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The main idea of this review is to trace the interrelations and inter-transitions between the
basic concepts and approaches of the correlation optics (including the light coherence)
and the singular optics dealing with networks of “exceptional” points of light fields. The
principles and examples are described of formation of light fields with required structures
(amplitude, phase and polarization distributions, spectral properties as well as the internal
energy flows and energy gradients responsible for optical forces) via superpositions of
model optical fields of simple standard configurations and under controllable correlation
conditions. The theoretical and experimental results, obtained by the authors and other
researchers, demonstrate possibilities of the general approach to the complex fields
formation with spatial and polarization inhomogeneities. A special topic, considered in
more detail, is the interaction of structured optical fields with the media containing
suspended micro- and nanoparticles, their inhomogeneous heating by the laser
radiation and the accompanying self-diffraction and self-focusing phenomena. Possible
light-induced phase transitions and controllable generation of the gas-vapor microbubbles
in the medium are discussed. Specific optical singularities in polychromatic light fields are
analyzed in connection to the field coherence. Some experimental solutions for revealing
the fine structure of optical fields by means of the interference schemes are presented.
Practical applications for the micromanipulation techniques, optical diagnostics of remote
and random objects, optical treatment and laboratory practice in biology and medicine are
described and discussed.
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1 INTRODUCTION

The term “correlation optics” was first introduced in the 60–70s of the past century in applications
related to the development of holography. In particular, the referenceless holography employing the
holographic associative memory (ghost-image holography) [1–8] was a hot topic at that time.
Simultaneously, the ideas of correlation optics were developed within the framework of a broader
concept – “pseudo-depolarization” of multiply scattered coherent radiation [9]. Apparently, the
fields of this type were first described in Refs. 10, 11 (before the “emergence” of singular optics and,
accordingly, without explicit recognition of the singular features). In these works, the fields were
called pseudo-depolarized in the following sense. Locally (at each point), the field is fully polarized
(e.g., the local intensity can be completely nullified at certain orientations of the quarter-wave plate
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and the linear analyzer), but the polarization state varies from
point to point, and to extinguish the field at any other point one
needs to change the orientations of the polarizer-analyzer pairs.
Essentially, any integrated polarization analysis over a sufficiently
large area of the beam cross section indicates the absence of a
predominant state of polarization. Accordingly, the efficiency of
holographic recording of objects generating pseudo-depolarized
fields with deterministically (uniformly) polarized reference wave
varies for different parts of the field and is, generally speaking,
lower than for non-depolarizing objects. In the modern
terminology, such fields are frequently characterized by the
term “global depolarization”, which invokes the view of the
Poincare sphere, as the “globe” of polarization states of light
[12–15].

The correlation-optics concept is close to the EmileWolf’s idea
of “Optics of observable quantities” [16, 17]. It emphasizes that
the parameters underlying classical wave optics (local values of
the amplitude, phase and polarization of a light wave) are not
directly measured and, consequently, cannot be directly
controlled. However, these parameters can be available
through certain correlation functions, describing the
immediately observable features of the light field behavior. The
correlation functions can be determined and realized
experimentally by measuring and controlling the time-
averaged values of the field intensity under proper
experimental conditions, and this opens ways for the
meaningful and consistent control of the optical-field
parameters “in a whole”.

In this paradigm, the interference with controllable reference
waves is the main instrument, and its fruitful application requires
detailed and consistent allowance for the full set of the light-wave
parameters. For example, the experimentally registered
interference pattern gives access to the underlying parameters
via the only channel of the pattern visibility. At the same time, its
consistent interpretation requires the knowledge of the
polarization properties and the degree of coherence of the
superposing waves. In particular, even the explanation of the
two-slit Young experiment is not fully determinate in the case of
“completely unpolarized” light [14, 18].

In this context, let us start the correlation-optics analysis by a
short inventory of the underlying light-field characteristics. As
usual, the optical field is considered as an electromagnetic wave
whose electric E(R, t) and magneticH(R, t) vectors are space- and
time-dependent, R � (x, y, z)T is the spatial radius-vector
(superscript “T” denotes matrix transposition); t symbolizes
time. In regions without free charges and currents, the field
vectors satisfy the Maxwell’s equations [19]:

∇H � 0,
zH
zt

� −c
μ
∇× E, ∇E � 0,

zE
zt

� c

ε
∇× H, (1)

where c is the speed of light in vacuum, ε and μ are the
permittivity and permeability of the medium, respectively, and
the Gaussian system of units is used. Eq. 1 show that the electric
and magnetic fields in the light wave are interrelated, and the
distribution of either one of them, E or H, is sufficient for the full
electromagnetic wave characterization. In view of the most

physical manifestations, it is suitable to consider characteristics
of the vector E as the underlying parameters of an optical field.

As a rule, we consider quasi-monochromatic waves [19–22]
which can be presented via the Fourier integral

E(R, t) � ∫∞
−∞
E(R, ])e−i]td]

2π
� Re∫∞

0

E(R, ])e−i]td]
π

(2)

in which the spectral density E(R, ]) differs from zero in a narrow
interval with the central frequency ω so that

E(R, t) � Re⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎝∫∞
0

E(R, ]) d]
π
⎞⎟⎟⎠ e−iωt⎤⎥⎥⎥⎥⎥⎦ ≡ Re[E(R, τ) exp(−iωt)]

(3)
where E(R, τ) characterizes the wave amplitude at the central
frequency. Its dependence on time is slow with respect to the
oscillation period 2π/ω, which is reflected by the “slow-time”
argument τ. The slow-time complex function E(R, τ) supplies a
suitable instrument for description and analysis of such waves
[23–25].

An important special class of light fields is the so called
paraxial waves [23–25] where the physically selected
longitudinal direction (propagation direction) z exists, and the
rate of the field amplitude variations along z is much lower than
that in the transverse (x, y) plane; in turn, the characteristic
variations’ scale in the transverse plane is much higher than the
vacuum wavelength λ � 2π/k (k � ω/c is the wave number). In
such situations, the electric vector is nearly transverse and can be
described by the complex amplitude distribution

E(R, τ) � E⊥ + ezEz � [u + i

kn
ez(∇⊥ · u)]eiknz. (4)

Here, the subscript “⊥” denotes the transverse part of the
vector, R⊥ = r = (x, y)T, ez is the unit vector of the longitudinal
direction z, n � ��

εμ
√

is the medium refractive index, u(r, z, τ) is
the paraxial complex amplitude [23, 24]:

u � e⊥u � exux + eyuy � e+u+ + e−u−, (5)
ex, ey being the unit vectors of the transverse coordinates, and

e+ � 1�
2

√ (ex + iey), e− � 1�
2

√ (ex − iey), u+ � 1�
2

√ (ux − iuy),
u− � 1�

2
√ (ux + iuy)

(6)
are the complex unit vectors and the transverse field components
in the circular-polarization basis. The transverse complex
amplitude Eq. 4 satisfies the paraxial wave equation [23, 24]:

i
zuσ

zz
� − 1

2kn
∇2
⊥uσ , (7)

where ∇⊥ � ex( z
zx) + ey( z

zy) is the transverse gradient, and σ = ±1
for the basis of circular polarizations or σ = x, y for the basis of
linear polarization which are equally admissible in the paraxial
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approximation. The main (first) term of Eq. 4 describes the
transverse field component, while the longitudinal component
(second term) is of the relative order γ � (kb)−1 in magnitude,
with b being the characteristic transverse scale of the distribution
u(r, z). The quantity γ is the small parameter of the paraxial
approximation; the longitudinal characteristic scale of the
paraxial beam equals zR � kb2.

2 FOUNDATIONS OF THE
CORRELATION-OPTICS AND
POLARIZATION-OPTICS FORMALISM
2.1 General Concepts and Relations
Correlation functions are determined as time-average values of
the products of the field characteristics taken at different spatial
points and different moments of time. In the paraxial case, main
correlation functions are collected in the coherence matrix
introduced by Wolf [16, 17, 26, 27].

W(r1, r2,Δτ) � 〈(Ep
x(r1, τ1)

Ep
y(r1, τ1))(Ex(r2, τ1 + Δτ) Ey(r2, τ1 + Δτ) )〉

� [Wxx(r1, r2,Δτ) Wxy(r1, r2,Δτ)
Wyx(r1, r2,Δτ) Wyy(r1, r2,Δτ)]. (8)

whereWij(r1, r2,Δτ) � 〈Ep
i (r1, τ1)Ej(r2, τ1 + Δτ)〉 (i, j = x, y) is

the two-point correlation function (cross-correlation function),
and 〈. . .〉 denotes an ensemble average (practically coincides
with the time-average). Matrix (Eq. 8) performs a transition from
the underlying field parameters to the immediately observable
correlation (time-averaged) properties of light fields. Normally,
the correlation functions tend to zero for large enough difference
between r1 and r2 and Δτ > τc (coherence time). On the contrary,
when r1 � r2,Δτ � 0, the coherence matrix contains data on the
correlation between the Cartesian components of the electric-
field-vector fluctuations at a given spatial point at a given time
and is directly related to the Stokes parameters:

S0 � 〈ExE
p
x〉 + 〈EyE

p
y〉 � I, S1 � 〈ExE

p
x〉 − 〈EyE

p
y〉,

S2 � 〈ExE
p
y〉 + 〈EyE

p
x〉, S3 � i(〈ExE

p
y〉 − 〈EyE

p
x〉) (9)

(S0 coincides with the light intensity I). The Stokes parameters are
local and do not describe variations of the state of polarization of
a light beam upon its propagation.

In many cases, both fully and partially coherent paraxial
beams can be suitably characterized by the Wigner
distribution function, which “unites” the spatial distribution of
the light energy in a fixed cross section with the angular
distribution of the wave propagation in the far field [28–31]:

U(r, p) � 1

λ2
∫W(r, ρ) exp[ − ik(p · ρ)]d2ρ,

where

W(r, ρ) � 〈u(r + ρ

2
)up(r − ρ

2
)〉,

u is the scalar complex amplitude Eqs 5–7 of the paraxial field,
and vector p = (px, py)

T determines the transverse components of

the unit-vector (px, py, 1)
T specifying the far-field direction.

