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Anisotropy is widespread in the Earth’s crust, and VTI (vertical axis

symmetry transverse isotropy) anisotropy is common due to

stratigraphic pressure. Disregarding anisotropy leads to inaccurate

inversion results in VTI media. To estimate accurate elastic parameters,

the exact reflection coefficient equation of VTI media should be used. This

equation is nonlinear and more accurate than the commonly used linear

reflection coefficient equation. Although the inversion based on the VTI

anisotropy exact reflection coefficient equation is a complex nonlinear

inversion problem, it is still computable. Therefore, for VTI media, we

derive the objective function combining Bayesian theory and use the

iterative reweighted least squares method for a fast and stable solution.

Adding Bayesian theory can improve the robustness of the algorithm. The

accuracy and noise immunity of the method is tested with synthetic data.

Finally, the method is applied on field data and obtains accurate elastic

parameters. The results can provide an understanding of subsurface

formations and serve as the base data for calculating fluid and fracture

distribution.
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Introduction

VTI (vertical axis symmetry transverse isotropy) anisotropy resulting from

textured minerals or sequences of horizontal thin layers is one of the most common

forms of anisotropy in sedimentary formations [1–3]. In VTI media, a large number

of linear approximate reflection coefficient equations are used in AVO (amplitude

versus offset) inversion, with underlying assumptions of small incidence

angles and weak impedance contrasts limiting the applicability and accuracy of

the inversion. The exact VTI reflection coefficient equation can solve these

problems well. To address this issue, the inverse problem can be solved with

Bayesian theory.

Forward equations are a central ingredient of inversion algorithms, and the

relationship between the VTI elastic parameters and the pre-stack seismic records is

their cornerstone. The reflection and transmission equation of anisotropic media
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were first discussed by Henneke [4] and 37. Graebner [5]

simplified the form of Daley and Hron’s [6] algebraic

equation, and Rüger [7] modified Graebner’s equation.

However, the exact form of the reflection coefficient is very

complex and it is difficult to account for inversion. Therefore,

a large number of approximate equations have been derived

and applied. Thomsen [8] derived an approximate expression

for the P-wave reflection coefficient based on a linear

approximation of the exact VTI reflection coefficient

equation with the assumption of weak anisotropy. Rüger

[9] modified Thomsen’s equation for the P-wave reflection

coefficient to account for a larger range of angles; this

approximation is straightforward and therefore often used

for AVO/AVA analysis and inversion. To facilitate the joint

inversion, Jílek [10] proposed a PS-wave reflection coefficient

equation for anisotropic media. Shaw and Sen [11] derived

the PP- and PS-wave reflection coefficients for arbitrary

weakly anisotropic media using the Born integral. Based on

the above linear approximate forward equations, many

scholars have implemented inversion calculations. Plessix

and Bork [12] analyzed the quantitative estimation of the

elastic and anisotropic parameters of VTI media from the pre-

stack AVA records based on the linear approximation

equation. Zhang et al. [13], based on an improved Rüger

approximation equation, simultaneously inverted the

gradient, intercept, and P-wave velocity. Zhang and Li [14]

derived a VTI media approximate reflection coefficient

equation containing the second-order term of the

anisotropic parameter and implemented inversion. The

results show that the accuracy of the second-order

approximation equation is higher than the first-order.

Zhang and Li [15] tested the effectiveness of the

simultaneous inversion of the elastic and anisotropy

parameters method on VTI anisotropic shale formations.

However, there is a contradiction: to accurately obtain

density and Thomsen anisotropic parameters, large

incidence angles (>30°) of seismic records need to be used

[12,16]. However, the non-negligible error in the linear

reflection coefficient equation at large angles leads to the

poor accuracy of the inverse results. There are relatively few

studies related to exact VTI reflection coefficient equation

inversion. Amit and Subhashis [17] implemented a pre-stack

joint inversion based on the exact VTI reflection coefficient

equation using a revised genetic algorithm. However, the

algorithm is time-consuming and cannot be applied to

large-scale work area data.

