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Food security is a critical issue closely linked to human being. With the

increasing demand for food, international trade has become the main

access to supplementing domestic food shortages, which not only alleviates

local food shocks, but also exposes economies to global food crises. In this

paper, we construct four temporal international crop trade networks (iCTNs)

based on trade values of maize, rice, soybean and wheat, and describe the

structural evolution of different iCTNs from 1993 to 2018. We find that the size

of all the four iCTNs expanded from 1993 to 2018 with more participants and

larger trade values. Our results show that the iCTNs not only become tighter

according to the increasing in network density and clustering coefficient, but

also get more similar. We also find that the iCTNs are not always disassortative,

unlike theworld cereal trade networks and other international commodity trade

networks. The degree assortative coefficients depend on degree directions and

crop types. The analysis about assortativity also indicates that economies with

high out-degree tend to connect with economies with low in-degree and low

out-degree. Additionally, we compare the structure of the four iCTNs to

enhance our understanding of the international food trade system. Although

the overall evolutionary patterns of different iCTNs are similar, some crops

exhibit idiosyncratic trade patterns. It highlights the need to consider different

crop networks’ idiosyncratic features while making food policies. Our findings

about the dynamics of the iCTNs play an important role in understanding

vulnerabilities in the global food system.
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1 Introduction

Food security is a mainstay in national security and has

become one of the global hot spots [1]. Due to the impact of the

COVID-19 pandemic, the number of global hungry people

continued to rise in 2020, from 2.05 billion to 2.37 billion,

and about 30 million in 2030 more than if the pandemic had

not happened1. Food supplies face unknown potential risks, with

factors such as global pandemics, climate extremes, conflicts and

so on. Globalization confers pros and cons with regard to food

security [2], providing access to international food trade [3]. On

the one hand, international trade meets food demand of some

economies with food shortages by supplying food produced

elsewhere beyond self-consumption and strategic reserves [4].

On the other hand, trade might multiply disruption to food

supply chains [5] and exacerbate economies’ vulnerability to

sudden shock in global food system [6]. Therefore, international

food trade has a crucial impact on food security [7, 8].

Before evaluating underlying benefits and risks for food

security, it is necessary to explore characteristics of

international food trade. Recently, complex networks have

become an important method to study trade relationships

existing between pairs of economies in the world [9].

Therefore, many studies have contributed insights into the

structure and dynamics of the global food trade system based

on network science [10–12]. Some literature focused on one

major crop feeding a large number of population, such as maize

[13] and wheat [14]. These studies described the trade patterns of

international crop trade system [13], and explored the factors

that impact the food supply [15]. Investigating the international

virtual water network (iVWN) is another common approach to

understand global food security [16]. By quantifying water

embodied in several food commodities, researchers link the

properties of the iVTW to the resilience of the global food

system to shocks [17, 18]. However, there are many different

definition of resilience [4, 19], or indicators measuring network

vulnerability [15, 20].

The topological properties of the international food trade

networks (iFTNs) are closely related to the assessment of global

food security and should be investigated carefully. Previous

literature has focused on the complexity of iFTNs [11] and

studied the impact of shocks to the iFTN [21, 22]. However,

the microstructure of the iFTN is worth discussing and studying

[23]. The evolution of the international food trade system and

comparison of trade patterns between different crops still remain

a spectrum of investigation. Here, we consider four dietary

staples (maize, rice, soybean and wheat), which make up more

than 75% of the calories consumed by populations and animals

[2, 11]. We construct four international crop trade networks

(iCTNs) and quantify the evolution of these iCTNs from 1993 to

2018. Although our work does not specifically evaluate shocks or

food security, the dynamics of four different iCTNs provide basic

understanding of the global food trade system. The evolution of

network features shows the change of iCTNs and the necessity of

new methods measuring food security.

In this paper, we attempt to explore and compare the main

stylized characteristics pertaining to crop trade relationships and

their evolution over time. We focus on structural characteristics

such as node degrees, node strengths, link weights, density, the

clustering coefficient, reciprocity and assortativity. Our study

answers two questions: 1) How has the structure of iCTNs

changed over time? 2) What are the differences in trade

patterns between different crops? The remainder of this paper

is organized as follows. Section 2 describes the data sets used in

our work and the construction of the iCTNs. Section 3 presents

the empirical results about the dynamics of the four iCTNs. We

summarize our results in Section 4.

2 Data and method

2.1 Data description

We obtained the FAOSTAT data sets on international trade

flows from the Food and Agriculture Organization (FAO, http://

www.fao.org), which contain the annual bilateral export-import

data during the period 1993–2018. The Soviet Union collapsed in

1991 and the world pattern changed dramatically, and

Yugoslavia and Czechoslovakia also disintegrated one after

another in 1992. Therefore, our data began in 1992 [17].

Since the data sets contain some inconsistencies between the

declaration of importers and exporters, we first complied the

crop trade matrix by using the import data, and then used the

export data to fill data gaps. We got four crop trade matrices

Wcrop(t), and denoted them with superscripts crop ∈ {M, R, S, W}

for maize, rice, soybean and wheat. The number of economies

changes as the evolution of political boundaries over time.

However, this fact does not affect our analysis of iCTNs [24].

We excluded economies from the annual network analysis when

their aggregated values of any kind of crop trade was zero. The

final data sets for the network analysis covered 246 economies

over the period from 1993 to 2018.

2.2 Network construction

We constructed the temporal iCTNs with respect to different

crops. The annual iCTN in each year is a multi-layer network,

where the nodes represent economies connected by multiple

directed links (or links). The link weight wcrop
ij (t) for a crop is the

exports from the economy i to the economy j in a network

Gcrop(t) � (Vcrop(t),Wcrop(t)), where Vcrop(t) is the set of
1 The State of Food Security and Nutrition in the World (2020), available

at https://www.fao.org.
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nodes (that is, the set of economies involved in the trade of crop

in year t). The total networks over 26 years include

246 economies. Not all economies engaged in crops trade in

each year, so usually Ncrop
V (t)< 246. We obtained 26 × 4 yearly

international crop trade networks and explored the evolution of

structural properties for each iCTN in this work.