Wigner function enables the suitable characterization of the
beam propagation properties via the first- and second-order
“intensity moments” [29–31]:∫( r

p
)U(r, p)d2r d2p, ∫( r

p
)( r

p
)T

U(r, p)d2r d2p

(here, the 4-column and 4-row are multiplied according to the
matrix-product rule, like in Eq. 8). Remarkably, this formalism
can be generalized to vector beams with inhomogeneous
polarization [30], and it is directly applicable to description of
the beams propagating in stochastic scattering media [32].

2.2 Non-Paraxial Fields and Genuine 3D
Polarization States
The paraxial representations Eqs 4–9 are quite relevant in most
applications. However, in highly structured light fields, their 3D
(non-paraxial) versions are useful:

W(r1, r2,Δτ) � ⎡⎢⎢⎢⎢⎢⎣Wxx(r1, r2,Δτ) Wxy(r1, r2,Δτ) Wxz(r1, r2,Δτ)
Wyx(r1, r2,Δτ) Wyy(r1, r2,Δτ) Wyz(r1, r2,Δτ)
Wzx(r1, r2,Δτ) Wzy(r1, r2,Δτ) Wzz(r1, r2,Δτ)

⎤⎥⎥⎥⎥⎥⎦,
(10)

which differs from the paraxial prototype (Eq. 8) solely by
addition of the third coordinate z. Accordingly, the 3D
generalization of (Eq. 9) leads to the Stokes-Gell-Mann
parameters [33].

S0 � 〈|Ex|2 +
∣∣∣∣Ey

∣∣∣∣2〉; S11 � 〈|Ex|2〉 − 〈
∣∣∣∣Ey

∣∣∣∣2〉; S12 � �
3

√ 〈|Ex|2〉 + 〈
∣∣∣∣Ey

∣∣∣∣2〉 − 2〈|Ez|2〉
2

;

S12 � 2Re〈Ep
yEz〉; S22 � 2Re〈Ep

zEx〉; S23 � 2Re〈Ep
xEy〉;

S31 � 2Im〈Ep
yEz〉; S32 � 2Im〈Ep

zEx〉; S33 � 2Im〈Ep
xEy〉.

(11)

Note that for paraxial fields, where only the x- and
y-components of the field are significant, the Stokes-Gell-
Mann parameters S0, S11, S23, S33 reduce to the standard
Stokes parameters (Eq. 10), while S12 becomes the same as S0,
and the remaining ones vanish.

In the framework of the presented statistical-electrodynamic
definition of the Stokes parameters (Eq. 11), these parameters
appear as “single-point” second-order correlation functions of the
orthogonal polarization components. In this case, the phase
relations between the orthogonal components, which
determine the state of polarization, are also taken into account.

Recent advances in the areas of nanophotonics and near-field
optics stipulate growing interest to the polarimetric structure of
3D light fields [34–50]. An interesting fact is that any state of
polarization of the 3D fields can be represented in terms of regular
and irregular components [34–36]. In such cases, the regular
component is formed by composition of a pure state (perfectly
polarized), a 2D unpolarized state (for which the polarization
ellipse behaves randomly in a fixed plane) and a 3D unpolarized
state. The irregular component is determined by the coherent
composition of two pure states with polarization ellipses lying in
different planes, while any irregular distribution is a 3D optical
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field. The genuine 3D states of polarization demonstrate essential
role of the (nominally) longitudinal polarization component and
are characterized by fluctuations in the direction of propagation.

An extension of this approach involves the assessment of
purity for partially polarized fields in three dimensions [37] with
separation of the circularly- and linearly-polarized contributions,
which is proposed to be described via the coherency-matrix
elements parameterized in terms of polarization ellipticity,
regarding the intrinsic polarization properties of the field. The
similar concepts appear to be fruitful for purposeful formation of
complex optical fields with inhomogeneous 3D polarization
structures [38, 39]. Alternative highly efficient instruments for
characterization of the partially-coherent 3D optical fields involve
fruitful concepts of the polarimetric dimension, polarimetric
purity and polarimetric regularity [35, 36, 49].

A well-developed 3D polarization can be formed upon tight
focusing of partially coherent beams. Considering the example of a
radially polarized Gaussian Schell-model beam [40] and partially
polarized beams constructed by incoherent superposition of two
orthogonally polarized plane-wave modes, it was revealed that
there exists a nano-scale region near the focus where the field
shows the expressed 3D polarization. The focal field in this case
demonstrates a variety of polarization states from fully unpolarized
to 3D polarized, which can be used for detection and optical
manipulation of micro- and nanoparticles [41].

As is well known, the circularly polarized light is the source of
the spin angular momentum (SAM) directed longitudinally
(along the direction of propagation) [19, 24]. Accordingly, a
complex inhomogeneous states of polarization are associated
with the SAM whose local values and directions are dictated
by the local 3D polarization [42–44]. For non-paraxial light, the
transverse spin, orthogonal to the main direction of propagation,
is rather typical, and its existence is largely independent on the
state of polarization of the wave. As is shown in Refs. 45, 48, the
transverse spin is independent of the 2D polarization and is
preserved even in 3D fields generated by completely unpolarized
paraxial light. This is in sharp contrast to the usual longitudinal
SAM, which is directly related to the 2D polarization and vanishes
in unpolarized fields. This shows the difference between the 2D
and 3D descriptions of polarization: A completely unpolarized
2D field is, at the same time, half-polarized in a 3D sense.

Accordingly, 3D-structured light beams that are generated by
a 2D source may also carry a sort of the azimuthal phase factor,
i.e., acquire a nonzero contribution to the optical helicity density
[45, 46], which does not depend on the state of polarization and
can therefore originate from an unpolarized 2D light source. As a
consequence, light generated by a completely unpolarized
paraxial OV source can exhibit optical activity [46].

A characteristic feature of 3D fields is the existence of the
longitudinal electric and/or magnetic components,
commensurate to the usual transverse ones [23–25, 42–44]. In
paraxial beams, this fact is responsible for a set of fine effects
concerning the polarization-dependent deviations from the
geometric-optics beam trajectory [51–53]. The physical
relevance and especial role of the longitudinal field
components have been confirmed with the model examples of
fields formed by the interference of plane waves propagating in

orthogonal directions [54]. In general, light fields with the
longitudinal polarization naturally appear upon propagation
through optically anisotropic crystals, due to strong focusing,
in cases of or multiple scattering in dull media or at random phase
objects and in optical waveguides as well as in the processes of
optical heterodyning (mixtures of waves of various states of
polarization). The longitudinal field components can be
employed in sensitive optical diagnostics, in particular, for the
confocal microscopy of isolated anisotropic molecules and in the
nanorough-surface investigation [55]. Their presence is typical
for electromagnetic localized waves that will be briefly discussed
below in Section 6.

Noteworthy, the most complete characterization of the
polarized light is available through estimating the measure of
mutual coherence of the orthogonally polarized beam
components. Thus, a combination of elements of the Wolf
coherence matrix can be used to describe such characteristics
of a light beam as intensity, coherence, and polarization [56]. In
2003, E. Wolf substantiated the fundamental role of interference
for the analysis of partially polarized light on the basis of a unified
theory of coherence and polarization of stochastic
electromagnetic fields [16, 17, 26]. It should be noted that the
most profound and fundamental definition of the polarization of
light is just given in terms of mutual coherence of the orthogonal
polarization components of the beam. Accordingly, the degree of
polarization appears to be equal to the maximum value of the
degree of coherence of the orthogonal polarization components,
which is realized in the case of equal-intensity components.

2.3 Poincaré Sphere and Its Generalizations
A special place in the representation of polarized light is occupied
by the approach proposed by Poincaré in 1892, which is based on

FIGURE 1 | Poincaré sphere and its parameters.
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the stereographic description of polarized light fields in the form
of a Poincaré sphere. Its physical meaning is directly related to the
set of normalized Stokes parameters [19, 20] which follows from
(Eq. 9) in the form

s1,2,3 � S1,2,3/S0. (12)
and the sphere is determined by equation s21 + s32 + s23 � 1. Its
equator (see Figure 1) contains all states of linear polarization,
and the north (south) pole represents right-handed (left-handed)
circularly polarized light. Points on the northern (southern)
hemisphere represent the right-handed (left-handed) elliptical
states of polarization which are characterized by two angles: the
polarization azimuth (with respect to the y-axis) ψ �
1
2 arctan(s2/s1) and the angle of ellipticity χ � 1

2 arcsin(s3) [57]
such that tanχ equals to the ratio of the polarization ellipse’s axes,
and the sign of χ determines the polarization handedness.

If an ideal correlation exists between the two transverse
electric-field components, and the state of polarization does
not change in time, such a beam is totally (or perfectly)
polarized. Oppositely, when the correlation between the
transverse components is absent, the beam is unpolarized. In
all other cases, the situation of partial polarization takes place.
Naturally, it makes sense to talk about the constancy of the field
amplitudes in time intervals much shorter than the coherence
time of the radiation, which is related to the width of the source
power spectrum (Eq. 2) [58]. For longer time intervals, these
values change. Therefore, the interrelations between the absolute
values of the field components, as well as their relative phases, can
fluctuate, which is reflected in the change in the position of a
point on the Poincaré sphere (Figure 2).