In summary, considering accuracy and practicality, we

derive a VTI media inversion method based on the exact

reflection coefficient equation. The algorithm adds

constraint by Bayesian theory. The superiority of the

method is verified by numerical model testing and real data

application.

Theory

Exact reflection coefficient equation for
VTI media

The Thomsen anisotropy parameters [18] mainly describe

the relationship between two vertical velocities, three

dimensionless anisotropy parameters, and five stiffness

coefficients based on the weak anisotropy assumption. The

relations are as follows:

VP �
���
c33
ρ

√
, VS �

���
c55
ρ

√
, ε � c11 − c33

2c33
, γ � c66 − c44

2c55
,

δ � (c13 + c55)2 − (c33 − c55)2
2c33(c33 − c55) , (1)

where VP and VS denote the P- and S-wave velocity in the vertical

direction (symmetry axis direction) respectively, ρ denotes the

density, and ε, δ, and γ are the Thomsen anisotropy parameters.

Since the SH-wave is completely decoupled from the P- and SV-

waves in VTI media, the reflection and transmission coefficients

of the P- and SV-waves are considered.

Based on the weak anisotropy assumption, the P-wave

phase velocity and stiffness coefficient c13 in the VTI media

can be linearly expressed by anisotropy parameters ε and δ

as [18]:

VP(θ) ≈ VP0(1 + δsin 2 θcos 2 θ + εsin 4 θ), (2)
c13 ≈ c33(1 + δ) − c55. (3)

According to Eq. 2, a relatively simple form of horizontal

slowness (ray parameter) can be obtained:

p � sin θ
VP(1 + δsin 2 θcos 2 θ + εsin 4 θ). (4)

Substituting Eqs 1, 3 into the VTI media exact reflection

coefficient equation [5,7,19], we can give the matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣R
VTI
PP

RVTI
PS

TVTI
PP

TVTI
PS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−m11

−m21

m31

m41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

As with the exact Zoeppritz equation [20,21], Eq. 5 can be

expressed in the following form:

M • S � N. (6)

In Eq. 5, the coefficients of the matrix are given by:

m11 � l(1)α , m12 � m(1)
β , m13 � −l(2)α , m14 � −m(2)

β ,

m31 � m(1)
α , m32 � −l(1)β , m33 � −m(2)

α , m34 � −l(2)β ,

m21 � pl(1)α ((1 + δ(1))ρ(1)V2
P0

(1 ) − 2ρ(1)V2
S0

(1 )) + q(1)α m(1)
α ρ(1)V2

P0
(1 ) ,

m22 � pm(1)
β ((1 + δ(1))ρ(1)V2

P0
(1 ) − 2ρ(1)V2

S0
(1 )) − q(1)β l(1)β ρ(1)V2

P0
(1 ) ,

m23 � −(pl(2)α ((1 + δ(2))ρ(2)V2
P0

(2 ) − 2ρ(2)V2
S0

(2 )) + q(2)α m(2)
α ρ(2)V2

P0
(2 )),

m24 � −(pm(2)
β ((1 + δ(2))ρ(2)V2

P0
(2 ) − 2ρ(2)V2

S0
(2 )) − q(2)β m(2)

β ρ(2)V2
P0

(2 )),
m41 � ρ(1)V2

S0
(1 )(q(1)α l(1)α + pm(1)

α ), m42 � ρ(1)V2
S0

(1 )(q(1)β m(1)
β + pl(1)β ),

m43 � ρ(2)V2
S0

(2 )(q(2)α l(2)α + pm(2)
α ), m44 � ρ(2)V2

S0
(2 )(q(2)β m(2)