Figure 1 shows the four iCTNs in 1993 and 2018. For each

economy (node), the symbol size represents its total export value.

The thickness of a link represents the trade flow between two

economies. It is evident that compared with the iCTNs of 1993,

there were more links in the iCTNs of 2018, which indicates that

new trade relationships were formed. The nodes became larger

and the links became broader, corresponding to larger trade

volumes. We note that economies in Asia and Europe are major

exporters, especially for maize and wheat. What’s more, the

United States and Germany are the most important crop

exporters that had very large export values in 2018.

3 Empirical results

3.1 Summary statistics

For each year, we computed network statistics and

described the evolution of the four iCTNs. For simplicity,

we omitted the superscript crop in the following description.

The number of nodes NV measures how many economies

engaged in trade, and the number of links NE measures the

trade relationships between economies, where E � {eij} is the
set of links eij. Figure 2 illustrates the size evolution of the four

iCTNs from 1993–2018.

The number NV of nodes involved in Figure 2A is the

number of nodes, where V is the set of nodes. Compared with

the iCTNs in 1993, the number of nodes of the maize and

soybean networks increased markedly. It is consistent with

previous literature [21]. However, the number of nodes of the

rice and wheat networks kept stable with some slight

fluctuations. Figure 2B shows the evolution of the number

of linksNE , which show excellent linear growth with respect to

time t:

Ncrop
E � acrop + bcropt, (1)

A linear regression gives that bM = 50.09 for maize, bR = 65.85

for rice, bS = 27.90 for soybean, and bW = 34.64 for wheat. This

highlights the fact that the number of links approximately

increased linearly year by year. In general, the size of four

iCTNs has expanded from 1993 to 2018. The network of rice

had the largest size, indicating that more rice trade relations have

been established between economies. Similarly, for soybean

trade, less trade links have been established between

FIGURE 1
Four international crop trade networks (iCTNs) in 1993 (A–D) and 2018 (E–H). The columns from left to right respectively describe maize, rice,
soybean and wheat. For each chordal graph, nodes stand for economies participating in crop trade. The color of nodes is corresponding to different
region. The nodes in blue stand for economies in Africa region; the nodes in green stand for economies in America region; the nodes in purple stand
for economies in Asia region; the nodes in red stand for economies in Europe region and the nodes in brown stand for economies in Pacific
region. Outgoing links from an economy are shown with the same color as the origin region.
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economies. The increase in trade and network complexity differ

for different iCTNs.

Figures 2C,D show the numbers of exporting and importing

economies (NVexp and NV imp) of the four iCTNs from 1993 to

2018. Compared with NV in Figure 2A, we recognize that:

NVexp <NVimp <NV <NVexp +NVimp. (2)

There are much more importing economies than exporting

economies, and many economies both export and import the

same crops, which is also observed for the international pesticide

trade networks [25].

Link weight presents the trade value between two economies.

We calculated the sum of link weights to show the total trade

value of a given crop. Figure 2E describes the evolution of the

international trade values W(t) of the four crops from 1993 to

2018. We find that the trade values of the four crops have an

overall increasing trend, but decreased locally. Remarkably,W(t)

increased sharply in 2007/2008 due to the 2008 food crisis, which

results in a significant rise in food prices and food insecurity [26].

Contributing factors are various, and macro-level underlying

causes include higher oil prices, which affect the costs for food

production and processing. Indeed, the oil market crashed in the

middle of 2008 [27], followed by the prices of agricultural goods.

In particular, a general rise in agricultural prices could create a

global food price bubble [28]. Agricultural commodities

exhibited unexpected price spikes again in 2011, prompting

an increase in crop trade values [29]. Hence, we observe that

W(t) experienced amarked increase in 2011. In addition, rice had

the lowest trade values in each year, and W(t) of soybean

overtook wheat to the highest in 2009.

3.2 Degree and strength

The node degrees show how many trade partners each

economy has. In a directed network, we consider both in-

degree and out-degree of a node to measure import and

export respectively. The in-degree of node is defined as follows

kini � ∑
j∈V− i{ }

IE eji( ) � ∑NV

j�1
IE eji( ), (3)

where IE(eji) is the indicator function:

IE eji( ) � 1, if eji ∈ E
0, if eji ∉ E{ (4)

The out-degree of node is defined as follows

kouti � ∑
j∈V− i{ }

IE eij( ) � ∑NV

j�1
IE eij( ). (5)

Since the networks are weighted, we quantity node strengths,

including in-strength sini and out-strength souti , which are defined

as follows

FIGURE 2
Evolution of the summary statistics of the four iCTNs from 1993 to 2018. (A) Number of nodes NV . (B) Number of links NE . (C) Number of
exporting economies NVexp . (D) Number of importing economies NV imp . (E) Total link weight W in units of US dollars. Curves with different colored
markers correspond to different crops.
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sini � ∑
j∈V− i{ }

wji � ∑NV

j�1
wji, (6)

souti � ∑
j∈V− i{ }

wij � ∑NV

i�1
wij, (7)

where wjj = 0 by definition.

The degrees and the strengths measure the importance of a

node, and we used the average degrees and the average strengths

to evaluate the overall structure of the networks. It is easy to get

that the average in-degree of nodes 〈kin〉V is equal to the average

out-degree of nodes 〈kout〉V [25]. The average in-strength 〈sin〉V
and the average out-strength 〈sout〉V respectively measure the

average values of imports and exports, which are also equal to

each other.

Figures 3A,B show the yearly evolution of the average in-

degree and in-strength from 1993 to 2018. The average node in-

degree represents the average number of exporting partners

owned to an economy [30], which is equal to the average

node our-degree [25]. Figure 3A shows that the evolution of

the average in-degree has an excellent linear growth with respect

to time t:

kin, cropV � acrop + bcropt. (8)

Simple linear regressions give that bM = 0.24 for maize,

bR = 0.32 for rice, bS = 0.11 for soybean, and bW = 0.19 for

wheat. For all the iCTNs, the average in-degree increases with

time, which indicates increasing active trade relationships

among economies. The increasing trend of kinV is a result of

the growth rate of NE being greater than that of NV . We

plotted the distributions of the in- and out-degree of the

iCTNs in 1993 and 2018 to describe the explicit change.