Evolution of the state of polarization during the beam
propagation can be described by the curve on the Poincaré
sphere. In Figure 2, the beam being initially in the “Input”
state, after a proper evolution (propagation through an optical
system or inhomogeneous medium), appears in the “Output2”
state, and its phase is changed by ϕ. When the final state of
polarization returns to the initial value (the point describes a
closed loop on the Poincaré sphere), the phase shift ϕ, generally,
differs from zero: the beam acquires an additional phase – the
Pancharatnam–Berry geometric phase [59]. This phase is caused
by the geometry of the curved polarization space and equals to
half the solid angle subtended by the polarization trajectory.

In parallel to the coherency and polarization optics, the fruitful
contributions to the correlation optics are associated with the
study of optical singularities. At the beginning of its formation
(1981–2001), singular optics [60] was based on the coherent
approach. In the simplest case, the complex amplitude of scalar
monochromatic and fully polarized electromagnetic fields was
considered. The main attention was focused on the phase
singularities where the phase of the field complex amplitude
(Eq. 5) is indeterminate (phase uncertainty). Such points
normally belong to specific lines or contours, closed within the
observable regions or open (closed at infinity), where the field
amplitude is zero. These objects demonstrate a complex of unique
physical properties, due to which the same objects are referred to
by various terms: phase singularities, wavefront dislocations,
isolated amplitude zeros, optical vortices (OVs) [23–25,
60–61]. A common example of the circular light beams of this
sort is the Laguerre–Gaussian mode of a laser resonator [60–62],
which spectacularly illustrates the main physical attributes: the
helical dependence of the phase near the singularity core

~ exp(± ilφ) (13)
where φ is the azimutal angle, the phase increment on a round-
trip near the core 2lπ where l is an integer topological charge of
the singularity, and the transverse energy circulation due to which
the beam carries an orbital angular momentum (OAM) with
respect to the propagation axis, with the numerical value lħ per
photon. Importantly, all these properties are of the topological
nature and are therefore stable to the field perturbations, except
that the multicharged OV with |l| > 1 can split into a set of |l|
“secondary” singularities with the unit topological charge.

The possibility of several singularities inside a “single” optical
field invokes important questions relating their interactions and
interrelations. Each singularity, in a certain way, “organizes” the
field nearby, and interacts with the adjacent singularities
according to distinct regularities dictated by the topological
“unity” of the beam as a whole. As a result, a “singular
skeleton” – a coherent and harmonious network of
interrelated singularities – is formed, which enables efficient
qualitative characterization of the whole field [63–66]. The
locations and characteristics of separate phase singularities,
considered in the framework of the “singular skeleton”
regularities (for example, the sign principle [66]) contribute to
deeper understanding of the singular field formation and lay the
foundation for key applications of singular optics.

FIGURE 2 |Demonstration of the phase shift ϕ in the course of the beam
evolution (visualization with the help of the Poincaré sphere).
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The phase singularities of scalar fields are prototypes for other
singular networks, especially, of the polarization singularities in
inhomogeneously polarized fields A specific feature of an
inhomogeneously polarized optical field is the absence of
scalar phase singularities. This is explained by the fact that the
condition for obtaining the absolute zero of the field amplitude is
the exact spatial coincidence (not proximity!) of the amplitude
zeros for two orthogonally polarized field components, which is
extremely improbable. However, the specific polarization
singularities occur in points where the polarization azimuth
angle ψ or the sign of the ellipticity angle χ is indeterminate.

For example, a linearly polarized resulting field is obtained due
to superposition of two correlated linearly polarized components
(preferably, but not obligatory, orthogonal) with the zero phase
difference. The ratio of amplitudes determines the polarization
azimuth. Then, for a weakly-structured pseudo-polarized light
field, the existence of lines (so called L-lines) is expected in the
transverse cross section, where the mentioned phase coincidence
is preserved but the amplitudes change, which causes gradual
variations of the polarization azimuth [62–64]. On the Poincare
sphere, such lines are mapped to the equator (Figure 1), each
point of which corresponds to the linear state of polarization with
the certain azimuth.

For the circular polarization, a superposition of two
orthogonal linearly-polarized mutually-coherent components is
necessary, with simultaneous fulfilment of the two conditions: 1)
the phase difference is ± π/2 j 2) the amplitudes of the
components are equal. This means that the condition for
obtaining circular polarization is much stricter than the
condition for obtaining linear polarization. Thus, it is
necessary to look for isolated points where the pseudo-
polarized field is circularly polarized. Such isolated points
appear at the “north” and “south” poles of Poincare sphere,
which correspond to the C-point polarization singularities
[63–65], with opposite polarization handednesses. In these
points, the directions of the electric field vector rotation
(chirality) are clearly defined and are opposite at the upper
and lower points of the sphere. In other words, the photon
SAM in the states corresponding to the upper and lower poles
are opposite.

As in the case of a scalar field, the system of polarization
singularities is topologically stable and forms the singular
skeleton of a vector field, thereby setting the behavior of the
field at each point and determining the sign principle for
reproducing singularities [66]. The relationship between the
correlation optics and singular optics is demonstrated by the
example of obtaining structured optical gratings by the
interference of three linearly polarized plane waves with the
creation of a structure of alternating polarization singularities.
In this case, it is possible to control polarization singularities by
complex interference methods performing the six- and eight-
beam interference experiments [67]. In general, it can be noted
that the modern development of singular optics is based on the
general principles of correlation coherent optics, and is associated
with the study of phase and polarization singularities, as well as
the formation, on their basis, of networks of singularities as
integral systems.

A clear connection between the principles of correlation and
singular optics is persuasively demonstrated by the example of the
Poincaré sphere, when the principles of mapping the polarization
states are transferred to the formation of the higher-order
Poincaré (HOP) sphere [68]. The HOP sphere concept unites
the notions of the OV and vector beams (VB), which enables the
pictorial representation of the state of polarization of spatially
structured light [68–70]. In contrast to the traditional Poincare
sphere, the HOP sphere describes simultaneously the state of
polarization and the spatial state of the OV beam so that the poles
of HOP sphere represent the orthogonally polarized circular OVs.
These two eigen states are characterized by the screw phase
dislocations described by the multipliers (Eq. 13) and carrying
the corresponding OAM lZ per photon [71, 72]. Each point of the
HOP sphere represents their linear superposition. The HOP
sphere equator is associated with the spatially-modified states
with linear polarization [73, 74]. Therefore, the HOP sphere
describes the light fields based on the more general orthogonal
vector basis states which carry both the SAM and OAM. This
sphere describes the higher-order states of polarization of
generalized vortex VBs and reflects additional degrees of
freedom for structured light beams [75].

The HOP sphere also makes it possible to reproduce complex
polarization distributions, which are associated with the
polarization representations of both Poincaré beams and full-
Poincaré beams [76]. Such polarization distributions of optical
VBs find their applications in the generation of optical forces to
capture micro- and nano-particles, in laser cutting technologies,
where the flat-top intensity distribution is used to realize a clean
cut [77], for quantum communications [78], polarimetry
measurements [79, 80], and in the studies of polarization
speckles [81].

The superposition of beams with different states of
polarization is the basis for generating other polarization states,
from simple ones inherent in scalar fields to more complex ones
inherent in VBs. Polarization states are represented by a set of
positions on the Poincaré sphere, which provides a three-
dimensional map that allows one to predict the resulting
polarization state for a given set of optical polarization
elements. The Poincaré sphere representation is sufficient for
fully coherent radiation. At the same time, approaches
employing the Poincaré sphere can be used to reproduce the
polarization states of a partially coherent field by estimating the
degree of coherence of the orthogonal field components [82–85].

The connection, established between the coherent scalar
singular optics and the vector singularities in
inhomogeneously polarized coherent fields, indicates the next
step associated with extension of the singular-optics approaches
to polychromatic light fields [86, 87]. In such situations, one can
speak of the phase singularities in the form of OV for some
separate spectral components. An important prerequisite for such
manifestations is the spatial coherence of the light field, which, in
case of the amplitude zero of a certain spectral component, means
its “subtraction” from the “white” light field (usually
accompanied by a significant, although incomplete,
suppression of neighboring spectral components), and leads to
additional image coloring.
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As a result, the foundation is laid for understanding the
regularities of the field formation, analysis of the key practical
applications of singular optics, and determination of the
relationship between the correlation optics and singular optics.
These interrelations, their physical contents and practical
prospects are demonstrated in the following sections of this
review, which present mainly the results of studies conducted
by its authors in close collaboration with other research groups.

3 INFLUENCE OF THE CORRELATION
PARAMETERS ON SPATIAL AND
POLARIZATION PROPERTIES OF OPTICAL
FIELDS

3.1 Correlation Functions and Propagation
Properties of Partially Coherent Beams
Important motivation of the correlation-optics approaches lies in
the fact that the degree of coherence supplies an additional
channel for the control and regulation of the main structural
properties of propagating light fields. In particular, the beams
with incomplete coherence demonstrate such unique properties
as self-focusing, self-shifting, self-splitting and self-
reconstruction during the free propagation [40, 88–90].
Especially interesting and rich of details patterns are available
for beams with “non-conventional” correlation functions
(NCCF) when the cross-spectral density differs from the
“conventional” Gaussian form

W(r1, r2)∝ exp[ − (r1 − r2)2/δ2]
(δ is the coherence length), and for partially coherent vortex
beams (PCVBs) where

W(r1, r2)∝ exp[ − (r1 − r2)2/δ2] exp[il(θ1 − θ2)]. (14)
(θ1 and θ2 are the azimuthal coordinates of the points r1 and r2 in
the proper polar frame). In such cases, paradoxical, at first glance,
situations occur where a decrease of the source coherency leads to
a lower focal spot size, better concentration of the transmitted
radiation, higher homogeneity of illumination. A decrease in the
spatial coherence of such light beams can, for example, increase
the signal-to-noise ratio in optical communication systems
operating under the influence of atmospheric turbulence.
Partially coherent beams can effectively remove speckles of the
illuminating radiation in presence of multiple random scattering,
e.g., in problems of laser nuclear fusion. Such beams can be used
to reduce noise when taking a photograph and to implement
classical phantom interference.

