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The current research is concerned with the mechanical characteristics of a Rabinowitsch
fluid model that has been developed via an elliptic duct. If we study physiology or
biomedicine, we will find that the Rabinowitsch fluid model in peristalsis is very useful
because it is used to move blood around in the heart, lungs, sanitary fluid transport
systems, transfer of corrosive fluids, and innovative pharmaceutical delivery systems. It is
possible to get the elliptic domain for this duct model by using Cartesian coordinates, and
in the boundary conditions for this duct, the equation of an ellipse is used to keep the elliptic
cross-section for this duct in place. A mathematical model for an incompressible fluid is
being created, and the mathematical issue is then transformed into its dimensionless form
by using suitable transformations, including long-wavelength approximation. As soon as
the problem is put into a dimensionless form, the partial differential equations for the
velocity profile can be found. These partial differential equations are solved across elliptical
cross-sections with the help of boundary conditions that are given, and accurate
mathematical solutions are then found for them. This model is important because it
shows three different types of flow: a dilatant fluid for γ< 0, a Newtonian fluid for γ � 0, and
a pseudoplastic fluid for γ> 0. The prime objective of our work is to obtain a novel solution
to this problem as well. In the last section, we see and read about how the formulas for flow
characteristics were made.
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1 INTRODUCTION

Peristalsis is a mode of transport that involves the assimilation and propelling of materials during the
contraction and expansion of a distensible tubes or channels, generated due to progressive waves that
force the subjects forward alongside the channel. The term “peristalsis” is derived from the Greek
word “peristaltikos,” which indicates “grabbing and crushing”. Peristalsis is the investigation of the
movement of a fluid through the elliptic duct. The use of such a peristaltic flow phenomenon includes
various physiological flow difficulties, such as the transportation of food through the digestive
system, the transfer of urine to the bladder, and the circulation of blood in tiny blood arteries, among
others. In physiology, this is important in a variety of situations, including food movement in the
assimilation tract, urine transport, supply of blood in tiny blood arteries from the kidney to the
bladder through the ureter, chyme movement in the gastrointestinal tract, and swallowing of food
bolus via the esophagus. This mechanism may be found in roller pumping systems, finger pumping
systems, cardiac machines, and blood-pumping machines, among other biomanufacturing devices.
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The relevance of this phenomenon may be seen not only in
physiological processes but also in engineering and
manufacturing, among other things. Peristalsis seems to be a
critical instrument in the transit of chyme through the
gastrointestinal tract, the passage of the ovum via the fallopian
tube, and the circulation of blood through the heart chambers.
Under this code, other biological equipment, such as the
heart–lung machine, may operate. The pumping of poisonous
and acidic fluids with the use of breaker and handle pumps, which
exhibit peristaltic phenomena, is one of the most common
industrial applications. A large number of experimental and
theoretical efforts have been made to understand the
peristaltic motion of Newtonian and non-Newtonian fluids in
a variety of flow configurations.

When a nonlinear connection between shear stress and strain
rate occurs, the Rabinowitsch fluid model is one of the fluid
models that might be considered. This model is significant
because it depicts the three primary kinds of the fluid for a
variety of nonlinear factor values, each of which has a distinct
relevance. Rabinowitsch fluids can address the complex
physiological behaviors of the non-Newtonian model and also
exhibit the characteristics of shear thinning or pseudoplastic (e.g.,
polymer solutions, blood plasma, latex paint, ketchup, and
syrup), shear thickening or dilatant (e.g., oobleck, sand, and
polyethylene glycol), and Newtonian behavior (e.g., air and
water). In the literature, there have been many reports on the
application of the Rabinowitsch fluid model [1–4]. This model
has been examined by many researchers for the practical and
theoretical examination of squeezing films, annular discs,
externally pressured bearings, journal bearings, and pivoted
curved slider bearings, among other types of bearings [5–7].