β + pl(2)β ),
(7)
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The superscripts (1) and (2) indicate the upper and lower layer

respectively, where:

lα �
�����������������������������������

V2
P0q

2
α + V2

S0p
2 − 1

(2ε + 1)V2
P0p

2 + V2
S0q

2
α + V2

P0q
2
α + V2

S0p
2 − 2

√
,

mα �
�����������������������������������

V2
S0q

2
α + (2ε + 1)V2

P0p
2 − 1

(2ε + 1)V2
P0p

2 + V2
S0q

2
α + V2

P0q
2
α + V2

S0p
2 − 2

√
,

lβ �

�����������������������������������
V2

S0q
2
β + (2ε + 1)V2

P0p
2 − 1

(2ε + 1)V2
P0p

2 + V2
S0q

2
β + V2

P0q
2
β + V2

S0p
2 − 2

√√
,

mβ �

�����������������������������������
V2

P0q
2
β + V2

S0p
2 − 1

(2ε + 1)V2
P0p

2 + V2
S0q

2
β + V2

P0q
2
β + V2

S0p
2 − 2

√√
.

(8)

In the above equations for the VTI reflection and

transmission coefficients, the vertical slowness of the different

wave modes can be expressed as [7]:

qα �

����������������
K1 −

����������
K2

1 − 4K2K3

√√
�
2

√ ,

qβ �

����������������
K1 +

����������
K2

1 − 4K2K3

√√
�
2

√ ,

(9)

where:

K1 � ρ

c33
+ ρ

c55
− (c11

c55
+ c55
c33

− (c13 + c55)2
c33c55

)p2,

K2 � c11
c33

p2 − ρ

c33
,

K3 � p2 − ρ

c55
,

(10)

and qα is the vertical slowness of the P-wave, qβ is the vertical

slowness of the SV-wave, cij is the stiffness tensor, and θ is the

phase angle. Subscripts α and β denote the P-wave mode and SV-

wave mode, respectively.

Substituting Eqs 1, 3 into Eq. 10 replaced the independent

stiffness coefficients with the Thomsen anisotropy parameters.

Eq. 5 is an implicit equation of the VTI media reflection and

transmission coefficients. Eqs 4, 7–9 are the intermediate

variables of Eq. 5. These equations are combined to form the

forward operator.

In order to compare the difference between the exact and

linear of approximation reflection coefficient in VTI media, as

well as the reflection coefficient of the exact Zoeppritz equation,

we solve the forward problem for the elastic parameters provided

in Tables 1 and 2. The linear approximation reflection coefficient

equation comes from Rüger [9].

Figure 1 shows the results for P-wave incidence angles of

0°–60°. As shown from the figure, although the approximation

still predicts the correct trend at a lower incidence angle, the gap

between the three curves becomes larger as the angle increases.

The behavior of the reflection coefficient curves is substantially

different, including their slopes (or AVO gradient)—especially in

higher incidence angles.

Anisotropy mainly affects the velocity, which in turn affects

the reflection coefficient. Therefore, the reflection coefficient

curves of isotropic and anisotropic media are different. The

approximate reflection coefficient equation has the assumption

of a small incidence angle. As seen in Figure 1, the area of

application of the approximate reflection coefficient equation is

the incidence angle <30°. The difference between the exact and

approximate curve increases with the increase of the incidence

angle. In summary, for anisotropic strata, which are widely

present in the upper crust, it is accurate to use the anisotropic

exact reflection coefficient equation for forward/inverse

problems.

Constructing objective function based on
Bayesian theory

Forward modeling can be written in the classical form of d =

Gm + n, where G is a nonlinear forward operator and n is the

noise in the observed seismic records. In pre-stack seismic

inversion, according to Bayesian theory, conditional

information is the observed seismic data dT = (d1, d2, . . .dNd)
T

and unknown information is the model parametermT = (m1,m2,

...m5N)T. With known seismic data, the problem of inverting the

elastic parameters can be summarized as:

P(m|d) � P(d|m)P(m)
P(d) , (11)

where P (d) is the marginal probability distribution of the

observed data, which is a normalization factor in the case

of known observed data; it can be regarded as a constant. It

guarantees that the integral sum of the posterior

probability distribution function P (m|d) is 1. P (d|m) is

the likelihood function, and P (m) is the prior probability

distribution.