Additionally, partially cohernt source beams contribute to
formation of a desirable target intensity distribution, including
flat-top or multi-lobe structures [40, 88, 89]. By controlling the
spatial coherence of the input beam, one can control the
symmetry of the target intensity distribution and, accordingly,
of the cross-spectral density distributions [88, 91].

As a result, in some cases partially coherent beams offer
essential advantages over coherent ones in such applications as

remote sensing, laser ranging, free-space optical
communications. optical manipulations, ultra-high resolution
imaging, etc. In addition, partially coherent beams have
advantages in particle capture, atomic cooling, second
harmonic generation, optical scattering, and laser scanning.

Peculiar features of the focal spots produced by beams with
NCCF are interesting for the selective light-matter interactions and
for creation of special optical traps [90]. Proper regulation of the
spatial coherence and the degree of polarization of a PCVB supplies
newmethods of the optical trap formation with special distribution
of the target intensity and polarization distributions. Remarkably, a
desirable focal-spot intensity pattern (with axial minimum,
maximum, or of a multi-lobe structure, “optical cages” – 3D
regions of low intensity surrounded by the high-intensity
“walls”), can be adjusted solely by the spatial coherence length
of the initial beam [40, 88, 89, 91]. Therefore, a single system
employing, for example, a partially coherent elegant
Laguerre–Gaussian beam [91] can be used for optical trapping
of particles with refractive index larger or smaller than that of the
ambient, and switching between the different regimes is performed
by varying the spatial coherence length of the source beam.

It should be emphasized that in such optical-trapping
schemes, the simplest type of partially coherent beam, for
example, the Gaussian Shell-model beam [87], can produce
the same trapping efficiency as a fully coherent laser beam,
even if the peak intensity is much lower. This indicates a great
advantage in applications associated with trapping biological
objects sensitive to the high-intensity thermal heating.
Additional possibilities for the optical trapping applications
are supplied by the special types of PCVBs: cosine-Gaussian
correlated Schell-model beam, multi-Gaussian and generalized
multi-Gaussian correlated Schell-model beams,
Laguerre–Gaussian correlated Schell-model beam, Bessel-
Gaussian correlated Schell-model beam, vector Hermite-Gaussian
correlated Schell-model beam, etc. [88, 89, 92, 93]. In cases of
partially coherent vector beams, modulation of the correlation
parameters not only changes the focal intensity distributions but
also modifies the polarization distribution in the focal spot [93, 94].

An interesting class of beams with spatially inhomogeneous
circular coherence distribution show efficient self-focusing even
upon propagation in turbulent media [95, 96]. The self-focusing
phenomenon disappears when the initial coherence is high
enough or the turbulence is strong. Moreover, the partially
coherent pulsed sources with circular spatial coherence
distribution and “sinc” temporal coherence distribution [97]
show a spatial-temporal self-focusing in a disperse medium
depending on the beam and the medium characteristics. These
phenomena may have potential applications in optical
underwater communication and beam shaping, laser
micromachining and laser filamentation.

3.2 Interrelations Between the Correlation
and Polarization Parameters of Vector
Optical Fields
In the following part of this section we describe an example
clearly demonstrating the relationship between the degree of
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coherence of the interfering plane waves, linearly polarized in the
plane formed by their wavevectors (plane of incidence), and the
distribution of the intensity and polarization state observed in the
resulting field [82–85] (Figure 3). In this situation, a new useful
parameter of the interference field is proposed – the visibility
modulation depth (VMD), which specifies an unambiguous
relation between the degree of correlation between the
orthogonal field components and the states of polarization
that can be analyzed and evaluated. Here we deviate from the
more traditional characteristics used for describing partially
coherent and partially polarized beams, based on the
correlation matrix (Eqs 8, 10), such as the degree of mutual
coherence [88, 98], the degree of coherence in the electromagnetic
approximation [99], the electromagnetic degree of coherence
[100, 101], internal degrees of coherence [102], and employ
the Poincaré sphere principles for visualizing the states of
polarization and their mapping onto a plane using the
stereographic projections.

The situation is illustrated by the field formed due to
interference of two identical plane waves with mutually
orthogonal directions of propagation (Figure 3A). The
resulting field is polarized inhomogeneously: with varying x,
the state of polarization changes from the linear z-polarization
(at kx � 0) through ellipltic to the circular polarization (at
kx � ± π/2

�
2

√
) and further to the linear x-polarization (at

kx � ± π/
�
2

√
), and this pattern is periodically reproduced

along the whole range of x. However, the intensity distribution
is uniform (Figure 3B) because the periodic variations of the

partial intensities of the orthogonal components exactly
compensate each other (Figure 3C).

The scheme of Figures 3B–D corresponds to the “standard”
situation where the waves are completely correlated: the degree of
correlation |η(1,2)| = 1. For the detailed study of the field
properties in more general situations, we have suggested to use
a reference wave – third linearly-polarized plane wave (RW in
Figure 3A), correlated at least with one of the two superposing
waves and directed along themiddle line between the wavevectors
of W1 and W2. In such a way, the spatially inhomogeneous
polarization of the resulting field can be transformed into a
periodic spatial intensity distribution [82, 83, 103].
Accordingly, in the three-wave interference experiment, the
above-introduced VMD can be estimated as

M � 2∑
m

∑
ij

��������������������������
tr[W(m)(r, r, 0)]tr[W(3)(r, r, 0)]√
W(m)

ij (r, r, 0) +W(3)
ij (r, r, 0) η(m,3)

ij (15)

where m = 1, 2 is the number of the wave, and i, j = x, z;
additionally W(m)

ij (r, r, 0) is the correlation-matrix element (10)
of the mth wave in the associated coordinate frame (Figure 3A),
and W(3)

ij (r, r, 0) corresponds to the RW.
According to Eq. 15, the physical meaning of the VMD can be

interpreted in more detail. Let us suppose that we choose a RW
that is completely correlated with one of the initial waves, for
example, η(1,3) � 1. The phase of the RW varies within (0, 2π).
Then, by selecting the intensities of the three waves, we obtain
that the VMD of the interference patternM is proportional to the

FIGURE 3 | Polarization properties of the field formed by two orthogonal plane waves W1 and W2 with equal amplitudes, linearly polarized in the (x, z)-plane. (A)
Geometric configuration of the waves; (B) intensity distribution in the (x, y)-plane (plane of observation); (C) partial intensities of the orthogonally polarized components
and the resulting field (corresponding visibility of the interference pattern V = 0); (D) schematic view of the polarization ellipses in different points of the (x, y)-plane.
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degree of mutual coherence between the RW and the second of
the initial waves, i.e.,M � K · η(2,3), where K is a constant, whose
value depends on the ratio of the corresponding waves’
intensities.

The maximum intensity of the reconstructed field distribution
corresponds to the case in which the electric vector of the RW lies
in the plane of incidence, and theminimum intensity corresponds
to the case in which the RW is polarized orthogonally to the plane
of incidence. The maximum modulation of the resulting
interference pattern occurs when the electric vectors of the
RW and the two superimposed waves W1 and W2 lie in the
pattern plane. A change in the polarization azimuth of the
reference wave leads to a decrease in the interference pattern
contrast.

This 3-wave interference approach not only reveals the
contribution of a certain polarization component to the
correlation of the fields, but also demonstrates the relationship
between the degree of coherence and the degree of polarization
(Figure 4).

A change in the degree of coherence leads to a change in the
spatial distribution of polarization (Figure 5). In this case, the

coherent and incoherent components of the beam are considered
separately. The incoherent component forms an intensity
background with preserved polarization, and the coherent
component forms a complex polarization distribution, which
is visualized using the third – RW – beam.

The situation discussed with the help of Figures 3–5 is, in fact,
a simple example of the general approach to formation of the
optical fields with controllable spatial and polarization structure,
where the control is performed via the manipulation of the
interfering beams’ phases, their degrees of polarization, and
the degree of coherence. The VMB parameter, introduced in
connection with the 3-wave interference, appears as an efficient
instrument for the analysis of the degree of coherence of
superposing elliptically polarized beams and the associated
degree of polarization in arbitrary points of the observation plane.

In particular, such fields with observed modulation of the
polarization demonstrate the corresponding modulations of the
Poynting vector (PV) distribution [104, 105], sometimes
accompanied by the appearance of the PV singularities in the
plane of analysis (Figure 6). Together with the complex pattern of
the energy density modulations, this fact can be used for the

FIGURE 4 |Change in themodulation depth of the resulting interference field with the RWphase variation. (A) 2D intensity distribution (cf. Figure 3B); (B) Intensities
of the partial polarization components and the resulting field; (C) schematic view of the polarization ellipses in different points of the (x, y)-plane.
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purposes of optical manipulation (trapping and deliberate
transportation of micro- and nanoparticles). The character and
the speed of their optically-induced motion depends on the size
and properties of the particles, as well as on the ponderomotive
factors of the optical field itself, which include the gradient force,
light-pressure force and forces associated with the “spin”,
“orbital” and “reactive” components of the internal energy
flows [23, 24, 106, 107].

The effects of the PV modulations are demonstrated in the
arrangement shown in Figure 6 [104]. Here, these are
manifested in the redistribution of the Au-hydrosol
nanoparticles (size 20–40 nm) and their localization in the
areas the energy density minima. A He-Ne laser with a power
of 5 mW was used as a radiation source; the probing beam (λ =
532 nm) was used for the detection of the gold particles
redistribution via the diffracted signal. The probing beam

FIGURE 5 |Modulation of the polarization and intensity distribution in case where the superposing waves W1 and W2 of Figure 1A are not completely coherent.
(A) 2D intensity distribution (cf. Figure 3B); (B) Intensities of the partial polarization components and the resulting field; (C) schematic view of the polarization ellipses in
different points of the (x, y)-plane (brown color shows the contribution of the incoherent component ofW2, green color denotes the contribution of the “residual” coherent
component of W1, blue illustrates the resulting polarization).