Since the results are similar in different iCTNs, here we

only show the global maps of the international maize trade

network. As shown in Figures 3C,D,G,H, both for in-degree

and out-degree, the color of maps in 2018 was deeper than that

in 1993, indicating an increase in the number of crop trade

connections. However, kinV decreased markedly in 2018. It may

be due to the fact that the growth of networks is not caused by

FIGURE 3
Yearly evolution of the degrees and the strengths of the four iCTNs from 1993 to 2018. The graphs in the first row (A–B) respectively show the
evolution of the average in-degree and the average in-strength from 1993 to 2018. Curves in different colors correspond to different crops. The rows
from middle to bottom show the distributions of the degrees and the strengths of the international maize trade network in 1993 and in 2018. The
middle row shows the global map in 1993: (C) The distribution of the in-degree; (D) the distribution of the out-degree; (E) the distribution of the
in-strength; (F) the distribution of the out-strength. The bottom row shows the global map in 2018: (G) The distribution of the in-degree; (H) the
distribution of the out-degree; (I) the distribution of the in-strength; (J) the distribution of the out-strength.
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simply adding new links to existing nodes which would

disappear while new nodes are created [31].

As shown in Figure 3B, similar to the dynamics of link

weights, the average in-strength increased across the sample and

showed a potential upward trend. Before 2007, sinV kept a slight

increase for each crop and occurred small fluctuations in some

years. The average in-strength showed significant fluctuations in

1996–1997 and 2004–2005. The main factor that caused the

average trade values to change dramatically is the food price.

Prices for most crops started to climb slowly in 1990 and peaked

in 1996 (maize, rice and wheat) and 1997 (soybean) before

declining sharply. But financial crisis of 1997–99 quickly

ended the crop price surge [32]. In 2004, due to bad harvests

and high oil prices, the food prices increased, which caused an

increase in global food trade values. The food prices slowed down

as the global commodity prices were under control in 2005. The

“world food crisis” of 2007–2008 inflated food prices

significantly. This crisis originated from the long-term cycle of

fossil-fuel dependence on industrial capitalism, coupled with the

inflationary effect of current biofuel offset and financial

speculation [33]. Under the influence of the food price crisis

[34], the average trade values showed a significant upward trend

from 2007 to 2008. After 2008, sinV reverted to increase with

fluctuations. Overall, both for in-strength and out-strength, the

color of maps in 2018 was deeper than that in 1993 as shown in

Figures 3E,F,I,J, suggesting an increase in crop trade volumes.

3.3 Competitiveness

The density of a directed network refers to the ratio of the

number of links that actually exist in the network to the number

of all possible links:

ρ � NE
NV NV − 1( ), (9)

To capture the potential relations between an economy’s

trading partners, we used the clustering coefficient tomeasure the

connectivity of the economy’s trading partners [35]. For a

weighted network, the clustering coefficient of a node i is the

ratio of all directed triangles to all possible triangles [36],

ci � 2Ti

ki ki − 1( ) − 2kRi
, (10)

where Ti is the number of directed triangles containing node i, ki
is the total degree of node i, and

kRi � Y j : eij ∈ E & eji ∈ E{ }( ) � ∑
j≠i

wijwji( )0, for wijwji ≠ 0

(11)
is the reciprocal degree of node i. We use the average clustering

coefficient to measure the overall concentration of the network:

〈c〉V � 1
NV

∑NV

i�1
ci. (12)

Figure 4 illustrates the density and average clustering

coefficient of the four crop trade networks, introduced to

describe the competitiveness of the entire network. The value

of density represents the tightness of a network [37]. In a dense

network, the number of connections approaches to the

maximum number of potential ties. According to Figure 4A,

the density of each crop network was small. Over the last

26 years, the density rose with some fluctuations, and it

indicates that the global food trade is becoming more and

more frequent and close. The increasing densities of the

iCTNs are consistent with some other international trade

networks [38], but are much smaller [25, 39] than the total

world trade networks. The density curves for rice, maize and

wheat showed a linear upward trend, where the density of the rice

network had the largest slope of increase and has become the

largest since 1998. Although the number of links for the rice trade

network increased significantly, its density did not change

dramatically after 2012. From 2009 to 2012, the network

density of the soybean trade network changed slightly without

a dramatic trend, and fluctuated significantly after 2012.

The average clustering coefficient measures the overall

concentration of connections in the network. Figure 4B shows

that the economies were inclined to cluster together in the four

iCTNs. The clustering coefficients have an upward trend,

especially for the rice and soybean trade networks, which is

consistent with conclusions from previous literature [40, 41].

Likewise, the values of clustering coefficients for rice were the

largest after 2001 and displayed relatively least fluctuations, since

the export and import of rice concentrated in some economies

[42]. Compared with the evolution of the network density, a

particularly dense network was inclined to have high clustering

because its modes are more likely to share partners [38].

3.4 Persistence

There are two types of complex networks: multi-layer

networks, in which nodes are connected in different ways;

and temporal networks, in which nodes and links may appear

or disappear and their attributes to the networks might change

over time [43]. Node similarity has been widely studied for

simple networks [44, 45] and multi-layer networks [43, 46].

This paper adopts a simple indicator to measure the similarity

coefficient between two successive networks [25], since the

links in iCTNs might look similar or change significantly.

Considering two successive networks G(t − 1) and G(t), let
E(t−1)∪t � E(t − 1) ∪ E(t) be the union set of directed links and

E(t−1)∩t � E(t − 1) ∩ E(t) be the intersection of directed links.

Based on previous studies [25, 47, 48], we define the temporal

similarity between two successive networks G(t − 1) and G(t)
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FIGURE 4
Yearly evolution of the network density (A) and average clustering coefficient (B) of the four international crop trade networks from 1993 to
2018.