Generally, assuming that the noise obeys Gaussian

distribution, the likelihood function can be expressed as:

P(d|m) � [(2π)n|CD|]1/2e−1
2(d−G(m))TC−1

D (d−G(m)), (12)
where CD

−1 is the noise covariance matrix.

Assuming that the model parameters obey Gaussian

distribution, there are:

P(m) � e−
1
2(m−μ)TC−1

m (m−μ)
(2π)(Nd/2)|Cm|1/2

. (13)

Substituting Eqs 12 and 13 into a Bayesian formula and

omitting irrelevant constants, we obtain:

P(m|d)∝ e−
1
2(d−G(m))TC−1

D (d−G(m))−1
2(m−μ)TC−1

m (m−μ). (14)
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The parameter value corresponding to themaximum value of

P (m|d) is usually taken as the optimal solution—that is, the

maximum a posteriori probability solution. Solving this

maximum of Eq. 14 is equivalent to solving the solution

corresponding to the minimum value of the following

objective function J1 (m):

J1(m) � 1
2
(d − G(m))TC−1

D (d − G(m)) + 1
2
(m − μ)TC−1

m (m − μ),
(15)

where μ is the mean of the model parameters and Cm is the

covariance matrix of the model parameters, which contains the

statistical correlations between the elastic parameters [22].

In general, assuming that the random noises in the seismic

data are independent of each other, the covariance matrix of the

noise can be simplified to a diagonal array—that is, CD =

σn
2I—where σn

2 is the variance of the noise, I is the identity

matrix ofNd×Nd, andNd is the length of the observed data. Eq. 15

can thus be simplified as:

J(m) � 1
2σ2n

(d − G(m))T(d − G(m)) + 1
2
(m − μ)TC−1

m (m − μ).
(16)

This is the objective function, assuming that the model

parameters obey the Gaussian distribution.

Compared with the Gaussian distribution, the Cauchy

distribution has a “long tail” property. It can alleviate the

problem of too much suppression of weak reflections due to

excessively strong a priori constraint sparsity, which is

detrimental to the recovery of weak reflection information or

small perturbations, and thus improves the resolution of the

inversion results [23,24]. Where the model parameters obey the

Cauchy distribution, similar to the Gaussian distribution, we can

derive the following objective function:

TABLE 1 Model parameters: the VTI/isotropy interface from Rüger [7].

Layer VP (km/s) VS (km/s) ρ (g/cm3) ε δ

Upper: shale 2.73 1.24 2.35 0.233 0.12

Lower: sandstone 2.02 1.23 2.13 0 0

TABLE 2 Model parameters: the VTI/VTI interface from Thomsen [18].

Layer VP (km/s) VS (km/s) ρ (g/cm3) ε δ

Upper: sandstone 3.368 1.829 2.50 0.110 −0.035

Lower: mud shale 4.529 2.703 2.52 0.034 0.211

FIGURE 1
Comparison of the exact VTI reflection coefficient equations (red), linear equation (blue), and exact Zoeppritz reflection coefficient equations
(black). (A) VTI/VTI interface; (B) VTI/isotropic interface.
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J(m) � 1
2
(d − G(m))T(d − G(m))

+2β∑N
i�1
ln(1 + (m − μ)TΦi(m − μ)), (17)

where β = σn
2 is the variance of the noise.

Generalized linear inversion and iterative
reweighted least square algorithm

The classical Levenberg-Marquardt algorithm is often

referred to as “the iterative reweighted least square algorithm”;

we use it to solve the nonlinear inversion problem with the

modified Cauchy distribution shown in Eq. 18. The detailed

description and advantages of the modified Cauchy prior

distribution are showed in Supplementary Appendix SA.