Anterograde peristalsis [8] is radially symmetrical contraction
and relaxation of muscles that propagate as a wave down a tube in
the opposite direction of the wave’s propagation direction.
During peristalsis, the involuntary circular muscles in the
lining of the gut contract and relax in a coordinated manner,
which is preceded by a simultaneous contraction of the
longitudinal muscle and relaxation of the circular muscle in
the lining of the gut. The smooth muscle tissue contracts in
succession in a digestive system, such as the human
gastrointestinal tract, to generate a peristaltic wave, which
pushes a ball of food (known as a bolus until it is turned into
chyme in the stomach) through the tract. During the peristaltic
movement, circular smooth muscles relax and then contract
behind the chewed material to prevent it from traveling
backward, and finally, longitudinal smooth muscles contract to
drive the chewed material forward. To propel themselves around,
earthworms use a system similar to this, and some contemporary
technology is based on this concept [9, 10].

Mathematically, this phenomenon was initially explained and
studied by Latham [11]. A series of analytical investigation studies
on peristalsis have been produced following the innovative work
published by [12–18], which is credited with laying the
groundwork for peristaltic flows. A detailed mathematical
analysis is performed with the non-Newtonian fluid models
such as the Rabinowitsch fluid, which was studied by [19] in a
two-dimensional channel, applying the suppositions of a low

Reynolds number and a long wavelength. The experimental
results of the Rabinowitsch model are studied by Wada and
Hayashi [1]. This model is very important because it depends
upon the combined relationship between shear stress and shear
strain. In this relationship, the factor alpha is significant because
of its effect. On this factor, we discuss the three types of the fluid,
and the applications of the Rabinowitsch fluid are studied by [3].
Recently, flow through the elliptic duct has attracted scientists
and engineers because of its wide range of applications. There are
many research articles that deal with the peristaltic flow in a
circle, rectangle, asymmetrical region, and so on. Here, we discuss
the peristaltic flow through the elliptic duct. The peristaltic flow
by using non-Newtonian fluid models such as the Jeffery model
and Casson model is discussed, with the sinusoidal behavior of
the peristaltic flow [20].

Non-Newtonian fluids contain several rheological
characteristics that cannot be described by a single rheological
model. In boundary layer flow, the importance of non-Newtonian
fluid flows has grown. It is due to its numerous industrial and
technological applications. For such flows, the mathematical
description is generally complicated. Shear stress and strain
rate cannot be evaluated in only one ingredient equation for
these fluids. A mixed convective peristaltic flow of the
methanol–Al2O3 nanofluid generates entropy owing to heat
transfer and fluid friction. The Maxwell thermal conductivity
model is employed. The entropy generation number is computed
using velocity and temperature profiles [21]. This paper proposes
a numerical solution for bioconvective nanofluid flow. An
exponentially expanding vertical plate containing
microorganisms in a tangent hyperbolic nanofluid is studied
[22]. In the application of biological sciences and chemical
and petroleum processes, non-Newtonian materials are used.
Because of the logical examination of the kinetic energy law of
liquid flows, the Eyring–Powell rheology of the non-Newtonian
fluid is not an empirical method, but it is a realistic viscosity
relaxing model because of the realistic viscosity relaxing model.
Because of its vast range of applications, a growing number of
researchers are becoming interested in investigating the behavior

FIGURE 1 | Flow chart.
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of this non-Newtonian fluidmodel in a variety of flow geometries.
This paper devotes a significant portion of its literature review to
the Eyring–Powell fluid flow in a circular pipe, with the purpose
of obtaining accurate solutions for both the momentum and heat
fields [23]. Mustafa is figuring out specific solutions for the
boundary layer flow of certain nanofluids across porous
stretching/shrinking surfaces with various topologies in his
research lab at UC Berkeley. In order to achieve this goal, five
different kinds of nanoparticles as well as water as the base fluid
are being investigated: Ag, Cu, CuO, Al2O3, and TiO2 [24].