FIGURE 6 | The experimental equipment layout: L1, L2, lasers; TS1, TS2, telescopic systems; N1, N2, N3, N4, mirrors; PW1, PW2, half-wave plates for λ =
635 nm; PP, plane-parallel plate; MO1, MO2, micro-objectives;S, cuvette with the Au hydrosol; IF, interference filter with maximum transmission at λ = 532 nm; D1, D2,
diaphragms; S, opaque screen; PD, photodetector; A, amplifier; ADC, analog-digital converter; PC, computer.
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power did not exceed 0.5 mW in order to minimize the heating
of the gold particles.

The mean velocity of ensemble of N particles with the radius r
and the mass M suspended in the medium with the refractive
index n and the viscosity η in the optical field with
inhomogeneous energy and polarization can be determined by
equation [108].

�v(t) � 1
M

[exp(−6πηr
M

t) − 1]⎧⎪⎪⎨⎪⎪⎩ 1
N

∑
q

2πn
c
α′Kqη

(1,2)

����������������( 1
Δxq

)2

+ ( 1
Δzq

)2

√√
−

− 1
N

∑
q

[(Cabs + Cscatt) nc
���
εε0

√���
μμ0

√

× ∑
i,j

{W(1)
ij (r, r, 0) +W(2)

ij (r, r, 0) + 2
��������������������������
tr[W(1)(r, r, 0)]tr[W(2)(r, r, 0)]√

·η(1,2)ij cos δq}⎤⎥⎥⎦⎫⎬⎭ . (16)

This means that the velocity depends on the degree of
correlation between the orthogonal field components and is
determined by the degree of coherence η(1,2)ij :

η(m)
ij (r1, r2, τ) �

W(m)
ij (r1, r2, τ)�������������

tr[W(1)(r, r, 0)]√ · �������������
tr[W(2)(r, r, 0)]√

where, as in Eq. 15, m = 1, 2; i, j = x, z.
In Eq. 16, Kq � −2

��
ε0

√��
μ0

√
��������������������������
tr[W(1)(r, r, 0)]tr[W(2)(r, r, 0)]√ ·

(1 − cos δq) is a parameter that characterizes the energy
density in a point where the qth particle is located. Kq

depends on the phase difference between the superposing
waves in this point (δq is the phase difference between the
electric vectors of the superposing beams), Δxq and Δzq
characterize the indeterminacy of the particle location with
respect to the energy minimum (their lowest values are
determined by the particle size), the quantities Cscatt � k4|α|2

4π
and Cabs � kα} denote the scattering and absorption cross
sections of the particle with polarizability absolute value |α|
and the real and imaginary parts α′, α″, k � 2π/λ is the wave
number.

To summarize the current Section, we should emphasize that
nanoparticles with different special properties offer powerful
means for investigation and diagnostics of complex optical
fields. The particles’ redistribution under the influence of
internal energy flows, the possibility of their localization in the
regions of local minima or maxima of the energy density, etc.,
enable a comprehensive analysis of the optical speckle field, and,
depending on the problem, give ways to recover the important
inhomogeneities of the object field, to reconstruct the source of
the speckle field, to build a phase map, thereby offering a solution
to the inverse optical problem [109] (reconstruction of the total
field from the observed intensity distribution). The specific
advantages are associated with the luminescent nanoparticles.
For example, the carbon particles with sizes of the order of 10 nm,
showing a significant absorption in the long-wavelength spectral
region and luminescence in the yellow-green band, enable to
visualize the field singularities [109]. Invariance of the spatial map
of the speckle-field singular skeleton, as a structure fixed in space

and time, is the source of reliable information about the object,
and demonstrates the deep connections between the correlation
optics and singular optics [23, 60, 61].

4 NON-LINEAR CORRELATION-OPTICS
EFFECTS IN STOCHASTIC MEDIA WITH
ABSORBING MICRO- AND
NANOPARTICLES

4.1 Light-Induced Gratings and
Self-Diffraction of Laser Radiation in Water
Suspensions
The coherent superposition of two linearly polarized beams
manifests itself in the formation of highly inhomogeneous
field distributions, in particular, of the dynamic gratings,
which are characterized by complex amplitude and phase
patterns [110]. In media with suspended microparticles,
optical forces induce the creation of specific “material”
gratings which, in turn, influence the light propagation,
inducing the self-diffraction phenomena. Characteristics of the

FIGURE 7 |Optical arrangement for studying the effect of self-diffraction
in the cell containing the medium with suspended microparticles: (L) CASIX
LDS-1500 laser generating at λ = 445 nm and controllable power ≤ 0.3 W;
BS, beam splitter; SR1, SR2, 90° angle reflectors; Ob, micro-objective;
S, screen; SSD, registering camera.
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optically-induced gratings depend on the medium physical
properties, especially, the temperature distribution, thermal
relaxation, Brownian motion of the suspended particles, etc. In
many cases the balance is established between the redistribution
of heat fluxes and internal flows of the light energy, so the
generated gratings appear to be stable. The process of grating
generation requires a rather high local energy absorption, which
is provided by the highly absorbing particles but if their number
and sizes are small enough, the total light absorption remains
moderate.

In the scheme of Ref. 110 (Figure 7), an inhomogeneous field
distribution is created due to the interference of two quasi-plane-
wave beams in the medium with the effective refractive index n0
and the absorption coefficient κ; the waves with amplitudes A1
and A2 approach the sample (medium) surface at angles θ1 and
−θ2 with respect to axis z normal to the sample surface; further we
will suppose that θ1 = −θ2 = θ. Under such conditions, the density
of the energy absorbed in the medium during the time t is
determined by equation

q(x, z, t) � q0(t)
cos θ

(1 + V cosΦ) exp(− κz

cos θ
),

q0(t) � κ
c

n0
I0t (17)

where I0 � gn20(A2
1 + A2

2) is the total incident field intensity,
V � 2A1A2

A2
1+A2

2
, g � (8π)−1 in the Gaussian system of units, and

Φ � Φ1 + φ1 −Φ2 − φ2 � 2kx sin θ + φ, Φ1 � k0(xsinθ + zcosθ),
Φ2 � k0(−xsinθ + zcosθ), k0 � n0k, φ1 and φ2 are the initial
phases of the beams approaching the sample.

One can estimate [110] the relative efficiency of the light
diffraction into the 0th and 1st diffraction orders considering the
sample as a thin layer of the width d with the refractive index
inhomogeneity dictated by the light-induced grating generated
according to (Eq. 17):

D0 � {1 − 1
2
[ kd

cos θ
(dn

dT
) q0

Cρ
V]2} exp(− κd

cos θ
), (18)

D1 � 1
4
[ kd

cos θ
(dn

dT
) q0

Cρ
V]2

exp(− κd

cos θ
). (19)

Inhomogeneity of absorption induces the spatial
inhomogeneity of the refractive index, n � n0 + Δn. Under
conditions of Ref. 110, the medium properties are modulated
mainly due to the thermal mechanism, i.e.

Δn � Δn(x, z, t) � (dn

dT
) q(x, z, t)

Cρ
(20)

where (dn/dT) is the refractive index temperature coefficient, S
is the heat capacity per unit mass of the medium, ρ is its mass
density. Eq. 19 testifies that, at small angles of incidence θ, the
first-order diffracted intensity grows with increasing θ; in the
special conditions of Ref. 110, this factor was dominating.

At the same time, the particles’ redistribution in the
inhomogeneous optical field enhance the effect of the
dynamical grating generation. Each particle experiences a
complex mechanical action caused by a complex of

ponderomotive factors. In particular, the optical forces are
associated with the optical field inhomogeneity and the
internal energy flow (field momentum components) [23–25],
which redistribute the particles to the regions of maximum
light intensity. Additionally, there exists the photophoretic
force associated with inhomogeneous heating of the absorbing
particles [111–114], which moves the particles to the intensity
minimum. The total optical force can be described as

Fe � 1
4gn20

Re(αe)∇I + ω

g
Im(αe)pe

O (21)

where I ≡ I(x, z) is the local field intensity (energy flow density),

I(x, z) � I0(1 + V cosΦ) exp(− αz

cos θ
),

and peO is the electric part of the orbital momentum of the field
[107]. The electric polarizability αe is determined by the relations
[106, 107].

αe � α0e
1 − i 2

3εk
3α0

e

≈ α0
e + i

2
3ε
k3
∣∣∣∣α0e ∣∣∣∣2, α0

e � εa3
εp − ε

εp + 2ε
(22)

ε � n20 and εp are the permittivities of themedium and the particle,
respectively. In the scheme of Ref. 110 (Figure 7), the orbital
momentum peO is directed along the axis z and, hence, does not
influence the transverse motion of the particles. The latter is
completely determined by the gradient optical force described by
the first summand of Eq. 21.

Figures 8A,B illustrates the field distribution formed inside
the sample – a cuvette (cell) with suspended ink particles in the
form of polymer spheres 0.2 μm in diameter with a coating made
of carbon-based absorptive resin. In case when the two waves are
coherent, the distinct interference pattern is formed with the
period of 2.5 µm.

The following images show the results of the self-diffraction at
a distance 50 mm from the cuvette. For comparison, the image of
Figure 8C represents a reference intensity distribution when a
plane-parallel plate is placed instead of the sample. In contrast,
the images of Figures 8D–G show clearly pronounced diffraction
maxima with noticeable intensity, which confirm the light-
induced grating formation. Expectedly, the thermal nature of
the phase gratings should provide a number of observed
diffraction orders but actually, only the zero- and first-order
diffraction maxima are observed. This can be ascribed to the fact
that the gratings cannot be considered thin. The contrast of a
phase-modulated grating depends on the concentration of
particles, on the temperature gradient, on the degree of
coherence of the superposing beams, and on the angle of their
convergence.