Jm.C � ∑n
i�1

r2i
1 + r2i

. (18)

Applying a Taylor expansion to the forward operator G (m)

around the initial model m:

Gpp(m1) � Gpp(m0) + zGpp(m0)
zm

Δm + ..., (19)

FIGURE 2
Residual function maps. The adjacent contour increment is 0.08. The intersection of the red line represents the corresponding real value. The
colorbar at the bottom indicates the corresponding numerical value of each color.
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where zG(m)
zm is the first-order partial derivative of the forward

operator to the model parameters.

The first-order partial derivatives to the elastic parameters

based on the exact reflection coefficients equation can be solved

with the help of the reflection and transmission equation for

different incident wave cases (Pages 139–147) [21]. The first-

order partial derivatives of the forward operator G to the model

parameter m can be calculated as follows. Assume that cj = [c1 c2
c3 c4 c5 c6 c7 c8 c9 c10] = [VP

(1) VP
(2) VS

(1) VS
(2) ρ(1) ρ(2)

ε(1) ε(2) δ(1) δ(2)] are the elastic parameters on both sides of the

interface, then the derivation of Eq. 6 yields:

zM

zci
S +M

zS

zci
� zN

zci
, (20)

that is:

zS

zci
� M−1(zN

zci
− zM

zci
M−1N). (21)

According to Eq. 21, convolving the first-order partial

derivatives of the reflection coefficients to the elastic

parameters with the seismic wavelet gives the first-order

partial derivatives of the forward operator to the model

parameter.

For the P-P wave, taking the first-order approximation of Eq.

19 and substituting it into the objective function shown in Eq. 17

gives:

J(m) � 1
2
(dpp − Gpp(m0) − zGpp(m0)

zm
×Δm)T(dpp − Gpp(m0)

− zGpp(m0)
zm

×Δm) + βR(m),
(22)

where the regularization parameter term can be written as:

R(m) � ∑N
i�1

(m − μ)TΦi(m − μ)
1 + (m − μ)TΦi(m − μ)

� ∑N
i�1

(m0 + Δm − μ)TΦi(m0 + Δm − μ)
1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ). (23)

The objective function can be expressed as:

J(m) � (dpp − Gpp(m0) − zGpp(m0)
zm

×Δm)T

(dpp − Gpp(m0) − zGpp(m0)
zm

×Δm)
+β∑N

i�1

(m0 + Δm − μ)TΦi(m0 + Δm − μ)
1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ).

(24)
The derivation of Eq. 24 with respect to model parameter

perturbation △m is:

zJ(m)
zΔm

� (zGpp

zm
)T(zGpp

zm
) ×Δm − (zGpp

zm
)T(dpp − Gpp(m0))

+β
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑N
i�1

2Φi(m0 − μ)(1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ)T)2
+∑N

i�1

2ΦiΔm(1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ))2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)
Setting the derivative to zero gives the model

perturbation as:

Δm � H−1
1 γ1, (26)

where,H1 � (zGpp(m0)
zm )T(zGpp(m0)

zm )
+β∑N

i�1

2Φi

(1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ))2

γ1 � (zGpp(m0)
zm )T

(dpp − Gpp(m0))

−β∑N
i�1

2Φi(m0 − μ)
(1 + (m0 + Δm − μ)TΦi(m0 + Δm − μ))2

We use iterative reweighted least squares algorithm to solve

Eq. 26. Since the method converges quickly and the whole

inversion algorithm belongs to double iterations, for less

calculation, generally only one iteration is used in calculating

FIGURE 3
Synthetic pre-stack angle gathers. The incident angle is 7°,
12°, 17°, . . ., 47°.
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FIGURE 4
Inversion results. The black line indicates the true data, the red line indicates the inversion result, and the blue line indicates the initial data. (A)
Accurate nonlinearity inversion; (B) approximate linear inversion.
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the perturbation. Then the expression of the perturbation can be

simplified as:

Δmk � H(mk)−1γ(mk), (27)
where:

H � (zGpp(mk)
zm

)T(zGpp(mk)
zm

)
+ β∑N

i�1

2Φi(1 + (mk − μ)TΦi(mk − μ))2, (28)

γ � (zGpp(mk)
zm

)T(dpp − Gpp(mk))
− β∑N

i�1

2Φi(mk − μ)(1 + (mk − μ)TΦi(mk − μ))2. (29)

Finally, the updated iterative equation of model parameters can

be obtained:

mk+1 � mk + ηkΔmk, (30)

where ηk is the step size at the kth model parameter update.

