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Exploring new saturable absorber (SA) materials with excellent performance to achieve
Q-switching and mode-locking operations is a hot topic in ultrafast laser research. The
impressive specific surface areas, structural tunability, and high thermal and chemical stability
of the zeolitic imidazolate framework (ZIF) materials make them promising candidates as high-
performance SAs. In this work, we demonstrated the potential of the ZIF-67 SAs for ultrafast
fiber laser applications. The nonlinear optical absorption characteristics of the ZIF-67 SAs at
the telecommunication band were investigated by using the balanced twin-detector method.
By incorporating the ZIF-67 SAs into the Er3+-doped fiber laser cavity, stable Q-switching and
mode-locking operations were achieved. The research results are essential for promoting the
application of novel hybrid nanomaterials in ultrafast lasers.
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INTRODUCTION

As a typical representative of third-generation lasers, fiber lasers are promising in many scientific and
industrial fields, occupying a large share of the commercial laser market. Fiber lasers can be divided
into two types depending on the mode of operation: continuous and pulsed. The pulsed fiber laser
has high pulse energy and short pulse width, greatly expanding the application of lasers in fiber optic
communication, automotive manufacturing, laser cutting, medical devices, and other fields.
Q-switching and mode-locking are the two main techniques enabling pulsed laser, both of
which can be implemented actively or passively. The passive approach has gained increasing
interest in the last few years due to its simplicity, flexibility, compactness, and low manufacturing
cost. Unlike the active approach, the passive one does not rely on bulky and complex optical
modulators and electronic drivers, which can achieve laser pulse output simply by placing a saturable
absorber (SA) in the resonant cavity. Therefore, the SA plays a crucial role in the passive Q-switched
and mode-locked lasers. The development of passive pulsed lasers relies heavily on SA materials.

Several types of SA materials have been investigated to realize passive pulsed lasers, such as transition
metal dichalcogenides [1–8], topological insulators [9–13], carbon nanotubes [14, 15], graphene [16–19],
transitionmetal oxide [20–23], black phosphorus [24–28], and ferromagnetic semiconductors [29]. In some
recent studies, it has been found that lasers can perform both Q-switching and mode-locking operations
with the help of some excellent SA materials. In 2018, D. Mao et al. successfully realized Q-switching and
mode-locking operations using a film-type ReS2-PVA SA in an erbium-doped fiber laser (EDFL) [30]. In
2019, C.Wei et al. reported the implementation of theQ-switching andmode-locking operations in aHo3+/
Pr3+ co-doped ZBLAN fiber laser at 3 μm mid-infrared waveband using a single-walled carbon nanotube
SA [31]. In 2020, N.F. Zulkiplia et al. achieved twomodes of pulsed EDFLs using Eu2O3 as a SA [23]. In the
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same year, W. Zhang et al. successfully built Q-switched and mode-
locked erbium-doped fiber lasers using tellurene nanosheets as SAs
[32]. It is of great interest to continue exploring new SAmaterials that
can perform multiple types of pulsed operations.

Metal-organic frameworks (MOFs) have attracted a great deal of
attention in the past decade. They are hybrid materials with
repeating, cage-like structures constructed with metal/metal-
cluster nodes bridged by organic linkers. With high internal
surface areas and unique structure design and tunability, MOFs
have proven to be excellent gas storage [33], gas sensors [34],

supercapacitors [35], and catalysts [36]. MOFs can possess
favorable photophysical properties due to the coordination of
metal nodes with organic linkers [37, 38], making them one of
the most promising materials for applications in nonlinear optics,
especially in ultrafast lasers [39, 40]. However, the poor
hydrothermal and chemical stability has limited the application
of MOFs in some fields. Under high temperature, high humidity,
or strong acidic and alkaline environments, the coordination bonds
between metal ions and organic ligands in MOFs are easily broken,
leading to framework changes or even collapse.

FIGURE 1 | Characteristics of the ZIF-67: (A) SEM image; (B) TEM image; (C) Raman spectrum; (D) Visible-NIR spectrum.