Many common liquids, like toothpaste and mayonnaise,
exhibit non-Newtonian flows. The Maxwell fluid [25],
Williamson fluid [26], Casson fluid [27], and Jeffrey fluid
[28] and shear-thinning fluids are pseudoplastic fluids, for
example, shampoo, ketchup, and slurries. With increased
shear rate, these fluids’ viscosity decreases. Polymer
solutions and related high-molecular weight solutions are
examples of pseudoplastic fluids. Shear tension will occur in
these liquids at low shear rates. Shear stress causes the
rearranging of molecules to lower overall stress. This
increase in fluid order decreases shear stress and causes the
observed nonproportionality between shear rate and shear
force. Shear-thickening fluids are dilatant fluids. These
fluids’ viscosity increases with shear rate. Dilatant fluids are
thick particle suspensions in liquids. If a shear rate is applied to
these particles, they must rearrange to lessen the shear rate’s
effect. This reduces the total shear force. Small shear rates
allow particles to reorganize. If the shear rate is too fast, the
particles do not have time to rearrange, and a large shear force
builds up. A dilatant fluid is a water-corn starch suspension.
Hand compression of such a suspension makes it virtually
solid. By removing the pressure, the suspension reflows
[29–31]. Long-wavelength peristaltic waves propagate [32]
at the edges of small-width or small-diameter parts. Under
the assumption of a long wavelength, the percentage of
channel width to wavelength in the presented issue becomes
insignificant. When compared to longitudinal flow amounts,
transverse flow quantities become tiny and hence
inconsequential. In the case of chyme transit in the small
intestine, such validations remain valid. In the human ureter
and reproductive systems, these approximations hold up well
[33–36]. Under these conventions, the equations as well as
boundary conditions are further simplified.

These microelements (e.g., bubbly liquids, lubricants,
synovial fluids, some man-made liquids, physiological fluids,
and polymeric suspensions) can completely change the
rheological behavior of the resulting mixture according to
micropolar constitutive laws by offering a substantial
inertial effect with an increase in the effective viscosity of
the medium due to the microscopic inertial effect. To
accomplish these key aims, strong theories and assumptions
are employed to accurately describe the fundamental
conservation equations using Buongiorno’s model’s passive
control. For realistic boundary conditions, the governing
boundary layer equations are translated into a system of
ordinary differential equations using the GDQLLM
technique [37]. Researchers have been studying nanofluids’
thermal and rheological characteristics for decades. An
impermeable horizontally electromagnetic surface (i.e., the
Riga plate) heated convectively in the presence of a variable
heat source was used in this numerical analysis to highlight the
main renewable and mass transport appearances [38]. The
numerical investigation of the peristaltic flow of a blood-based
nanofluid is carried out with the help of the generalized
differential quadrature technique [39]. An important part of
this numerical study is that it shows how to do a unique
computing analysis for steady-state magnetohydrodynamic
(MHD) convective flow of radiative Casson fluids across a
nonlinearly elongated elastic sheet with a nonuniform
distribution of thickness [40]. Examination of steady mixed
convection nanofluids flowing through an isothermal thin
needle using metallic and metallic oxide nanoparticles was
performed [41]. A detailed numerical investigation of
thermodynamic irreversibilities in dissipative
electromagnetodynamic (EMHD) fluid flows past a moving
horizontal Riga plate was performed [42]. Blowing and suction
effects on thermomagnetic convection in a narrow nanofluidic
medium were studied [43]. The purpose of the current
communication is to investigate the influence of the
Cattaneo–Christov model and convective border on second-
grade nanofluid flow in conjunction with a Riga pattern in a
convective boundary. In order for the proportion of
nanoparticles to retain their high retardation, zero mass
flow must be accounted for at the solid surface of the Riga
pattern on the solid surface. The research also considers the
influence of Lorentz forces created by the Riga pate, which is a

FIGURE 2 | Geometry.
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crucial part of the subject. Through the use of appropriately
calibrated transformations, the controlling nonlinear issue is
transformed into an ordinary problem. In order to identify
solutions to nonlinear issues, the spectral local linearization
approach has been included in the program [44].