Considering that the reflection coefficients are not uniformly

sensitive to each elastic parameter, we use a sub-step iterative

strategy. At the beginning of the iteration, we mainly correct the

more sensitive parameters: velocity and density. When the three

parameters reach a given error, we continue to the iteration and

start to correct the two anisotropic parameters. Until the given

error is reached, the iteration is terminated and outputs the

elastic parameters.

In addition, there is a description of the step length. Among

the gradient-type inversion methods, some are required to

calculate the step length (conjugate gradient method) and

some are fixed step length (Newton method). If the Wolfe

condition is used to calculate the step length, there are also

some application conditions (concavity, global/local

convergence, etc.); this is not always satisfied in nonlinear

problems. In the field of geophysics, the Gaussian-Newton

method, damped least squares method, and the generalized

linear inversion are commonly used, with the step length of

these methods fixed. The general step length is 1 (sometimes

slightly larger or smaller). The condition for stopping the

iteration is reaching the preset accuracy or the maximum

iteration number. In our algorithm, the step length is 1. Fixed

step length inversion methods in geophysics are widely used

[25–28].

Inverse stability and multi-solution
analysis

The solution of the objective function includes the idea of

generalized linear inversion. It requires a first-order

approximation to the nonlinear forward operator using the

Taylor formula. This process introduces truncation errors,

which have an impact on the uncertainty of the inversion

algorithm. Therefore, the linearity and non-uniqueness

analysis of the inversion is needed. According to Macdonald

et al. [29] and Larsen [30], it can be analyzed and detected by

residual function maps (RFMs). The residual functions for

selected parameter pairs are calculated as follows:

Epp(k, l) � ∑Nc

i�1
[Ri

m−pp − Ri
pp(k, l)]2, (31)

where Ri
m−pp denotes the P-wave reflection coefficient

corresponding to the ith angle for given the model

parameters, Ri
pp(k, l) denotes the recalculated P-wave

reflection coefficient corresponding to the ith angle after

replacing the parameter (k,l), and Nc is the critical angle.

For nonlinear equations, RMF can show sensitivity and

degree of linearization. The first is about the degree of

linearization because the linearized method can be used for

sensitivity analysis. When the RFM of each unknown

parameter pair in the equation shows an elliptical or closed

contour distribution around the real parameter pair, it indicates

that the uncertainty of the inversion is low and is suitable for

generalized linear inversion. If the residual function diagram of

the parameter pair shows the strip distribution (that is, the large

eccentricity of the corresponding ellipse), it indicates that the

linearity between the two parameters is weak and that using

generalized linear inversion may lead to poor results. If the

residual function diagram of a parameter pair is irregularly

distributed, then the linearity between the two parameter pairs

is very poor, and thus the generalized linear inversion method

FIGURE 5
Synthetic pre-stack angle gathers: (A) original noiseless data;
(B) added random noise SNR = 2. Each angle is 6°, 11°, 16°, . . ., 46°.
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may no longer be applicable. Next is sensitivity: the denser the

contour of the RMF diagram in the middle, the greater is the

disturbance change rate of the residual, and the more sensitive to

the parameters is the inversion [30,31] and vice versa. Therefore,

the inversion problem based on the exact reflection coefficient

equation can be analyzed. Based on the elastic parameters of the

mud shale and sandstone reflection interface model shown in

Table 2 [18], the RFMs of the exact reflection coefficient equation

are observed and analyzed.

The VTI media reflection coefficient equation contains ten

unknown parameters, which can be combined to 45 parameter

pairs, with each parameter pair corresponding to an RFM. There

are thus 45 RFMs in total. Due to this large number, only a few

representative results are shown here.