FIGURE 2 | The setup for determining the nonlinear optical absorption characteristics of the ZIF-67 SAs.
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Exploring a new material that exhibits better hydrothermal and
chemical stability and inherits the advantages ofMOFs is a good option
to solve the above problems. As a subfamily of MOFs, zeolitic
imidazolate framework (ZIF) materials have all these qualities [41,
42]. They are porousmaterials consisting of transitionmetal ions cobalt
(Co2+) or zinc (Zn2+) bonded by imidazole. In recent years, H. Chu
et al. first investigated the nonlinear saturable absorption properties of
ZIF-67 materials in the near- and mid-infrared spectral bands and
designed passive Q-switched solid-state lasers based on ZIF-67 SAs
operating at 1, 1.3, 2, and 2.3 μm wavelength, respectively [43–46].
These results fully illustrate the excellent nonlinear saturable absorption
properties of the ZIF-67 materials. However, up to now, the research
reports based on ZIF-67 are limited to solid-state lasers, and only
passive Q-switching operation has been achieved. The nature and
applications of ZIFs in ultrafast lasers are to be further explored.

This work demonstrated the potential of ZIF-67 SAs for ultrafast
fiber laser applications. By incorporating the ZIF-67 SAs into the
Er3+-doped fiber laser cavity, stable Q-switching and mode-locking
operations were achieved. To the best of our knowledge, it is the first
time ZIF-67 has been implemented as SAs in a fiber laser for both
Q-switching and mode-locking operations.

FABRICATION AND CHARACTERIZATION
OF ZEOLITIC IMIDAZOLATE
FRAMEWORK-67 SATURABLE
ABSORBERS

We initially fabricated fiber-compatible ZIF-67 SAs to integrate
the ZIF-67 materials into a fiber laser cavity. The fabrication
process follows: First, bulk-state ZIF-67 crystals were ground into

FIGURE 3 | The nonlinear optical absorption characteristics of (A) SA1 and (B) SA2.

FIGURE 4 | Experimental schematic of the ZIF-67-based Er3+-doped
fiber laser.

FIGURE 5 | The typical oscilloscope traces of the Q-switched pulse
trains under different pump power.
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powder in a ball mill. Second, 2 g purple ZIF-67 powder dispersed
in 50 ml absolute ethanol solution was stirred with magnetic force
at a rate of 1,500 rpm for 2 h. Third, the resulting mixture was
placed in an ultrasonic cleaner for 8 h and then put into a
centrifuge to remove the large sediment by high-speed
centrifugation. The mixture was allowed to stand for 12 h, and
the supernatant was then taken for SAs preparation. In the final
step, we dropped the ZIF-67 dispersion onto the fiber connector
end facet with a dropper and placed it vertically downward until it
dried naturally. After repeating this step several times, about
50–100 μl of ZIF-67 dispersion was coated onto the fiber
connector end facet. A fiber-compatible ZIF-67 SA was finally
obtained by connecting a dispersion-coated fiber connector to a
clean fiber connector with a fiber optic adapter.

The surface morphology of the as-prepared ZIF-67 crystals
was investigated by SEM (Quanta FEG 250, FEI) and TEM (JEM-
2100F, JEOL). The SEM and TEM images show that the as-
prepared ZIF-67 materials possess a rhombic dodecahedral
morphology with uniform particle size distribution. The
particle size is about 500 nm. The structural characterization
of the ZIF-67 materials was determined by Raman
spectroscopy with a spectral resolution of 2 cm−1, recorded by
a Raman spectrometer under 633 nm laser excitation. The

distinct vibrational modes observed in Figure 1C generally
agree with the previous research description. Figure 1D
illustrates the spectral absorbance of the ZIF-67 materials in
the visible and near-infrared bands, revealing an absorption
peak in the band from 1,455 nm to 1,580 nm.

We further investigated the nonlinear optical absorption
characteristics of the ZIF-67 SAs by using the balanced twin-
detector method. The test setup is shown in Figure 2. A
homemade nonlinear polarization rotation (NPR) EDFL with
a pulse width of ~643 fs at 1575.62 nm and a repetition rate of
26.04 MHz was employed as the probe light source. The
transmittance at different incident light intensities was fitted
by the following equation:

T � 1 − ΔT exp( − I

Isat
) − Tns, (1)

where T is the transmittance, ΔT is the modulation depth, I is the
incident intensity, Isat is the saturation intensity and Tns is the
non-saturable loss.

We tested two as-fabricated ZIF-67 SAs successively, and the
tested results and the fitting curves are shown in Figure 3.
According to the fitting curve in Figure 3A, the saturation
intensity, modulation depth, and non-saturable loss of the first

FIGURE 6 | (A) The optical spectrum; (B) A single-pulse profile of the Q-switched pulses.