The current model provides an explanation for the effects of
the elliptic duct and changing liquid characteristics on the
peristaltic transport of a Rabinowitsch fluid model. The
current work has applications in the design of dialysis
machines, roller–finger pumps, heart–lung machines, and
other medical devices. The examination also provides a
more in-depth understanding of the peristaltic system,
which is responsible for the movement of chyme in the
gastrointestinal tract and the flow of blood in tiny vessels.
An elliptical cross-sectional duct has not yet been extensively
studied in terms of its peristaltic flow dynamics. Peristaltic
flow via an elliptical cross-sectioned duct is thus
mathematically explored in this study. As a result, we use
the Rabinowitsch fluid model. This study was motivated by the
need for an understanding of the peristaltic flow mechanism
inside an elliptic duct since the existing literature work only
gives information on the peristalsis activity for cylindrical,
rather than elliptic, ducts. Non-dimensional partial differential
equations may be obtained from the governing equations after
simplification, and the final form of the simplified equations is
assessed in accordance with the corresponding applicable
boundary conditions. Even more so, if we look at it from a
biological standpoint, we can see that they are critical to the
functioning of a wide range of biological propulsion processes.
The precise solution part gives a thorough way for interpreting
the analytical solution for velocity profiles, which may be
found in the next section. This efficient and innovative
technique yields accurate solutions to the partial differential
equations that were generated in the course of this
investigation. Finally, graphical representations of different
peristaltic flow characteristics are used to show the solutions,
and the visual findings are used to look at the streamlines.

1.1 Research Methodology
Researchers use a variety of research methodologies to find the
ones that work best for their particular problem. The
mathematical investigation of the peristaltic flow via a duct
with an elliptic cross-section is presented Figure 1. The
mathematical calculations are carried out using the
Rabinowitsch fluid model, and an accurate mathematical
answer is provided as a result. An elliptic domain is used in
the solution to the issue. This elliptic duct features walls that
oscillate sinusoidally, which causes the fluid to be propelled
forward. In this geometry, Figure 1, the traveling wave may be
observed to be present. After simplification, the controlling
mathematical equations are transformed into dimensionless
partial differential equations. A comparison of the final
simplified version of the differential algorithms with regard
to the required boundary conditions is performed, and a
precise solution is obtained. Graphs are used to better
explain the findings, and the many components of
peristaltic flow phenomena are addressed in further detail.

The lubrication theory is used to derive the dimensionless
versions of the mathematical model that are λ → ∞.

2 MATHEMATICAL FORMULATION

A mathematical model for the non-Newtonian Rabinowitsch
fluid inside an elliptic domain is disclosed. Consider the flow
of an incompressible peristaltic flow of the Rabinowitsch fluid in
an elliptic duct of width δ1 + δ2 . The propagation of sinusoidal
waves along the nonconducting and flexible walls of the duct
generates the flow. The mathematical expressions for the elliptic
duct are as follows (see Figure 2) [20]:

Deformable walls have a geometrical description that may be
described by the sinusoidal equations shown below [44]

a(Z, t) � δ1 + L1 sin(2π
λ
(Z − st)),

b(Z, t) � δ2 + L1 sin(2π
λ
(Z − st)), (1)

where δ1 and δ2 are the semi-major axis and semi-minor axis
of the elliptic duct, respectively, and L1 is the wave amplitude.
It is presented as follows: the mathematical equations
guiding the flowing of this incompressible Newtonian
fluid [46]
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(5)
Here, U, V, and W are the components of the velocity in the
direction of radial X, Lateral Y, and axial Z, respectively; P is the
pressure; and ρ is the density.