The results presented above demonstrate the specific
manifestations of the coherence and correlations between the
laser beams associated with their interaction with nonlinear
media, which can be used for the deliberate field formation as
well as in the optical data storage and optical diagnostics of the
processes of particle interaction with a light-absorbing medium.
The study of such processes supplies the background for new
instruments of the light-induced trapping and manipulation of
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micro- and nanoparticles, which is also the subject of singular
optics, but allowance for the stochastic and coherent properties of
light opens additional channels for the control and subtle
regulation of the processes.

Importantly, the self-diffraction phenomena described occur
at relatively low and controllable power (≤0.3 W) whereas the
usual conditions for observing the non-linear optical phenomena
require much higher power, normally available in the pulse
regime. This is a special advantage of the media with
absorbing particles, in which a temperature gradient is formed
under the action of optical radiation: here not only the conditions
for self-diffraction, but also for self-focusing and generation of
shock waves can be realized with the use of a continuous laser
radiation of low power rather than by short laser pulses that,
propagating in the medium, may cause its destruction. This fact is
suitable for possible utilization of these effects in diagnostic

purposes both in nanotechnologies and, e.g., for acoustic
destruction of pathologically altered tissues in medicine [115].

4.2 Self-Focusing and Caustic Diffraction
Pattern Manifestations
The classical non-linear effect – self-focusing of a light beam with
an initially plane wavefront and a Gaussian intensity distribution
– can also be realized in the disperse medium with suspended
absorbing particles. Especially interesting self-focusing features,
with specific and non-trivial radiation redistribution, take place
when the incident beam is additionally focused by a cylindrical
lens (CL) [116]. In this case, the output optical field demonstrates
a complex structure including caustics in the intensity
distributions and the phase singularities, typical for the
Pearcey or Fraunhofer diffraction pattern [117, 118],

FIGURE 8 | The field pattern observed inside the cuvette: (A) when both beams are coherent and (B) when the beams are incoherent. Registered light intensity
distributions in the screen plane (Figure 7): (C) the plane-parallel plate is placed instead of the sample, the self-diffraction is absent; (D–G) the self-diffraction patterns at
different angles of the beams’ convergence.
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depending on the beam aperture. The corresponding optical
arrangement, enabling to study the mechanisms of
transformations of the focused light in the medium with
suspended particles, is shown in Figure 9.

The radiation with λ = 445 nm and controllable power is
generated by the laser module XJ-A140. The telescopic system
forms the collimated beam of the diameter 10 mm. Further, the
beam is focused by the cylindrical lens into the sample containing
the water suspension of the absorbing particles similar to those
used in the self-diffraction experiments (Figure 7). The cuvette
walls are 0.5 mm thick, whereas the width of the suspension layer
equals to 10 μm.

After passing the cuvette, the beam profile is registered, and
the pattern differs for different positions of the cuvette with
respect to the focal plane of the CL. As expected, the resulting
intensity distribution is strongly inhomogeneous and depends on
the refractive index modulation (Figure 10). When the sample is
situated far from the focus, the intensity in the medium is
moderate so that the absorbed power density (Eq. 17) and the
corresponding refractive index modulation (Eq. 20) are
insufficient for the light self-action. As a result, the

phenomena of self-focusing and self-diffraction do not appear
(Figures 10A,C). When the cuvette is close to the CL focus
(Figure 10B), the high radiation density induces the refractive
index modulation, accompanied by a redistribution of the field
intensity. In this case, the self-focusing of the radiation occurs,
which is accompanied by the self-diffraction at the
inhomogeneous grating formed by the optically-trapped
particles.

Actually, near the CL focus the particles in the sample are
redistributed according to the Pearcey diffraction pattern. The
whole picture of the radiation self-focusing can be interpreted as a
result of the self-diffraction on this light-generated Pearcey-like
grating.

4.3 Light-Stimulated Phase Transitions and
Controllable Formation of Ordered Bubble
Ensembles
Another group of interesting effects occurring in aqueous
solutions with absorbing particles involves the heat-induced
phase transitions in the matrix material (water) accompanied

FIGURE 9 |Optical scheme for demonstration of the laser beam self-focusing in the dispersemedium: L, laser module; T, telescopic system; CL, cylindrical lens; C,
quartz cuvette with the hydrosol medium; CCD, registering unit.

FIGURE 10 | Views of the intensity distribution after passing the cuvette C with suspended particles, for different positions of the cuvette: (A) the cuvette is situated
immediately behind the CL, (B) the cuvette is placed at 350 μm before the focal plane of the CL, (C) the cuvette is placed far behind the focal plane.
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by the generation of gas and vapor bubbles of nano- and
micrometer sizes [119]. The light energy, absorbed by such a
particle, is transmitted to the medium environment and causes its
heating which, upon certain conditions, takes on an explosive
character: the medium (water solution) is locally evaporated, and
the gas bubble is formed with growing volume. The bubble
growth stops when the energy income from the absorbing
particle is compensated by the energy outflow through the
bubble surface.

In the system of Figure 11A, the moderately focused (focal
spot size ~ 100 μm) continuous laser beam (λ = 980 nm) is used,
and the generation of microbubbles can be controlled by the
radiation power. The creation and manipulation of bubbles is
performed due to the macroscopic effects of heating a certain
number of closely situated particles. The inhomogeneous
temperature distribution is formed, and its character is
regulated by the laser radiation power, particles’ concentration
and the phase transition effects. The resulting bubbles and their
ensembles are stable and can exist for a long time under favorable
illumination conditions. By moving the laser spot, the spatial
localization of microbubbles in the liquid volume moves
accordingly due to the Marangoni effect [120]. The growth of
bubbles up to submillimeter sizes, as well as the formation of
spatially ordered systems of the bubbles with a certain size
distribution can be observed and controlled by the power of
input laser radiation.

In the literature [119–130], several regimes of the bubbles’
creation and development were described: 1) bubbles
generation near the absorbing particles; 2) stable growth of
the existing bubbles; 3) stationary existence of the bubbles
upon the thermal and hydrodynamic equilibrium conditions,
and 4) shrinkage and collapse of the bubbles when the
illuminating power decreases.

The experimental arrangement performing the controllable
generation and manipulation of microbubbles in the water
suspension of the black pigment ink particles (InkTec
Corporation) is presented in Figure 11A. The semiconductor
laser (Wavespectrum,WSLD-980-004-C, the vacuumwavelength
λ = 980 nm, maximum power 4W) produces the radiation which
is focused into the cuvette filled by the suspension. To avoid high
levels of the recording unit 5 illumination, the bubble-generating
laser beam was directed obliquely (at an angle of 15°), so that the
camera recorded only the scattered radiation. The laser power
was controlled within the range 0.1–3W; the processes in the
cuvette were visualized by illumination with white light and
recorded by a CCD camera with a spectral filter protecting
from IR radiation. This enabled to observe not only the
bubbles illuminated by visible light, but also the track of the
infrared laser beam inside the cuvette (Figure 11B).

Laser-generated microbubbles are widely used in special
modern technologies [120, 121]: as micropumps [122],
micromixers [123], microrobots [124] for cleaning solid
surfaces [125, 126], for ink printers [127], etc. However,
generation of such microbubbles under the action of the CW
focused laser radiation requires a rather high energy level, which
can be appropriate for technical applications but is inacceptable,
for example, in biomedicine, where strong radiation can be
harmful to tissues. A decrease in the threshold power is
achieved by using pulsed lasers [128–130], and the required
temperature inhomogeneity is achieved by using highly
absorbing nanoparticles, such as gold nanoparticles.

In this case, the required mean laser power is significantly
reduced. The controlled microbubbles in a biological
environment perform unique mechanical and optical
functions. Their collapse mechanically affects the surrounding
area, which can be used for selective delivering of proper

FIGURE 11 | (A) The experimental setup for the bubbles generation and observation: (1) IR laser, (2) objective, (3) cuvette with the water suspension of absorbing
nanoparticles, (4) spectral filter to stop the IR radiation, (5) CCD camera, (6) white-light source for visible illumination; (B) Illustration of the behavior of the four-bubble
ensemble in different moments of time; a gradual increase of the bubbles’ sizes is seen.
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biologically active species to specific cells in cell surgery, for the
deliberate cell destruction and transfection [128–130]. The ability
of bubbles to scatter light makes them suitable micro-objects for
imaging cells and tissues.

5 CORRELATION OPTICS AND OPTICAL
SINGULARITIES

In this Section, we describe some correlation-optics approaches to
formation and diagnostics of the polarization and phase
singularities in optical fields. Let us start with mentioning that
complex “non-generic” polarization and phase singularities can
be generated in the course of superposition of regular and
partially coherent vector fields with certain standard structures
[130–132]. For example, a coherent coaxial mixture of weighted
orthogonally polarized single-charged Laguerre–Gaussian modes
with different radial indices produces unusual non-generic
spatially stable polarization structures such as closed
C-contours (2D manifolds of points with pure circular
polarization) and L-contours [25] with a fixed azimuth of
linear polarization [130]. In Refs. 131, 132, vector singularities
are described in partially polarized combined fields formed by
incoherent superposition of orthogonally polarized beams. It is
shown that the vector singularities of special types arise at the
transverse cross section of a paraxial combined beam instead of
the common singularities, such as the OVs (inherent in scalar,
i.e., homogeneously polarized, fields), C-points, where
polarization is circular, and L-lines, along which polarization
is linear [25]. These are U-lines (closed or closing at infinity)
along which the degree of polarization equals to zero and the state
of polarization is undetermined, and isolated P-points where the
degree of polarization equals to 1 and the state of polarization is
determined by the non-vanishing component of the combined
beam. U and P singularities are adequately described in terms of
the complex degree of polarization represented in the Stokes
space, namely, on the surface and inside the Poincaré sphere.
These singularities are topologically stable and form the “vector
skeleton” of a combined beam.