FIGURE 5
Evolution of the temporal similarity coefficient S(t) between two successive networks of the four crops from 1993 to 2018. (A) All links at each
time. (B) Light links with the weights at each time less than the 20% percentile. (C) Medium links with the weights at each time between the 40 and
60% percentiles. (D)Heavy links with the weights at each time greater than the 80% percentile. The temporal similarity increased over timewith slight
fluctuations.
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as the ratio of the number of overlapping directed links in the

two networks over the number of all directed links in the two

networks:

S t( ) � Y E t−1( )∩t( )
YE t−1( )∪t

. (13)

where Y(X) denotes the cardinal number of set X. The value of

the similarity coefficient S(t) ranges between 0 and 1: S(t) = 0

indicates that the two networks are completely different in means

of links, while S(t) = 1 means that the two networks are

completely the same.

The analysis of the node similarity is a significant basis for

understanding the evolution of features of the international crop

trade system. The small value of the similarity coefficient S shows

a high discrepancy in the structure of two successive networks

[25, 49]. From Figure 5A, the temporal similarity increased over

time with slight fluctuations, which indicates that the structure of

successive iCTNs gets more similar. And the rice trade network

had the largest temporal similarity recently. By comparing the

similarity coefficient S(t) of sub-networks containing links with

different values of weight (light links in Figure 5B where the

weights are less than the 20% percentile, medium links in

Figure 5C where the weights are between the 40 and 60%

percentiles, and heavy links in Figure 5D where the weights

are greater than the 80% percentile), it can be found that the S(t)

curves have similar patterns qualitatively and the heavier links

with greater trade flows have more stable.

3.5 Reciprocity

The reciprocity is critical to dynamical processes and

network growth [50]. The reciprocity of a directed network is

defined as the ratio of the number of bilateral links (i.e., links

pointing in both directions) to the total number of links in the

network [51, 52]:

R � Y i, j( ) : eij ∈ E & eji ∈ E{ }( )
Y i, j( ) : eij ∈ E{ }( ) � 1

NE
∑
i∈V

kRi , (14)

where

Y i, j( ) : eij ∈ E & eji ∈ E{ }( ) � ∑
i∈V

kRi (15)

and

Y i, j( ) : eij ∈ E{ }( ) � NE . (16)

Reciprocity R is an indicator of the degree of bilateral trade

relationships between economies in a network and plays an

important role in the transmission mechanism of

international trade information.

Figure 6 shows the evolution of overall reciprocity of the four

iCTNs from 1993 to 2018. The overall reciprocity coefficients

were between 0.1 and 0.4. It is found that the overall reciprocity

was relatively stable with slight fluctuations for maize and

soybean. In terms of wheat and rice, the reciprocity

coefficients were always smaller than those of the maize and

soybean trade networks, but showed an increasing trend.

Especially for rice, the reciprocal coefficient R(t) showed a

nice linear relationship with time t. We note that the

reciprocity coefficients of the iCTNs are much smaller than

those of the international trade networks (larger than 0.5) [39,

51], which contain remarkably more commodities and thus more

reciprocal links.

3.6 Assortativity

Assortativity quantifies the mixing pattern of complex

networks, which measures whether the node is preferentially

connected to a node with a similar scale [53]. In a directed

network, we consider the correlation of four degree directions.

The degree assortative coefficient rin,in(t) between the in-degree

of exporting economies and the in-degree of importing

economies:

rin,in t( ) � 1
NE

∑
eij∈E

kini − 〈kini 〉E( ) kinj − 〈kinj 〉E( )[ ]
σ ini,Eσ

in
j,E

, (17)

where 〈kini 〉E and 〈kinj 〉E are respectively the mean in-degrees of

exporting economies and importing economies, and the variance

of in-degrees of exporting economies is

σ ini,E( )2 � 1
NE

∑
eij∈E

kini − 〈kini 〉E( )2, (18)

FIGURE 6
Evolution of overall reciprocity of the four iCTNs from 1993 to
2018. The overall reciprocity coefficients were between
0.1 and 0.4.
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and the variance (σ inj,E)2 of in-degrees of importing economies is

defined in the same way.

Similarly, the degree assortative coefficient rin,out(t) between

the in-degree of exporting economies and the out-degree of

importing economies is

rin,out t( ) � 1
NE

∑
eij∈E

kini − 〈kini 〉E( ) koutj − 〈koutj 〉E( )[ ]
σ ini,Eσ

out
j,E

, (19)

the degree assortative coefficient rout,in(t) between the out-degree

of exporting economies and the in-degree of importing

economies is

rout,in t( ) � 1
NE

∑
eij∈E

kouti − 〈kouti 〉E( ) kinj − 〈kinj 〉E( )[ ]
σouti,E σ

in
j,E

, (20)

and the degree assortative coefficient rout,out(t) between the out-

degree of exporting economies and the out-degree of importing

economies is

rout,out t( ) � 1
NE

∑
eij∈E

kouti − 〈kouti 〉E( ) koutj − 〈koutj 〉E( )[ ]
σouti,E σ

out
j,E

. (21)

The four degree assortative coefficients of different directions

can be used to describe the relevance of two nodes connected by a

directed link through their in- and out-degrees to accurately

explore the mixing patterns of the international crop trade

networks.

Figure 7 shows the evolution of the degree assortative

coefficients of the four iCTNs from 1993 to 2018. The r

values fluctuated sharply before 2000, followed by relatively

mild fluctuations. Previous research that did not consider the

direction of the degree has shown that world cereal trade

networks [54] or other international trade networks [39, 55]

are disassortative. In this paper we find that the degree assortative

coefficients of different directions for different crop networks

have different assortative patterns. As shown in Figure 7A, the

degree assortative coefficients rin,in(t) ranged from −0.2 to 0.1.