The residuals are calculated using PP-wave reflection

coefficients. The maximum incidence angle is 46°; the plotted

RFMs are smooth, regular, and most of them present closed

contours around the monopole, as in Figure 2A. This implies that

the generalized linear inversion method and the Levenberg-

Marquardt inversion algorithm are applicable [29]. We select

a few of the poor RFMs for display (Figures 2B–D). The RFMs’

contours for the parameter pair ρ-ε are dense (Figure 2D),

FIGURE 6
Inversion results. (A) Cauchy constraint inversion in noiseless trace gather; (B) Cauchy constraint inversion in SNR = 2 trace gather; (C)
Nonconstraint inversion in SNR = 2 trace gather. The black line indicates the true data, the red line indicates the inversion result, and the blue line
indicates the initial data. The accuracy of (A) is the highest, the accuracy of (B) is acceptable, and the accuracy of (C) is poor. (A) Shows the feasibility
of the inversion algorithm. By comparing (B) and (C) (particularly in the vicinity of black dashed boxes), it can be seen that using the constrained
inversion method to process noisy data can increase the accuracy and stability of results.
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implyimh that the inversion results for these parameters may be

unsatisfactory [29,30].

In addition, the introduction of the specific distribution of

the prior information of the parameters by Bayesian theory can

effectively reduce the uncertainty and non-uniqueness of the

inversion and improve the accuracy of results [29,32]. From the

above analysis, the nonlinear inversion algorithm combined with

Bayesian theory is stable and accurate and does not have a serious

non-uniqueness problem.

Application

Synthetic data test

In order to verify the correctness and accuracy of the

derivation method in a simple manner, we compared the

inversion result with the commonly used VTI media

approximation equation [9] and the exact reflection coefficient

equation. The reflection coefficient model contains both positive

and negative reflection coefficients with thin and thick layers,

which is relatively comprehensive. The seismic gather is

synthesized by the exact reflection coefficient equation

(Figure 3). In the two inversion methods, the 30 Hz ricker

wavelet is used.

As shown in Figure 4A, the inversion results based on the

exact reflection coefficient equation are very accurate. The

inversion results based on the linear reflection coefficient

equation are acceptable in trend but lack detail (Figure 4B).

For testing the feasibility and stability of the inversion

algorithm, we apply it to the data that are based on real well

logging data. The synthetic pre-stack angle gather is forwarded by

the exact VTI reflection coefficient equation. A Ricker wavelet

with a dominant frequency of 30 Hz is used in the forwarding

process. To test the noise immunity of the inversion algorithm,

random noise with a signal-to-noise ratio (SNR) of 2 is added to

the seismic gather, as shown in Figure 5.

Based on the noiseless seismic data, the Cauchy constrained

inversion is implemented; based on noisy seismic data,

unconstrained inversion and Cauchy constrained inversion are

implemented. From the inversion results (Figure 6), the accuracy

of the inversion results based on the exact reflection coefficient

equation is quite high in noiseless conditions. In the presence of

noise, the inversion algorithm can still predict results reasonably

well and the accuracy of the results with the Cauchy constraint is

higher. In addition, from the inversion results, the reflection

coefficient is less sensitive to the anisotropic parameters and the

accuracy of those parameters is slightly lower.

In conclusion, the proposed inversion method for VTI media

can stably and reasonably obtain the elastic parameter

information of the formation from the pre-stack seismic data.

Applied to actual work area

We applied the method to Work Area B. This area is located

in the middle of the depression, and years of exploration results

show that the stratigraphy mainly presents VTI anisotropy. The

FIGURE 7
Field seismic gather at well location. The well is at trace 73.