The dimensional form of boundary conditions of the above
equations is given below

W � 0for
X2

a2
+ Y2

b2
� 1, (6)

Equation 6 is the boundary conditions considered over the
boundary of an ellipse as the equation of the ellipse can be seen
in these boundary conditions. As can be seen in the boundary
condition, w � 0 for x2

a2 + y2

b2 � 1. This condition depends on two
variables, x and y. This condition can be explicitly written as w � 0
for x varies from ± a

�����
1 − y2

b2

√
and y varies from ± b

�����
1 − x2

a2

√
. If we

solve the equation given in boundary conditions x2

a2 + y2

b2 � 1 for the

value of x, we get ± a
�����
1 − y2

b2

√
. The square on x and y gives two values

of x and y for boundary conditions.
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The Rabinowitsch fluid is included in the classification of
pseudoplastic fluids (shear-thinning fluids), which include blood
and other bodily fluids. This model accurately illustrates the
influence of lubricant additives and is capable of fitting
experimental data over a wide range of shear rates. Long-chain
polymer solutions have been used successfully by tribologists for
decades to improve the effectiveness of the stabilizing qualities of
non-Newtonian lubricants by adding modest volumes of long-chain
polymer solutions to the mix. The introduction of additives reduces
the susceptibility of the lubricant to changes in the shearing strain
rate during shearing operations. Moreover, because of the viscosity
of these lubricants, there is a nonlinear connection between shearing
stress and shearing strain rate when the shearing stress is increased.
Here, γ is called the coefficient of pseudoplasticity; the fluid behavior
of thismodel is that of a dilatant fluid for γ< 0, a Newtonian fluid for
γ � 0, and a pseudoplastic fluid for γ> 0.

The Rabinowitsch fluid model [47] is defined as

τij + γ.(τij)3 � _γij,

_γij �
zUi

zXj
+ zUj

zXj
,

(7)

τYZ + γ.(τYZ)3 � zW

zY
+ zV

zZ
, (8)

2.1 Galilean Transformation
Galilean transformations, also known as Newtonian
transformations, are a set of equations in classical physics that
link the space and time coordinates of two systems that are
traveling at a constant velocity relative to each other in the same
direction. People who study things that happen at slower speeds
than the speed of light can use Galilean transformations to talk
about them. These transformations formally express the idea that
space and time are absolute; that length, time, and mass are not
affected by the relative motion of the observer; and that the speed
of light is influenced by this motion.

Applying the Galilean transformations defined as [48]
Using the Galilean transformation in Eqs 2–5 gives the

following equations in the wave frame (moving frame)

zu

zx
+ zv

zy
+ zw

zz
� 0, (9)

ρ(u zu
zx

+ v
zu

zy
+ w

zu
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) � −zp
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, (10)

ρ(u zv

zx
+ v

zv

zy
+ w
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zy
+ zτYX

zx
+ zτYY
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, (11)

ρ(u zw
zx

+ v
zw

zy
+ w

zw

zz
) � −zp

zz
+ zτZX

zx
+ zτZY

zy
+ zτZZ

zz
, (12)

2.2 Dimensionless Variables
We introduce the following dimensionless variables in this
section:Here, dh is the hydraulic diameter of the ellipse, which
is defined as [46]

dh � π b0
E(e), (13)

e is called the eccentricity of the ellipse, 0< e< 1, which is
identified as e �

�����
1 − δ2

√
E(e) � ∫π

2

0

����������
1 − e2Sin(β)√

dβ, (14)

2.3 Long-Wavelength Approximation
Peristalsis with a long wavelength has traditionally been referred
to as a regime in which the wavelength is enormous in
comparison to the radius of the channel (when it is not
disrupted), and this has been the case for many years. Because
of the typical spacing between nonlinear parts that are dispersed
across the channel, one obtains an extra length resulting from this
scattering of elements. They may be highly significant in defining
the flow–pressure relationship of the tube and, as a consequence,
the operation of the biological system that they may depict, but
they can also introduce complexity that makes an analytical
approach difficult, so that is why they use long-wavelength
approximation to make an easy analytical approach. After
taking into consideration the restrictions of a long wavelength
(λ≪ 1) , the section of dimensionless variables in Eqs 9–12
is used:

−[z�p
z�x

] � 0, (15)

−[z�p
z�y

] � 0, (16)

[ − z�p

z�z
+ z

z�x
�τzx + z

z�y
�τzy] � 0, (17)

2.4 Dimensionless Boundary Conditions
The corresponding dimensionless boundary conditions are

�x � x
dh

�y � y
dh

�z � z
λ

�t � st
λ

�w � w
s �p � d2

h p
μλs

δ � δ2
δ1

ϕ � L1
δ2

�u � λu
dhs

�v � λv
dhs

�sij � dh
sμf

sij
�a � a

dh
�b � b

dh α � γs2μ2

d2
h

U[X ,Y ,Z, t] � u[x, y, z, t] V[X ,Y ,Z, t] � v[x, y, z, t] W[X ,Y ,Z, t] − s � w[x, y, z, t]
P[X ,Y ,Z] � p[x, y, z] X � x Y � y
z � Z − st
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�w � 0,
�x2

�a2
+ �y2

�b
2 � 1, (18)

The expression of (1) takes the form

�a � E(e)
π

(1
δ
+ ϕsin(2π�z)),

�b � E(e)
π

(1 + ϕ sin(2π�z)), (19)

FIGURE 3 | (A) Velocity profile 2-D for Q. (B) Velocity profile 3-D for Q.

FIGURE 4 | (A) Pressure gradient profile for Q. (B) Pressure gradient profile for ϕ. (C) Pressure gradient forδ.
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and expression (8) becomes

�τYZ + α.(�τYZ)3 � z �w

z�y
, (20)

2.5 Exact Solution
Calculating the precise solution of the velocity profile may be
done analytically with the aid of the polynomial that we

specified for the given solution and the provided solution.
This component is very crucial and plays a vital part in the
solution of the velocity profile since it is constant in nature.
Here, we get the solution of (17), The polynomial solution for
�w(x, y) is defined here [49],

�w(x, y) � C1x
4 + C2y

2 + C3x
2 + C4y

2 + C5x + C6y

− 1
32

b2
z�p

z�z
(8 + b2(z�p

z�z
)2

α), (22)

The constants of the above polynomial are

C1 � −
α(z�p

z�z
)3

�b
4

32�a4
, C2 �

α(z�p
z�z

)3

32
, C3 �

�b
2(z�p

z�z
)

4a2
+
�b
4(z�p

z�z
)3

α

16�a2
,

C4 �
p(z�p

z�z
)3

4
, C5 � 0, C6 � 0,

Replacing the values of constants, the above equation (22)
becomes

w[x, y] � z�p
z�z
�y2

4
− b4(z�pz�z)3x4α

32a4
+ 1
32

(z�p
z�z

)3

y4α + x2⎛⎜⎝b2(z�pz�z)3
4a2

+ b4(z�pz�z)3α
16a2

⎞⎟⎠ − 1
32

b2
z�p

z�z
(8 + b2(z�p

z�z
)2

α),
(23)

The volumetric flow is calculated by integrating the velocity
term over the elliptical cross-section; the dimensionless
volumetric flow flux is written as follows:

q(z) � − 1
64

ab3pπ(8 + b2p2α), (24)

The pressure gradient is in the term of q(z) � Q − ∫1

0
abdz

dp

dz
�
2a2b8(6π)2/3α − 261/3(18a2b10(−L + Q)α2 + �

6
√ ��������������������������

a4b20α3(a2b4π2 + 54(L − Q)2α)√ )2/3

3ab5α(18a2b10π(−L + Q)α2 + �
6

√
π

��������������������������
a4b20α3(a2b4π2 + 54(L − Q)2α)√ )1/3

, (25)