For maize, the coefficients were almost negative before 2006, and

showed an upward trend until 2015. For rice, the coefficients

were always negative. For soybean, the coefficients showed

significant fluctuations before 1994, ranged from 0 to 0.1 with

fluctuations during 1995–2011, and finally dropped to less than

zero. From Figure 7B, the coefficients rin,out(t) for maize, rice and

soybean were almost negative, while the coefficients for wheat

FIGURE 7
Evolution of degree assortative coefficients of the four iCTNs from 1993 to 2018. (A) The degree assortative coefficient rin,in(t) between the in-
degree of exporting economies and the in-degree of importing economies. (B) The degree assortative coefficient rin,out(t) between the in-degree of
exporting economies and the out-degree of importing economies. (C) The degree assortative coefficient rout,in(t) between the out-degree of
exporting economies and the in-degree of importing economies. (D) The degree assortative coefficient rout,out(t) between the out-degree of
exporting economies and the out-degree of importing economies.
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were mainly positive. According to Figures 7C,D, for all the

iCTNs, the degree assortative coefficients rout,in(t) and rout,out(t)

were generally negative. In summary, except that almost all the

assortative coefficients for the international rice trade network

were negative, the iCTNs exhibit complex mixing patterns.

4 Conclusion

Achieving global food security is one of the major

challenges of the coming decades [56], and network

analysis has been a popular approach to understanding the

international food trade system. In this paper, we focused on

four important crops (maize, rice, soybean and wheat), and

provided a time series analysis of the four international crop

trade networks from 1993 to 2018. Rather than investigating

one multiplex trade network via combining several goods, we

analyzed the international trade networks of individual crops

and carried out comparisons. We revealed the evolution of

topological properties, including degrees, strengths, link

weights, density, clustering coefficient, reciprocity, and

assortativity.

We found that the sizes of all the four iCTNs expanded from

1993 to 2018 with more involved international trading

participants and larger trade values. The number of links also

significantly increased, indicating that many new trade

relationships were formed in the global food trade system

over the past decades. The link weights decreased sometimes,

but showed an increasing trend in general for the four crops. As

the networks are directed, we calculated the in-degree, out-

degree, in-strength and out-strength to explicitly understand

the trade flow in the global food system. The average in- and

out-degree increased, representing a larger number of active

trade relationships among economies. The increasing trade

partnerships, network density, clustering coefficients and

similarity coefficients consistently witness the globalization of

the international crop trade.

We found that the density of each crop network was low.

Over the last 26 years, the density rose with local fluctuations.

Our findings are consistent with some other international

trade networks [38], but are much smaller [25, 39] than the

total world trade networks. The clustering coefficients also

showed an upward trend, especially for the rice and soybean

trade networks. The structure of the iCTNs become not only

tighter but also more similar. In addition, the networks with

greater trade flows have more stable relationships. In each

iCTN, the reciprocity coefficients were between 0.1 and 0.4,

and much smaller than those of the international trade

networks. We also obtained some interesting results. For

example, although most iCTNs were disassortatively mixed,

there were iCTNs exhibiting assortative mixing patterns in

certain years, which unveils more complicated mixing

behavior than an overall assortative coefficient for the

world cereal trade networks [54] or other international

trade networks [39, 55].

We compared the structure of four iCTNs to enhance our

understanding of the global food system. Although the overall

evolution of different iCTNs is similar, some crops have

unique trade patterns. For example, the average in-degree

of the international wheat trade network decreased in 2011,

contrary to other crops. It might be affected by the Russian

wheat export ban in 2010–2011, which caused a decrease in

the trade flow [57]. The density of the international rice trade

network has the largest increase and has become the largest

since 1998. The evolution of the clustering coefficients shows

that the international rice trade network became more

clustered, since the rice exporting and importing

concentrated in some economies [42].

Our findings about the topology of the iCTNs play an

important role in understanding vulnerabilities in the global

food system [11]. These results also highlight the need to

consider unique features of different crop networks while

making food policies [11]. Since each iCTN has its own

structural properties, they are expected to have different

reactions to external disturbances and shocks. The global

food system is sensitive and easily affected by climate change,

water scarcity, and land reclamation [58]. For example, we

could assume that an extreme climate decreases the

production of crops in some areas which are main global

crop suppliers. These economies would cut down crop

exports and even implement export bans if their domestic

food reserves are insufficient. However, we found that the

density of the international rice trade network showed an

upward trend during the recent food crisis (e.g., in

2007–2009). As the international rice trade network is

increasingly connected, the rice trade tends to concentrate

on some regions. A few large producers account for the bulk

of net exports and absorb more shocks because of their

centrality in the network [59]. These economies are not

sensitive to global changes since they have proportionately

higher reserves. Therefore the international rice trade

network is relatively stable and its structure would not

shift dramatically.

In addition to environmental factors, global price shocks

also exert a significant influence on the global food system

[60], especially for rice, the main staple crop. Many

economies rely on rice imports to feed domestic

consumption and the rice price hike would put more

pressure on importing economies [61], limiting the poor

to buying rice [2]. Demand for substitute staple foods

increases to soften the impact of rice price shocks [61].

The iCTNs are characterized by substantial heterogeneity

across different crops, but crops are traded as complements

which indicates that different iCTNs might have a correlation

[11]. This paper discussed the global food system as a

collection of independent food-staple trade players, and
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ignored the substitution across crops. However, our findings

are still relevant from a policy perspective. As noted above,

the similarities and differences between different iCTNs

provide more details of the global food trade linkages and

address the need to adjust trade policies for different crop

importers or exporters. Future research should consider the

nonlinear interactions between different iCTNs from the

framework of multi-layer networks.

Data availability statement

Publicly available datasets were analyzed in this study, which

can be found here: https://www.fao.org.

Author contributions

Funding acquisition, W-XZ; Investigation, Y-TZ;

Methodology, Y-TZ and W-XZ; Supervision, W-XZ;

Writing—original draft, Y-TZ and W-XZ; Writing—review

and editing, Y-TZ, and W-XZ.