FIGURE 7 | The evolution of (A) average output power and single pulse energy, (B) repetition rate and pulse duration as pump power increase.
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ZIF-67 SA (referred to as SA1 later) are approximately
1.552 MW/cm2, 11.212%, and 15.523%, respectively, which has
been used in Section 4.1 to reveal the Q-switching ability of the
ZIF-67 SAs. As shown in Figure 3B, the other ZIF-67 SA
(referred to as SA2 later) features a saturation intensity of
1.377 MW/cm2, a modulation depth of 7.419%, and a non-
saturable loss of 13.858%, which has been used in Section 4.2
to initiate the mode-locking operation.

EXPERIMENTAL SETUP

Figure 4 shows the experimental setup of the pulsed Er3+-doped
fiber laser incorporating the fabricated ZIF-67 SAs. The pump
energy from a 980-nm band laser diode (LD) pump source with a
maximum output power of 600 mW was guided into the laser
cavity by a 980/1,550 nm wavelength division multiplexer
(WDM). A 60 cm long Er3+-doped fiber (EDF, Liekki Er-80,
8/125) was served as the laser gain medium with a dispersion
parameter of ~15.7 ps/nm/km. The Er3+ concentration and
nominal absorption at 1,530 nm were 3,150 ppm and 80 dB/m,
respectively. A polarization-insensitive isolator (PI-ISO) ensured
unidirectional propagation of light in the cavity. A polarization

controller (PC) was used to adjust the polarization state and
birefringence in the cavity. The ZIF-67 SAs were inserted between
the WDM and PC. The laser output from the 10% port of a 90:10
optical coupler (OC). The temporal characteristics of the output
laser were recorded by a 3 GHz fast speed PIN photodetector
combined with a digital oscilloscope (MDO3102, Tektronix). The
optical spectral characteristics of the output laser were measured
by an optical spectrum analyzer (AQ6370, Yokogawa). The radio-
frequency (RF) spectrum was analyzed by a spectrum analyzer
(FPC1000, Rohde & Schwarz). The output power was monitored
by an optical power meter.

EXPERIMENTAL RESULTS AND
DISCUSSIONS

Q-Switching Performance
To exclude the possibility of the self-Q-switching or self-mode-
locking operation in the EDFL without the ZIF-67 SA, we did not
insert the SA into the laser cavity at first. Only continuous-wave
operation was observed during the adjustment of the pump
power or the PC. Instead, once the ZIF-67 SA1 was inserted
into the laser cavity, the remarkable passively Q-switched pulse

FIGURE 8 |Mode-locking performance: (A) Oscilloscope trace of the pulse train; (B) Oscilloscope trace of a single pulse; (C) Optical spectrum; (D) Output power
versus pump power.
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trains can be observed when the pump power exceeded 108 mW.
The typical oscilloscope traces of the Q-switched pulse trains
under different pump power are shown in Figure 5. As the pump
power varied from 150 to 250 mW, the pulse output stayed stable,
and the repetition rates were increased from 20.58 to 29.33 kHz.
As commonly observed in passively Q-switched lasers, the pulse
repetition rate increases, and the pulse width becomes narrower
as the pump power increases.

The corresponding optical spectrum is shown in
Figure 6A. The laser wavelength is centered at 1558.35 nm
with a 3-dB bandwidth of 0.95 nm. Figure 6B shows a single-
pulse profile of the Q-switched pulses at the pump power of
360 mW and exhibits that the pulse duration is 3.4 µs? The
corresponding pulse repetition rate is 39.84 kHz, shown in
Figure 7B. Both the pulse duration and spectral width agree
with the typical feature of Q-switched fiber lasers. Varying the
polarization state in the cavity hardly changes the
characteristics of the pulse trains and the optical spectrum,
indicating that the fiber laser’s Q-switching operation is
polarization insensitive.