The pressure rise expression for the given flow is written as

Δp � ∫1

0

dp

dz
(26)

3 THE RESULTS OF AN INVESTIGATION
AND CONVERSATIONS

3.1 Analysis of the Results
In this section, we analyze the results of various physical parameters
with the help of the plotted figures. These graphs are plotted for
volumetric flow rate, occlusion, aspect ratio, and following other
parameters. We use a unique solution method to solve the
complicated problem. Because of the polynomial solution and the
way the graphsmove, we can see that the boundary conditions aremet
and our solution for this elliptic duct is close to the correct answer.

The analysis of the effect of the pseudoplasticity coefficient and
the mean flow rate on the velocity of the fluid was performed. It

FIGURE 5 | (A) Pressure rise for ϕ. (B) Pressure rise forδ.

�τYZ � zp
zz

y
2 �τXZ � zp

zz
x
2

(21)

�τYZ � 0, at y � 0 �τXZ � 0, at x � 0
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FIGURE 6 | (A) Streamline for Q = 3.26 and α is + ve. (B) Streamline for Q = 3.28 and α is + ve. (C) Streamline for Q = 3.3 and α is + ve. (D) Streamline for Q = 3.32
and α is + ve. (E) Streamline for Q = 3.26 and α is − ve. (F) Streamline for Q = 3.28 and α is − ve. (G) Streamline for Q = 3.3 and α is − ve. (H) Streamline for Q = 3.32 and
α is − ve.
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has been shown that the magnitude of dimensionless velocity in
the middle of the tube rises with the pseudoplasticity of the fluid
and decreases with the dilatant nature of the fluid. On the elliptic
duct, the opposite phenomenon is seen. Observers have analyzed
that the pressure gradient exhibits an oscillatory characteristic.
The trapping phenomena are also discussed in the context of the
current fluid model for dilatant and pseudoplastic natures. The
effect of the flow rate aspect ratio and various other parameters is
analyzed for both cases, such as pseudoplasticity and the dilatant
nature of the fluids. The Newtonian case is not studied in this
section because at this condition, it is diverged.

3.2 Discussion of the Results
A graphical discussion of the precise solutions produced in the
preceding section is shown here in order to offer a quality study
of the mechanical behavior of the concerned fluid flow and the
influence of the many factors involved in it. UsingMathematica 13.0,
we created computer algorithms that enabled us to retrieve a set of
data files, including information about the velocity, pressure gradient,
and pressure rise. We discuss the graphical results of the velocity
profile in 2-D and 3-D obtained by the polynomial solution method.

There are experiments to see from Figures 3A,B how the
pseudoplasticity coefficient and the mean flow rate affect the fluid’s
velocity. As has been seen, the dimensionless velocity in the center of
the tube increaseswith pseudoplasticity anddecreaseswith dilatation in
the experiment. Case 1: The increasing volumetric flow rate causes an
increase in velocity at the center of the channel, as shown in Figure 3A
in 2-D. The velocity graph is plotted along to show the proper behavior
of this profile with the increase of the value of the volumetric flow
velocity profile, and it shows an increasing behavior for both the
negative and positive values of the coefficient of pseudoplasticity (α).
Case 2: We discuss the behavior of the velocity profile for the increase
of the values of volumetric flow rate for a negative value of
pseudoplasticity (−α). The opposite behavior is seen near the walls
of the elliptic duct. For elliptic ducts where the fluid is affected by
metachronal waves, the flow rate is increased due to the pseudoplastic
fluid and decreases at the center where the effect of the dilatant fluid is
added. Figure 3B depicts a three-dimensional graphic of the phase
flowmodel whenQ is increased. The same behavior is shown in the 3-
D velocity profile graph. Because the solution approaches infinity, the
Newtonian behavior of the fluid has failed in this case, so we will not
discuss the Newtonian behavior of the fluid here. We discuss the
graphic behavior of the pressure gradient on the above-mentioned
parameters such as volumetric flow rate, occlusion, and aspect ratio on
different types of increasing four values for pseudoplastic fluids and
dilatant fluids in Figures 4A–C. In the Rabinowitsch fluid model, we
discuss the three behaviors of the fluids that are based on the
coefficients of the pseudoplastic. A nondimensional measure of
pressure gradient has oscillating behavior for different increasing
values of pseudoplastic and dilatant fluids. For dilatant liquids, the
greatest values are accomplished at z = 0.7, 1.7, 2.7,. . ., for which we
have the base upside for pseudoplastic fluids. Additionally, the relative
minima of dilatant liquids are accomplished at z = 0.2, 1.2, 2.2,. . ., for
which the family member maxima happen for pseudoplastic liquids.
When compared to the Newtonian concept of the liquid, rapid change
for the advantages of dilatant and pseudoplastic liquids is viewed. In
Figures 5A,B, a depiction of the pressure increase as a function of flow