Other interesting aspects of optical singularities in partially
coherent fields manifest themselves in relations to the beams with
NCCFs and to PCVBs [40, 133] previously discussed in Section
3.1. Importantly, the PCVBs are usually missing the main
features of coherent OVs – their isolated axial amplitude zero
and the ring-like intensity pattern. Due to randomization, the
OV-associated amplitude zero normally disappears, and even the
intensity minimum can transform into the axial intensity
maximum [88, 89]. In many cases, the phase singularity of a
PCVB is “hidden” [134, 135] and does not manifest in the visible
beam pattern. Nevertheless, a PCVB demonstrates a lot of unique
and interesting properties stipulated by the singular character of
the correlation function. According to Eq. 14, this correlation
function contains the “vortex” phase (screw phase dislocation)
with the integer topological charge; respectively, the ring-like
amplitude structure of the correlation function with
corresponding ring-like linear phase dislocations is possible
and rather typical [88, 89]. Moreover, a PCVB can carry OAM

proportional to the topological charge [136]. The focal-spot (or
far-field) intensity pattern sensitively depends on the correlation
parameters of the input PCVB source, and the coherence-length
modulation provides a convenient way to form a desirable target
intensity pattern, which is useful, e.g., for laser materials
processing and optical trapping. In addition, a PCVB shows
an essential advantage over coherent beams or partially
coherent beams without a vortex phase to reduce scintillation
caused by turbulence, which is favorable in free-space or
atmospheric optical communications [137].

For vector PCVBs, the resulting intensity distribution depends
on the coherence length δ and is determined by the form of the
NCCF, when δ is relatively small, and by the vortex phase, when δ
is large [138]. The absolute value of the degree of coherence is
determined by the NCCF form and, especially, by its vortex
component (Eq. 14). A recent research [139] has demonstrated a
special form of PCVB called controllable twisted Gaussian Schell-
model beam, which provides the means for purposeful
manipulation of the beam OAM. Such flexibility of the NCCF
phase control and the OAM detection promises fruitful
applications in the theory of coherence and for the OAM-
based ghost imaging.

A specific example demonstrating the connections and
interpenetrations of the correlation-optics and singular-optics
concepts is the diagnostics and detection of singularities in
“white” polychromatic radiation [86, 87]. In this case, the
optical field singularities in the form of screw wavefront
dislocation [23–25, 60, 61] (OV, see Eq. 13) were detected.
The use of a reference wave provides an efficient experimental
tool for diagnostics of OVs in “white” (polychromatic) light, by
registering and analyzing the characteristic interference “forks”
[23, 25, 60]. In the specific context of the correlation optics, the
sensitive OV detection provides additional ways for revelation
and high-resolution localization of the optical-field singularities,
offering thus fruitful ways for studying the stochastic speckle-
fields, reconstruction of the object fields, inhomogeneity
diagnostics of rough surfaces, etc.

Noteworthy, the proposed technique for detecting
singularities is based on the approaches of coherent optics
developed for studying the irregular wave-front behavior. This
method of analyzing the polychromatic radiation makes it
possible to reveal the spatial coincidence of the amplitude
zeros of separate spectral components in white light [86].
Since the coherence length of white light is rather low (of the
order of several wavelengths), the diagnostics of singularities in
this case strongly relies upon the accuracy of the interference
experiment. This is ensured by a high degree of spatial coherence
of the reference wave and a rather high mutual spectral purity in
both channels of the interferometer to obtain reliable maxima and
minima of the interference pattern (Figure 12).

The OV cores (amplitude zeros) for all spectral components of
the beam are reliably detected via the interference with a coherent
wave (Figure 13). In this case, a white-light OV is observed, in
which the amplitude zeros of all spectral components coincide,
which leads to an achromatic interference “fork” (fringe
bifurcation points well seen in Figure 13B correspond to the
amplitude zeros in Figure 13A). The shape and orientation of the
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interference fork illustrate the possibility of determining both the
OV charge and its sign.

An example of possible practical application of this approach
for diagnostics of the amplitude zeros in the polychromatic
radiation is the method for controlling the thickness of
growing films [140, 141]. The analysis of the interference
between the polychromatic fields reflected by the reference
substrate and by the inspected surface (for example, a surface
of a film during its growth) enables one to determine the film
thickness via the emergence of an OV in the resulting speckle
field. This process provides a subwavelength resolution due to the
ability to identify the spectral component for which zero
amplitude occurs at a certain stage of the film growth process.

Another interesting example demonstrating the relationship
between the coherence theory and the singular optics is the

identification of nontraditional phase singularities [141, 142],
which do not occur within the framework of classical coherent
singular optics, but are detected when a polychromatic beam
passes through a dielectric plate with the rough surface. The
magnitude of the surface inhomogeneities should be such that, on
the one hand, they would provide sufficient light scattering but,
on the other hand, the surface should not be rough enough to
destroy the regular (forward-scattered) component of the
scattered radiation. In this situation, the coloring of the white
beam, that has passed through the object, takes place. Such
coloring can be interpreted as a manifestation of a certain sort
of phase singularity. One can speak of the emergence of a zero
amplitude of the complex transmittance for an individual spectral
component of a beam with a wide spectral composition. The
pronounced coloring of the surface and the change in the

FIGURE 12 | Experimental arrangement for the white-light OV analysis: S, white light source; C, condenser; D, diaphragm; O1, O2, O3 and O4, objectives; P1 and
P2, polarizer and analyzer; BS1 and BS2, beam-splitting cubes; M1 and M2, mirrors; BC, singularity-generating object; CP, compensating plate; RF, Fresnel rhombus;
W1 and W2, moving and stationary optical wedges; CCD, camera.

FIGURE 13 | Singularities obtained in a white-light beam passing a double-axial crystal placed between matched polarizer P1 and analyzer P2 (Figure 12): (A)
without reference wave; (B)with a reference wave (interference pattern). The topological charges are indicated of the two singularities with exact locations marked by the
asterisks.
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spectrum of a polychromatic beam can only be explained by the
interference of partial components and the manifestation of the
wavefront singularities formed in the individual spectral
components. The presence of a regular component in the
scattered radiation means that the heights of inhomogeneities
are comparable with the wavelengths of all spectral components
of the probing beam. Accordingly, the mutual coherence of
partial scattered waves is preserved, and there is a need to take
into account the phase relationships between such waves for both
scattered (random) and specularly-reflected (regular) radiation,
even if the spatial and temporal coherence of an extended source
is rather low. The partial waves or, in other words, partial re-
scatterers, mutually related by a common source field and
separated by subwavelength distances, as a rule, radiate in the
direction where the phase difference of these elementary emitters
vanishes.

At the same time, when there is no regular component, i.e., the
magnitude of the inhomogeneities is such that the stochastic light
scattering prevails, then another peculiar optical effect of image
coloring is observed. In the case of a small illumination area, a
sufficiently high spatial coherence is achieved, and polychromatic
(color) speckles and phase singularities in the spectral
components appear in the scattered field.

6 MECHANICAL MANIFESTATION OF THE
INTERNAL ENERGY FLOWS IN THE
INTERFERENCE ARRANGEMENTS
An interesting example, demonstrating the interrelations and the
transition from correlation optics to singular optics, is a widely
presented model of generation of the pronounced “spin energy
flow” (spin momentum) [23–25] in the superposition scheme of
two circularly polarized Gaussian beams [143]. Importantly, this
model convincingly reveals the spin-orbital decomposition and

the mechanical action of the internal spin energy flows, or linear
“spin momentum” [144] in light fields.

To demonstrate the mechanical action of the spin flow, an
experiment was proposed in which latex microparticles
(refractive index 1.48) suspended in water were used. The
particles were chosen so that their shape was close to
ellipsoidal with an approximate cross-section size of 1.5 µm ×
1 µm. Such dimensions make it possible to observe individual
particles within one fringe of the interference pattern formed in
the focal region (Figure 14). The interference pattern is formed
by superposition of two inclined Gaussian beams with
controllable circular polarization.

It was shown in experiment that a trapped asymmetric particle
rotates around its center of mass (yellow contour), which can be
explained by partial absorption of incident light with circular
polarization, which possesses an internal spin angular
momentum. Simultaneously, the center of mass performs an
orbital motion (black dashed contour in Figure 14) inspired
by the mechanical action of the linear spin momentum [23–25,
144]. The linear spin momentum is a part of the mechanical
momentum of light associated with its circular (elliptic)
polarization, and it is able to perform a mechanical action
similar to that of the usual light pressure [23–25]. In the
experiments of Ref. 143, the “pure” spin-momentum action is
well separated from the transverse light pressure that is balanced
by the gradient force, so that the observed orbital motion of the
particle is caused solely by the spin momentum. Remarkably,
both spinning and the orbital rotation reverse if the circular
polarization of the incident beam changes the sign. When the
incident beam polarization is linear, both spinning and orbital
rotation stop.

To finalize this Section, we describe the model experiment
which illustrates the application of the correlation-optics ideas in
the near-field optical-manipulation techniques. In particular, it
shows how the interference mechanism enables to reveal the spin-
flow action of the evanescent field – a strictly localized wave in the
low-index medium formed during the total-reflection process.