Funding

The National Natural Science Foundation of China

(72171083), the Shanghai Outstanding Academic Leaders Plan,

and the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Farsund AA, Daugbjerg C, Langhelle O. Food security and trade: Reconciling
discourses in the food and agriculture organization and the world trade
organization. Food Secur (2015) 7:383–91. doi:10.1007/s12571-015-0428-y

2. D’Odorico P, Carr JA, Laio F, Ridolfi L, Vandoni S. Feeding humanity through
global food trade. Earth’s Future (2014) 2:458–69. doi:10.1002/2014EF000250

3. Gephart JA, Pace ML. Structure and evolution of the global seafood trade
network. Environ Res Lett (2015) 10:125014. doi:10.1088/1748-9326/10/12/125014

4. Suweis S, Carr JA, Maritan A, Rinaldo A, D’Odorico P. Resilience and reactivity
of global food security. Proc Natl Acad Sci U S A (2015) 112:6902–7. doi:10.1073/
pnas.1507366112

5. Centeno MA, Nag M, Patterson TS, Shaver A, Windawi AJ. The emergence of
global systemic risk. Annu Rev Sociol (2015) 41:65–85. doi:10.1146/annurev-soc-
073014-112317

6. Wellesley L, Preston F, Lehne J, Bailey R. Chokepoints in global food trade:
Assessing the risk. Res Transportation Business Manage (2017) 25:15–28. doi:10.
1016/j.rtbm.2017.07.007

7. Baldos ULC, Hertel TW. The role of international trade in managing food
security risks from climate change. Food Secur (2015) 7:275–90. doi:10.1007/
s12571-015-0435-z

8. Wood SA, Smith MR, Fanzo J, Remans R, DeFries RS. Trade and the
equitability of global food nutrient distribution. Nat Sustain (2018) 1:34–7.
doi:10.1038/s41893-017-0008-6

9. Almog A, Bird R, Garlaschelli D. Enhanced gravity model of trade: Reconciling
macroeconomic and network models. Front Phys (2019) 7:55. doi:10.3389/fphy.
2019.00055

10. PumaMJ, Bose S, Chon SY, Cook BI. Assessing the evolving fragility of the global
food system. Environ Res Lett (2015) 10:024007. doi:10.1088/1748-9326/10/2/024007

11. Torreggiani S, Mangioni G, Puma MJ, Fagiolo G. Identifying the community
structure of the food-trade international multi-network. Environ Res Lett (2018) 13:
054026. doi:10.1088/1748-9326/aabf23

12. Dolfing AG, Leuven JRFW, Dermody BJ. The effects of network topology,
climate variability and shocks on the evolution and resilience of a food trade
network. PLoS One (2019) 14:e0213378. doi:10.1371/journal.pone.0213378

13. Wu F, Guclu H. Global maize trade and food security: Implications from a
social network model. Risk Anal (2013) 33:2168–78. doi:10.1111/risa.12064

14. Fair KR, Bauch CT, Anand M. Dynamics of the global wheat trade network
and resilience to shocks. Sci Rep (2017) 7:7177. doi:10.1038/s41598-017-07202-y

15. Gutierrez-Moya E, Adenso-Diaz B, Lozano S. Analysis and vulnerability of the
international wheat trade network. Food Secur (2021) 13:113–28. doi:10.1007/
s12571-020-01117-9

16. Suweis S, Konar M, Dalin C, Hanasaki N, Rinaldo A, Rodriguez-Iturbe I.
Structure and controls of the global virtual water trade network. Geophys Res Lett
(2011) 38:L10403. doi:10.1029/2011GL046837

17. Carr JA, D’Odorico P, Laio F, Ridolfi L. On the temporal variability of the
virtual water network. Geophys Res Lett (2012) 39:L06404. doi:10.1029/
2012GL051247

18. Sartori M, Schiavo S. Connected we stand: A network perspective on trade and
global food security. Food Policy (2015) 57:114–27. doi:10.1016/j.foodpol.2015.
10.004

19. Kummu M, Kinnunen P, Lehikoinen E, Porkka M, Queiroz C, Roos E, et al.
Interplay of trade and food system resilience: Gains on supply diversity over time at
the cost of trade independency. Glob Food Sec (2020) 24:100360. doi:10.1016/j.gfs.
2020.100360

20. Larochez-Dupraz C, Huchet-Bourdon M. Agricultural support and
vulnerability of food security to trade in developing countries. Food Secur
(2016) 8:1191–206. doi:10.1007/s12571-016-0623-5

21. Burkholz R, Schweitzer F. International crop trade networks: The impact of
shocks and cascades. Environ Res Lett (2019) 14:114013. doi:10.1088/1748-9326/
ab4864

22. Distefano T, Laio F, Ridolfi L, Schiavo S. Correction: Shock transmission in the
international food trade network. PLoS One (2021) 16:e0254327. doi:10.1371/
journal.pone.0254327

23. Zhang YT, Zhou WX. Microstructural characteristics of the weighted and
directed international crop trade networks. Entropy (2021) 23:1250. doi:10.3390/
e23101250

24. Distefano T, Laio F, Ridolfi L, Schiavo S. Shock transmission in the
international food trade network. PLoS One (2018) 13:e0200639. doi:10.1371/
journal.pone.0200639

25. Li JA, Xie WJ, Zhou WX. Structure and evolution of the international
pesticide trade networks. Front Phys (2021) 9:681788. doi:10.3389/fphy.2021.
681788