The characteristics of the laser pulses as a function of pump
power are shown in Figure 7. Figure 7A shows the dependence of
the average output power and the single pulse energy on the
pump power, and Figure 7B shows the pulse duration and the
pulse repetition rate versus the pump power. As the pump power
increased from 120 to 360 mW, the Q-switching operation
remained stable. The average output power increased almost
linearly with the pump power, from 9.75 to 24.67 mW. The
single pulse energy can reach up to 592.59 nJ. The pulse
duration gradually decreased from 9.1 to 3.4 µs? However,
when the pump power reached 380 mW, the pulses turned
unstable, and the top of the pulse tended to split. The pulse

width was slightly widened to 3.6 µs, resulting in a decrease in the
single pulse energy to 577.59 nJ. Unlike the mode-locking
operation, the generation of Q-switched pulses relies on the
saturation of SA, which causes the repetition rate of the pulses
to depend on the pump power rather than the cavity length. As
shown in Figure 7B, the repetition rate is positively correlated
with the pump power. The repetition rate increases from 18.08 to
42.71 kHz along with the increase of pump power from 120 to
360 mW. The reason is that the SA will saturate faster when
increasing the pump power, which leads to an increase in
repetition rate.

Mode-Locking Performance
Then, we inserted the other ZIF-67 SA (SA2) with an additional
~8 m of single-mode fiber (SMF) into the cavity. The dispersion
parameter of the SMF is ~17 ps/nm/km. The total length of the
cavity is about 16.25 m. Thus, the net dispersion of the Er3+-
doped fiber laser is calculated to be −0.35 ps2.

After carefully adjusting the PC in the cavity, a stable self-
started mode-locking operation was achieved when the pump
power reached 90 mW. Limited by the maximum nominal power
of 600 mW, the pump power was adjusted in the range of
90–530 mW, and the mode-locking operation can be
maintained stable.

The mode-locking performance at the pump power of
410 mW is shown in Figure 8. A typical mode-locked pulse
train with a pulse-to-pulse interval of 79.08 ns is shown in
Figure 8A, corresponding to a fundamental repetition rate of
12.646 MHz with a total laser cavity length of ~16.25 m. The
oscilloscope trace of a single mode-locked pulse is shown in
Figure 8B. Due to the limitations of the response times of the
detector and oscilloscope, the actual pulse duration is

FIGURE 9 | RF spectrum at a fundamental frequency of 12.646 MHz with 1 kHz resolution. The unit of the vertical axis is dBm.
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undoubtedly shorter than the bandwidth of 2.2 ns recorded by the
oscilloscope. The optical spectrum with a central wavelength of
1559.672 nm and a resolution bandwidth of 0.02 nm is shown in
Figure 8C, where a typical Kelley sideband peak can be observed.
Figure 8D shows the relationship between the average output
power and the pump power, and it is clear that the output power
is linearly related to the pump power. The maximum average
output power was 24.58 mWunder a pump power of 530 mW. As
shown in Figure 9, the RF spectrum with a bandwidth of 4 MHz
and a resolution of 1 kHz depicts the stability of the mode-locked
laser with the fundamental repetition rate of 12.646 MHz.
Continuous 4-h observation of the oscilloscope traces and
optical spectra of the mode-locked pulses was performed to
verify the long-term stability of the fiber laser. The pulse train
and the central wavelength of the spectrum were always stable.
After we stopped the laser for 24 h and turned the pump on again,
the mode-locked pulse was still outputting stably, and the laser
center wavelength was still stable at 1559.6 nm, which illustrates
the long-term stability of the laser.

CONCLUSION

In this paper, the nonlinear optical absorption characteristics of
the ZIF-67 SAs were discovered and investigated. The two
fabricated ZIF-67 SAs with the modulation depth of 11.212%
and 7.419% were subsequently used to implement stable
Q-switching and mode-locking operations, respectively. Self-
started Q-switched pulses at 1558.35 nm can be observed with
a threshold pump power of 108 mW. The Q-switched pulse train
remained stable as the pump power increased from 120 to
360 mW. The maximum single pulse energy can reach up to
592.59 nJ. The top of the pulse started to split until the pump

power rose to 380 mW, resulting in a slight decrease in the single
pulse energy and an increase in pulse duration. In the mode-
locking operation, a typical mode-locked pulse train with a pulse-
to-pulse interval of 79.08 ns and a central wavelength of
1559.672 nm was recorded with a total laser cavity length of
~16.25 m. The typical Kelley sideband peak can also be observed.
These results demonstrate that the ZIF-67-based SA can serve as a
promising mode locker and Q-switcher in the field of ultrafast
lasers.
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