rate is shown. For pseudoplastic fluids and dilatant fluids, it is observed
that for different increasing values of the nondimensional measure of
pressure rise, both liquids have sinusoidal behavior but in opposite
directions. Figures 6A–H show how streamlines behave when
increasing volumetric flow values for both pseudoplastic and
dilatant fluids. In the case of pseudoplastic fluids, the size of the
trapping bolus increases as the volumetricflow rate increases, but in the
case of dilatant fluids, the size of the trapping bolus grows, but so does
the number of shapes [45].

4 CONCLUSION

In this article, we analyzed the influence of the peristalsis flow of a
Rabinowitsch fluid model passing via an elliptic duct. The
dimensionless velocity is the greatest near the center of an elliptic
duct, and in the case of pseudoplasticity, the magnitude of the
dimensionless velocity rises and decreases with the dilatant nature
of the fluid. It is seen that the duct wall exhibits the opposite behavior.
As the mean flow rate increases, the velocity of the fluid increases as
well. On closer inspection, it is seen that the pressure gradient exhibits
oscillatory behavior like a sinusoidal wave. According to the streamlines
of the velocity profile, it can be seen that the size of the trapping bolus
for pseudoplastic and dilatant fluids is about the same. This research
effort, which interprets the mathematical analysis of the flow, involves
an elliptical duct with a non-Newtonian fluid flowing through it. In this
article, we explore the unique analytical solution and applications of the
peristaltic flow in different fields of life such asmoving blood around in
the heart, lungs, sanitary fluid transport systems, transfer of corrosive
fluids, and innovative pharmaceutical delivery systems. A revolutionary
mathematical approach for providing accurate exact solutions
involving partial differential equations (PDEs) is described in detail.
We give the unique solution method for this model; this solution is
based on the polynomial solution. When it comes to fitting functions,
polynomialmodels have traditionally been among themost commonly
employed empirical models in history because they are popular,
straightforward structures and commonly recognized. In physiology
and biomedicine, since it is involved in the pumping of blood in heart/
lung machines, the application of the Rabinowitsch fluid model to
peristalsis is quite beneficial.
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NOMENCLATURE

Cartesian coordinate system (X,Y,Z)
Half-axes of ellipse (δ1, δ2), (δ2 < δ1)
Coefficient of pseudoplasticity α}(< , > ,�)}1
Eccentricity of ellipse e

Occlusion ϕ

Electromagnetohydrodynamic (EMHD)

Velocity components (U,V,W)
Wavelength (m)(λ)
Velocity of propagation (ms−1)s
Hydraulic diameter of ellipse (m)dh
Fluid viscosity (Nsm−2)μ
Aspect ratio δ

Partial differential equations (PDEs)

Volumetric flow (m3

s )q
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