Frontiers in Physics frontiersin.org11

Zhang and Zhou 10.3389/fphy.2022.926764

https://www.fao.org
https://doi.org/10.1007/s12571-015-0428-y
https://doi.org/10.1002/2014EF000250
https://doi.org/10.1088/1748-9326/10/12/125014
https://doi.org/10.1073/pnas.1507366112
https://doi.org/10.1073/pnas.1507366112
https://doi.org/10.1146/annurev-soc-073014-112317
https://doi.org/10.1146/annurev-soc-073014-112317
https://doi.org/10.1016/j.rtbm.2017.07.007
https://doi.org/10.1016/j.rtbm.2017.07.007
https://doi.org/10.1007/s12571-015-0435-z
https://doi.org/10.1007/s12571-015-0435-z
https://doi.org/10.1038/s41893-017-0008-6
https://doi.org/10.3389/fphy.2019.00055
https://doi.org/10.3389/fphy.2019.00055
https://doi.org/10.1088/1748-9326/10/2/024007
https://doi.org/10.1088/1748-9326/aabf23
https://doi.org/10.1371/journal.pone.0213378
https://doi.org/10.1111/risa.12064
https://doi.org/10.1038/s41598-017-07202-y
https://doi.org/10.1007/s12571-020-01117-9
https://doi.org/10.1007/s12571-020-01117-9
https://doi.org/10.1029/2011GL046837
https://doi.org/10.1029/2012GL051247
https://doi.org/10.1029/2012GL051247
https://doi.org/10.1016/j.foodpol.2015.10.004
https://doi.org/10.1016/j.foodpol.2015.10.004
https://doi.org/10.1016/j.gfs.2020.100360
https://doi.org/10.1016/j.gfs.2020.100360
https://doi.org/10.1007/s12571-016-0623-5
https://doi.org/10.1088/1748-9326/ab4864
https://doi.org/10.1088/1748-9326/ab4864
https://doi.org/10.1371/journal.pone.0254327
https://doi.org/10.1371/journal.pone.0254327
https://doi.org/10.3390/e23101250
https://doi.org/10.3390/e23101250
https://doi.org/10.1371/journal.pone.0200639
https://doi.org/10.1371/journal.pone.0200639
https://doi.org/10.3389/fphy.2021.681788
https://doi.org/10.3389/fphy.2021.681788
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.926764


26. Hadley C, Linzer DA, Belachew T, Mariam AG, Tessema F, Lindstrom D.
Household capacities, vulnerabilities and food insecurity: Shifts in food insecurity in
urban and rural Ethiopia during the 2008 food crisis. Soc Sci Med (2011) 73:
1534–42. doi:10.1016/j.socscimed.2011.09.004

27. Sornette D, Woodard R, Zhou WX. The 2006-2008 oil bubble: Evidence of
speculation, and prediction. Physica A: Stat Mech its Appl (2009) 388:1571–6.
doi:10.1016/j.physa.2009.01.011

28. Nawrotzki RJ, Robson K, Gutilla MJ, Hunter LM, Twine W, Norlund P.
Exploring the impact of the 2008 global food crisis on food security among
vulnerable households in rural South Africa. Food Secur (2014) 6:283–97.
doi:10.1007/s12571-014-0336-6

29. Antunes de Araujo FH, Bejan L, Stosic B, Stosic T. An analysis of Brazilian
agricultural commodities using permutation - information theory quantifiers: The
influence of food crisis. Chaos Solitons Fractals (2020) 139:110081. doi:10.1016/j.
chaos.2020.110081

30. Zhang S, Wang L, Liu Z, Wang X. Evolution of international trade and
investment networks. Physica A: Stat Mech its Appl (2016) 462:752–63. doi:10.1016/
j.physa.2016.06.117

31. Carr JA, D’Odorico P, Laio F, Ridolfi L. On the temporal variability of the virtual
water network. Geophys Res Lett (2012) 39:L06404. doi:10.1029/2012GL051247

32. Trostle R. Global agricultural supply and demand: Factors contributing to the
recent increase in food commodity prices. Washington, D.C.: United States
Department of Agriculture (2008).

33. McMichael P. A food regime analysis of the ’world food crisis. Agric Hum
Values (2009) 26:281–95. doi:10.1007/s10460-009-9218-5

34. Goetz L, Glauben T, Bruemmer B. Wheat export restrictions and domestic
market effects in Russia and Ukraine during the food crisis. Food Policy (2013) 38:
214–26. doi:10.1016/j.foodpol.2012.12.001

35. Zhao Y, Gao X, An H, Xi X, Sun Q, Jiang M. The effect of the mined cobalt
trade dependence network’s structure on trade price. Resour Pol (2020) 65:101589.
doi:10.1016/j.resourpol.2020.101589

36. Fagiolo G. Clustering in complex directed networks. Phys Rev E (2007) 76:
026107. doi:10.1103/PhysRevE.76.026107

37. HouW, Liu H,WangH,Wu F. Structure and patterns of the international rare
earths trade: A complex network analysis. Resour Pol (2018) 55:133–42. doi:10.
1016/j.resourpol.2017.11.008

38. Cepeda-Lopez F, Gamboa-Estrada F, Leon C, Rincon-Castro H. The evolution
of world trade from 1995 to 2014: A network approach. J Int Trade Econ Dev (2019)
28:452–85. doi:10.1080/09638199.2018.1549588

39. Fagiolo G, Reyes J, Schiavo S. The evolution of the world trade web: A weighted-
network analysis. J Evol Econ (2010) 20:479–514. doi:10.1007/s00191-009-0160-x

40. Kou Y, Xian G, Dong C, Ye S, Zhao R. Dynamic evolution research and system
implementation of international soybean trade network based on complex network. Proc
2nd Int Conf Comput Sci Appl Eng (2018) 2018:3278055. doi:10.1145/3207677.3278055

41. Duenas M, Fagiolo G. Global trade imbalances: A network approach. Adv
Complex Syst (2014) 17:1450014. doi:10.1142/S0219525914500143

42. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global
rice production, supply, trade, and consumption. Ann N Y Acad Sci (2014) 1324:
7–14. doi:10.1111/nyas.12540

43. Lv L, Zhang K, Zhang T, Li X, Zhang J, XueW. Eigenvector centrality measure
based on node similarity for multilayer and temporal networks. IEEE Access (2019)
7:115725–33. doi:10.1109/ACCESS.2019.2936217

44. Hou L, Liu K. Common neighbour structure and similarity intensity in
complex networks. Phys Lett A (2017) 381:3377–83. doi:10.1016/j.physleta.2017.
08.050

45. Jiang W, Wang Y. Node similarity measure in directed weighted complex
network based on node nearest neighbor local network relative weighted entropy.
IEEE Access (2020) 8:32432–41. doi:10.1109/ACCESS.2020.2971968

46. Zhang RJ, Ye FY. Measuring similarity for clarifying layer difference in
multiplex ad hoc duplex information networks. J Informetr (2020) 14:100987.
doi:10.1016/j.joi.2019.100987

47. Tang J, Scellato S, Musolesi M, Mascolo C, Latora V. Small-world behavior in
time-varying graphs. Phys Rev E (2010) 81:055101. doi:10.1103/PhysRevE.81.
055101