The specific features of partially coherent evanescent waves are
attracting growing interest, and a number of impressive results
have been obtained in the last years [49, 145, 146]. Generally, such
waves are typical genuine 3D fields with a complicated and
controllable polarization structure. Random evanescent fields
may exhibit subwavelength surface coherence lengths and their
degree of polarization can change notably on distances equaling
only a fraction of a wavelength. By combining several mutually
incoherent exciting sources, wide possibilities for micro- and
nanoengineering of electromagnetic fields were revealed; in
particular, it is possible to tailor evanescent fields sharing
polarization properties identical to those of universal
blackbody radiation, yet with tunable coherence states [146].
Interesting and potentially useful field structures can be
realized with employment of partially coherent surface
plasmon-polariton (SPP) fields, in particular, SPP with vortices
[145]. Such near-field structures with controllable coherence are
generated by superposition of planar SPPs at the metal-air
interface. Remarkably, the dynamical characteristics of such
fields: energy density, energy flow density, orbital and spin

FIGURE 14 | Position of the particle trappedwithin the central lobe of the
interference pattern [143]. Black dashed line shows its center-of-mass
trajectory; simultaneously, the particle spins near its center of mass (yellow
contour).
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angular momentum, as well as the state of polarization, can be
widely tuned by adjusting the spatial coherence of the fields.
These abilities can find applications ranging from controllable
excitation of nanoantennas and manipulation of nanoparticles to
near-field data storage and optical communication in advanced
nanoplasmonic devices.

In Figure 15, a special near-field situation is illustrated where
the elliptically-polarized evanescent wave is excited above the
total-reflection prism surface (X = 0) by the incident wave with
the linear 45°-polarization (with respect to the incidence plane)
[147–149]. In this evanescent wave, the specific field momentum
distribution is formed with both longitudinal (Z) and transverse
(Y) components [150, 151]. These momentum components can
be absorbed and/or reflected by the material object, which
produces an optical force inspiring the correspondent motion
of the object. The evanescent-wave conditions of [147–149] with
moderate and low light intensities are especially favorable for
optical diagnostics of the biological objects; Figure 15 shows the
optical forces inducing the motion of a human erythrocyte (red
blood cell).

The experimental scheme proposed in order to observe the
controlled transverse displacements of the erythrocyte in the
YOZ plane under the evanescent-wave mechanical action,
includes two oppositely directed evanescent waves of the
same amplitude and frequency, formed above the glass
prism in which the total internal reflection of waves with
the wavevectors k1 and k2 takes place (angle γ exceeds the
total-reflection value). In the model experiment, the prism
surface was covered by a thin liquid layer where the biological
cells can be placed. A proper localization of the object in the
vertical (X) direction was ensured by the evanescent wave
inhomogeneity due to which the gradient force makes the cell
to float close to the prism surface. The longitudinal energy-
flow components of the two evanescent waves cancel out,
whereas the transverse components are added. Such an effect
is achieved by using identical linearly polarized incident
beams polarized at 45° with respect to the plane of
incidence (inside the prism), and the formation of the same

elliptical polarization for both oppositely-propagating
evanescent waves above the prism surface.

A series of experiments [148, 149] has demonstrated the
controlled motion of the erythrocytes under the action of the
evanescent wave in the transversal direction. Importantly, the
motion characteristics can be finely regulated by adjusting the
incident beams’ parameters, and the same technique can be
applied to other biological cells. Additionally, in the
arrangement similar to that of Figure 15, the cell rotation
near its own axis and, consequently, its contactless orientation
in the YOZ plane can be realized due to the vertical spin of the
evanescent wave [150, 151]. All these features can be favorable for
the laboratory diagnostics, sorting and delivering of biological
species.

7 CONCLUSION

The present review embraces main ideas and concepts of the
correlation and singular optics with a special attention to the
penetration of classical ideas of coherence and correlations into
the modern area of singular optics. The degree of coherence and
the correlation properties of superposing light beams open new
channels for formation of light fields with prescribed complex
distributions of the phase, amplitude, polarization, as well as the
special patterns of the internal energy flows. An important step in
understanding and analysis of such “combined” fields is the
application of generalized stereographic projections based on
the ideas of the Poincare sphere, from its classic realization to
the higher-order Poincare sphere for representation of fields with
complex and interrelated spatial and polarization distributions.
Such optical fields offer a rich choice of spatial, spectral and
polarization inhomogeneities, non-trivial and informative
distributions of the energy flows, which supply additional
possibilities for selective optical influences, complex optical
diagnostics and analysis of various objects. Importantly,
partially coherent beams offer essential advantages over the
usual fully-coherent fields in various practical aspects. In many

FIGURE 15 | Superposition of the opposite evanescent waves formed by the total reflection of two beams linearly polarized at ±45° with respect to the plane of
incidence and approaching the prism surface at an angle γ > arcsin(nl/np) where nl and np are the refractive indices of the liquid above the prism and of the prism material,
correspondingly. Here Eev1 and Eev2 denote the separate evanescent waves formed from the incident beams with the wavevectors k1 and k2; Fx1, Fx2, Fy1, Fy2, Fz1, Fz2
are the optical-force components acting on small areas of the erythrocyte cell (EC) surface; OO′ is the symmetry axis of the erythrocyte.
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situations, they provide better concentration of light energy
within the focal spot, reducing or eliminating the scintillation
or speckle modulations, improving the signal-to-noise ratio in
imaging and communication systems. Moreover, special sources
with non-conventional correlation functions enable self-focusing,
self-shifting and, generally, purposeful self-structuring of light
beams propagating in homogeneous or scattering media, which
opens new prospects for optical trapping, manipulation, micro-
and nanoengineering.

In this view, the theory of partial coherence, which statistically
describes the spatial and polarization degrees of freedom in
complex optical fields, reveals additional features of the origins
and meaning of the main concepts of singular optics. In
particular, it generalizes the deep relations between the
amplitude zeros and the wavefront dislocations (OVs) in
stochastic polychromatic fields. The local intensity maxima
and minima, including regions of intensity minimum with and
without singularities, form a consistent interrelated network
(“optical-field skeleton”), which is topologically stable against
small perturbations associated with the light propagation in
weakly inhomogeneous media or with the object evolution “as
a whole”. Such features, inherent in the correlation-optics
representation of optical fields, makes it possible to solve the
“inverse phase problem” of restoring the phase distribution of the
field (and, accordingly, the phase-determining parameters of the
investigated object) from the known distribution of amplitude,
including the points with singularities [109].

These features demonstrate the abilities of classical
correlation-optics approaches, combined with the modern
singular optics, for the representation and study of complex
optical fields, extracting information about the properties of
macro-, micro- and nanoobjects. Noteworthy, the qualitative
recognition and differentiation of the meaningful “skeleton”
points of the field becomes possible due to the explicit
involvement of optical forces and corresponding mechanical
actions of light fields. As sensitive markers, the probing bodies
(carbon nanoparticles) with bright luminescence can be used
[109, 152], whose motion and localization under the action of
optical forces enables to indicate the intensity extrema and
singular points of the field. Moreover, the regions of phase
singularities can be distinguished from “regular” intensity
minima by the difference in concentration of the trapped
nanoparticles and their near-singularity motions.

The experimental approaches, schemes, arrangements,
presented in the review and employing the probing particles of
different nature and properties, are useful not only for the
detection of optical flows and related optical forces, but can be
expanded to solving insistent practical problems related to the
creation of micromanipulators with different mechanisms of
action, micromotors and micromachines [154, 156–158].
Particular efforts, made for the singularities’ identification in
polychromatic radiation and their analysis by the interference
methods [86, 87], promise fruitful applications for continuous
monitoring the thickness of films during their growth or for the
quality inspection of surfaces with roughness [141, 142].

The limited volume of the review inevitably restricts its
practical contents to a few applications, which, in our opinion,

spectacularly demonstrate the mutual influence and mutual
reinforcement of the correlation-optics and singular-optics
methods. However, there are much more examples [153] of
penetration of such approaches into modern
telecommunication systems, super-resolution microscopy,
image recognition and processing, etc. To conclude, we can
only briefly mention some prospective applications of the
ideas and methods described in the present review, which
could not be comprehensively characterized in the main text
but may be of interest for readers in their further activity.

An instructive example concerns the analysis of the second-
order spatial coherence distribution of a structured random
light beam and its utilization for the information encryption
[154]. The usual optical-encryption protocols employing the
first-order field characteristics (light phase or intensity) are
highly dependent on interference effects and are unstable
when light interacts with matter. An alternative optical
encryption protocol, by which information is encoded into
a second-order spatial coherence distribution of a structured
random light beam, has two key advantages over traditional
counterparts. First, the complexity of measuring the spatial
coherence distribution of light improves the security of the
encryption protocol. The second is the relative insensitivity of
the second-order statistics to the environmental noise, which
makes the protocol robust to environmental fluctuations such
as atmospheric turbulence. Such results open up promising
opportunities for further research into optical encryption in
complex environments.

On the other hand, the methods for generation of optical fields
with desirable properties can be (and already are) widely used in
biological and medical technologies [155–158] for transportation,
controllable motion of micro- and nanoparticles through the use
of a wide variety of controlled parameters (characteristics) of the
field, including optical forces of different physical nature
(gradient force, light pressure force, forces associated with the
spin and orbital energy flows). Depending on their properties,
such particles may serve as “agents” delivering the specific
influences to prescribed zones of biological organisms, cells,
etc., or as informative “markers”, or as “nano-antennas”
sensitive to external influences and transmitting them to the
biological environment. As a version of this application, the
specially “constructed” light fields and specially localized
particles can be used for inspiring specific local reactions, in
particular, local phase transitions and creation of microbubbles
[122–127]. The bubbles, in turn, may serve as “vehicles” for
transportation of microdoses of medical species, for their delivery
to specific areas in the cell surgery, etc., which can be made very
accurately by the laser control of the direction and speed of the
bubble’s motion [128–130]. In the laboratory diagnostics, useful
prospects are associated with the controllable motion of biological
cells in the liquid media based on the near-field optics, for
example, regulation of the erythrocyte’s motion in the
evanescent light fields [145–149].

As for the more traditional methods of optical diagnostics,
based on the analysis of optical field scattered or reflected by an
object, the interrelations between the polarization and correlation
characteristics of optical fields, inherent in the correlation-optics
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approaches, form the basis of the polarization-holography
approaches for information recording and restoring, for
registration and recovery of phase maps and real-time
investigation of distant moving objects, for the improved
diagnostics of biological tissues of different types, etc.
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