at which the ring pattern of
the highest order guiding mode evolved into disk, indicating that an
EMD is established. Coupling can fully complete at optical fiber
length zs (zs > Lc), which is referred to as an SSD.

The light transmission performance of PMMA SI MM POF
is investigated in this work. The modal power diffusion model
is used to obtain the coupling coefficient D. In this way, we
computed the Lc required to accomplish the EMD and the
length zs to achieve the SSD. By such a characterization of
mode coupling process in an optical fiber one can predict at
which length z = Lc one can expect that bandwidth decrease
with length would start to decelerate, as explained in more
details in Results and Discussion. It is also important to know
the state of mode coupling in an optical fiber employed as a

part of optical fiber sensory system, especially in terms of the
modal distribution at certain fiber length.

POWER FLOW EQUATION

The Gloge’s PFE has the following form [27]:

zP(θ, z)
zz

� − α(θ)P(θ, z) + D

θ

z

zθ
(θ zP(θ, z)

zθ
) (1)

where P(θ, z) is the angular power distribution, θ is the angle of
propagation, z is the distance of the propagation, D is the
coupling coefficient (assumed constant [27, 28]) and α(θ) is
the modal attenuation. Eq. 1 can be reduced to [29]:
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Steady-state solution of Eq. 2 is given as [28]:

P(θ, z) � J0(2.405 θ

θc
) exp(−γ0z) (3)

where J0 is the Bessel function of the first and zero-order, γ0 [m
−1]

= 2.4052D/θc2 is the attenuation coefficient. In this work, solved
Eq. 2 using the explicit finite difference method [29].

In our earlier published work, we proposed a method which
enables that the coupling coefficient D can be obtained from just
two output angular power distributions P(θ, z) in the case of
centrally launched beam [30]. As an alternative, in this work
we propose a method for calculating the coupling coefficient D
on the basis of the measured FFPs p(x, z), illustrated in Figure 1.

RESULTS AND DISCUSSION

We used the PFE (2) to calculate the lengths Lc and zs for the POF
that Ribeiro et al. [31] studied experimentally. This POF
(Mitsubishi Rayon’s Eska Extra EH 4001) had NA = 0.47, the
inner critical angle θc = 18o (θc = 27.4o measured in air), core

FIGURE 1 | Schematics of measuring FF power distributions.

FIGURE 2 | The measured FF pattern from (A) ~1 m and (B) ~19 m PMMA SI MM POF lengths. The light was launched at θ0 = 0o [31].
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refractive index ncore = 1.4897, numerical aperture NA = 0.46 and
fiber diameter d = 1 mm. Ribeiro et al. focused a He-Ne laser
beam at 633 nm onto the input end of the fiber in their
experiment (Figure 1). They used a CCD to detect the FF
patterns of the fiber output.

The coupling coefficient D is obtained by its fine-tuning in
the PFE, thus recreating the Ribeiro et al.’s measured FF
patterns in this fiber for lengths of z = 1 m and z = 19 m
(Figure 2). This necessitated numerically calculating the PFE
for various values of D. The value of D = 9.2 × 10−4 rad2/m
enabled the best fit between the calculated and measured
output power distributions.

A Gaussian launch beam with (FWHM)z=0 = 7o is used in the
computations. Figure 3 shows the output power distribution for a z=
1 and 19m length POF with an input angle of θ0 = 0o obtained as
numerical solution of Eq. 2. The distributions P (x, z = 1 and 19m,
L = 110mm) are generated from the distributions P (θ, z = 1 and
19m, L = 110mm), where x = L·tgθ and L is the receiving distance.

In Figure 4, our numerical results for the normalized output
angular power distribution for input angles θ0 = 0, 5, 10, and 15o

are shown. At short fiber lengths, a significant mode coupling is
observed for low order modes, as can be seen in Figure 4A. The
EMD is achieved at length z = Lc = 15 m (Figure 4C), while the
SSD is established at zs = 41 m in Figure 4D.

FIGURE 3 |Normalized output power distributionP (x, z = 1 and 19 m, L = 110 mm) at the end of (A) 1 m and (B) 19 m long PMMASI MMPOF, obtained by solving
the PFE for Gaussian launch distribution with input angle θ0 = 0°, obtained from the P (x, z = 1 and 19 m, L = 110 mm), for x = L·tgθ, where L is the receiving distance.

FIGURE 4 | The normalized angular power distribution at the end of PMMA SI MM POF, obtained by solving the PFE for four Gaussian launch distributions with
input angles θ0 = 0o (—), θ0 = 5o (− −), θ0 = 10o (•••) and θ0 = 15o (−•−), with (FWHM)z=0 = 7o (g represent the analytical SSD).
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The coupling coefficient D for the PMMA SI MM POF
evaluated in this work is similar to those which we obtained
for other investigated POFs (~10−4 rad2/m), so the characteristic
lengths for coupling, Lc and zs, are similar (Lc is between
≃15–35 m and zs is between ≃40 and 100 m [25, 29, 30]). We
have previously reported that glass optical fibers show the weakest
strength of mode coupling (D ~ 10−7 to 10−6 rad2/m), so their SSD
lengths zs are between ≃ 1–10 km [32].

It is worth noting that the length dependence of the bandwidth
of POF is determined bymode coupling behavior. The bandwidth
is inverse linear function of fiber length (z−1) below the coupling
length Lc. However, it has a z−1/2 dependence beyond this
equilibrium length. Thus, the shorter the coupling length Lc,
the sooner transition to the regime of slower bandwidth decrease
occurs [26]. It is obvious that mode coupling has a beneficial
influence on bandwidth. Therefore, it is of great interest to
characterize mode coupling in an optical fiber in order to
predict its transmission characteristics, especially to determine
at which coupling length Lc one can expect that bandwidth would
start to improve. It is also important to know the state of mode
coupling in an optical fiber employed as a part of optical fiber
sensory system, especially in terms of the modal distribution at
certain fiber length.

CONCLUSION

We investigate a mode coupling along a PMMA SI MM POF
previously investigated experimentally by Ribeiro et al. [31]. To
appropriately recreate the measured FF patterns reported before,
the coupling coefficient D in the PFE is tweaked. As a result, the
lengths Lc and zs that characterize the coupling process are
obtained. Such characterization of the investigated PMMA SI
MM POF can be used in its employment as a part of
communication or sensory system. In practice, by
characterization of mode coupling in an optical fiber one can
predict its transmission characteristics, especially to determine
length-dependent bandwidth behavior. Since POF’s bandwidth is
inverse linear function of fiber length (z−1) below the coupling

length Lc, while it has a z
−1/2 dependence beyond this equilibrium

length, it is obvious that the shorter the coupling length Lc leads to
the sooner transition to the regime of slower bandwidth decrease.
It is also important to be able to determine a modal distribution at
a certain length of the fiber employed as a part of optical fiber
sensory system.
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