48. Gunes I, Gunduz-Oguducu S, Cataltepe Z. Link prediction using time series of
neighborhood-based node similarity scores. Data Min Knowl Discov (2016) 30:
147–80. doi:10.1007/s10618-015-0407-0

49. Fan X, Li X, Yin J, Tian L, Liang J. Similarity and heterogeneity of price
dynamics across China’s regional carbon markets: A visibility graph network
approach. Appl Energ (2019) 235:739–46. doi:10.1016/j.apenergy.2018.
11.007

50. Squartini T, Picciolo F, Ruzzenenti F, Garlaschelli D. Reciprocity of weighted
networks. Sci Rep (2013) 3:2729. doi:10.1038/srep02729

51. Serrano MA, Boguñá M. Topology of the world trade web. Phys Rev E (2003)
68:015101(R). doi:10.1103/PhysRevE.68.015101

52. Garlaschelli D, Loffredo M. Patterns of link reciprocity in directed networks.
Phys Rev Lett (2004) 93:268701. doi:10.1103/PhysRevLett.93.268701

53. Mou N, Fang Y, Yang T, Zhang L. Assortative analysis of bulk trade complex
network on maritime silk road. IEEE Access (2020) 8:131928–38. doi:10.1109/
ACCESS.2020.3009970

54. Dupas MC, Halloy J, Chatzimpiros P. Time dynamics and invariant
subnetwork structures in the world cereals trade network. PLoS One (2019) 14:
e0216318. doi:10.1371/journal.pone.0216318

55. Fagiolo G, Reyes J, Schiavo S. On the topological properties of the world trade
web: A weighted network analysis. Physica A: Stat Mech its Appl 387 (2008)
3868–73. doi:10.1016/j.physa.2008.01.050

56. Porkka M, Kummu M, Siebert S, Varis O. From food insufficiency towards
trade dependency: A historical analysis of global food availability. PLoS One (2013)
8:e82714. doi:10.1371/journal.pone.0082714

57. Svanidze M, Gotz L, Serebrennikov D. The influence of Russia’s 2010/
2011 wheat export ban on spatial market integration and transaction costs of
grain markets. Appl Econ Perspect Pol (2021) 44:1083–99. doi:10.1002/aepp.
13168

58. Premanandh J. Factors affecting food security and contribution of modern
technologies in food sustainability. J Sci Food Agric (2011) 91:2707–14. doi:10.1002/
jsfa.4666

59. Marchand P, Carr JA, Dell’Angelo J, Fader M, Gephart JA, Kummu M, et al.
Reserves and trade jointly determine exposure to food supply shocks. Environ Res
Lett (2016) 11:095009. doi:10.1088/1748-9326/11/9/095009

60. Baffes J, Kshirsagar V. Shocks to food market systems: A network approach.
Agric Econ (2020) 51:111–29. doi:10.1111/agec.12544

61. Haggblade S, Me-Nsope NM, Staatz JM. Food security implications of staple
food substitution in Sahelian West Africa. Food Policy (2017) 71:27–38. doi:10.
1016/j.foodpol.2017.06.003

Frontiers in Physics frontiersin.org12

Zhang and Zhou 10.3389/fphy.2022.926764

https://doi.org/10.1016/j.socscimed.2011.09.004
https://doi.org/10.1016/j.physa.2009.01.011
https://doi.org/10.1007/s12571-014-0336-6
https://doi.org/10.1016/j.chaos.2020.110081
https://doi.org/10.1016/j.chaos.2020.110081
https://doi.org/10.1016/j.physa.2016.06.117
https://doi.org/10.1016/j.physa.2016.06.117
https://doi.org/10.1029/2012GL051247
https://doi.org/10.1007/s10460-009-9218-5
https://doi.org/10.1016/j.foodpol.2012.12.001
https://doi.org/10.1016/j.resourpol.2020.101589
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1016/j.resourpol.2017.11.008
https://doi.org/10.1016/j.resourpol.2017.11.008
https://doi.org/10.1080/09638199.2018.1549588
https://doi.org/10.1007/s00191-009-0160-x
https://doi.org/10.1145/3207677.3278055
https://doi.org/10.1142/S0219525914500143
https://doi.org/10.1111/nyas.12540
https://doi.org/10.1109/ACCESS.2019.2936217
https://doi.org/10.1016/j.physleta.2017.08.050
https://doi.org/10.1016/j.physleta.2017.08.050
https://doi.org/10.1109/ACCESS.2020.2971968
https://doi.org/10.1016/j.joi.2019.100987
https://doi.org/10.1103/PhysRevE.81.055101
https://doi.org/10.1103/PhysRevE.81.055101
https://doi.org/10.1007/s10618-015-0407-0
https://doi.org/10.1016/j.apenergy.2018.11.007
https://doi.org/10.1016/j.apenergy.2018.11.007
https://doi.org/10.1038/srep02729
https://doi.org/10.1103/PhysRevE.68.015101
https://doi.org/10.1103/PhysRevLett.93.268701
https://doi.org/10.1109/ACCESS.2020.3009970
https://doi.org/10.1109/ACCESS.2020.3009970
https://doi.org/10.1371/journal.pone.0216318
https://doi.org/10.1016/j.physa.2008.01.050
https://doi.org/10.1371/journal.pone.0082714
https://doi.org/10.1002/aepp.13168
https://doi.org/10.1002/aepp.13168
https://doi.org/10.1002/jsfa.4666
https://doi.org/10.1002/jsfa.4666
https://doi.org/10.1088/1748-9326/11/9/095009
https://doi.org/10.1111/agec.12544
https://doi.org/10.1016/j.foodpol.2017.06.003
https://doi.org/10.1016/j.foodpol.2017.06.003
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.926764

	Structural evolution of international crop trade networks
	1 Introduction
	2 Data and method
	2.1 Data description
	2.2 Network construction

	3 Empirical results
	3.1 Summary statistics
	3.2 Degree and strength
	3.3 Competitiveness
	3.4 Persistence
	3.5 Reciprocity
	3.6 Assortativity

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