FIGURE 8
Wavelets of different incidence angles. The amplitude is
normalized. The corresponding incidence angles are 6° (blue), 15°

(green), 24° (orange), 33° (purple), and 42° (yellow). The smaller the
angle of incidence, the larger the amplitude of the wavelets,
and vice versa.
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main lithology is shale, mudstone, and minor sandstone. The

main cause of VTI anisotropy is formation pressure. Because the

formation is soft and plastic, fractures are not developed and the

structure is relatively simple. Figure 7 shows the 200-traces

seismic profile with a log. The seismic data was processed by

spherical spreading compensation, absorption attenuation

compensation, surface-consistent amplitude correction, surface

consistent deconvolution, noise suppression, NMO, and pre-

stack time migration, among others. Figure 8 is the extracted

wavelets of different incident angles. The incidence angles of the

FIGURE 9
Inverted results of exact equation at the well location: (A) P-wave velocity (m/s); (B) S-wave velocity (m/s); (C) density (kg/m3); (D) ε; (E) δ.
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seismic gather set are 6°, 15°, 24°, 33°, and 42°. In addition, for

feasible inversion using Cauchy constraint in this work area, we

conducted a statistical analysis of the elastic parameters of the

inversion using logging data; the results show that the Cauchy

constraint is more in line with the actual situation of the work

area (Supplementary Appendix SB).

Figure 9 shows the inversion results, with an accurate spread

condition of velocity, density, and anisotropy intensity. The well-

bypass inversion result is in good agreement with the coarsened

logging data. The inversion results are stable and almost free of

noise interference. This shows the accuracy and robustness of the

inversion method.

In Figure 9, the continuous spreading of each parameter

indicates that there is no obvious fracture distribution in this

area. This is also revealed in the seismic profile (Figure 7).

Figure 9 also shows that the high value areas of velocity and

density (Figures 9A–C) are corresponding low values of

anisotropic parameters (Figures 9D,E). This indicates that, for

subsurface formations, the elastic parameters vary across

different rocks. For soft and plastic rocks like shale and

mudstone, the velocity and density are low, and these rocks

are vulnerable to the effect of formation pressure. This condition

easily forms strong VTI anisotropy. For hard and rigid rocks like

sandstone, carbonate, and dolomite, the velocity and density are

high, and they are less susceptible to the effect of formation

pressure. Therefore, the anisotropy is relatively weak. With the

description above, the results are a meaningful reference for

exploration and construction and provide data for relevant fields.

Conclusion

Humans have a great interest in exploring the Earth’s

subsurface. Since direct exploration is impossible, we can

use inversion methods. The complexity of geophysical

inversion has improved, from the earliest isotropic linear

inversion to the later constrained anisotropic nonlinear

inversion, in accuracy and stability. It is also closer to the

actual subsurface situation.

We derive the generalized linear inversion and iterative

reweighted least squares combination algorithm for the exact

VTI media reflection coefficient equation. The proposed

inversion method can avoid calculation errors introduced

from the approximate equations, particularly for far offsets

with large angles. The reflection coefficient equation forward

curve (Figure 1) and the synthetic data tests also illustrate this

point. We managed to protect weak reflections by using the

Cauchy distribution as the prior constraint and Bayes’ theorem

for application. The statistical analysis of the work area logging

data show that it is feasible to use the Cauchy constraint. The

objective function is solved with Bayesian theory, which

improves the stability and quality of the calculations. The

noise immunity is also improved, allowing it to be better

applied in actual data. Finally, the method is applied feasibly

and effectively in the real work area. The inversion results can

provide an accurate understanding of the VTI anisotropy

stratigraphic structure and serve further geophysical analysis.

The method can be improved in some respects. Inversion

theory with different constraints (Laplace, Markov random field,

etc.) [33,34] can be derived to adapt to different situations. The

inversion equation of more complex anisotropic media

(horizontal transverse isotropic, tilted transverse isotropic,

orthorhombic, etc.) can be derived to better adapt to the real

underground situation.

Furthermore, the purposed inversion algorithm can also be

used for other nonlinear inversion problems. After a simple

extension, it can be applied to the joint PP and PS wave

inversion. It can also be extended to the pre-stack inversion of

multicomponent seismic data (horizontal and vertical

components).
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