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In this work we detail the design of a novel, hybrid waveguide structure which enables
independent control of phononmodes and optomechanical driving forces, thereby yielding
customizable Brillouin coupling over a very broad bandwidth. The Brillouin gain reaches
4400W−1m−1, with tunable phonon frequencies from 1–95 GHz. This hybrid waveguide
relies on tuning of its width and enables photon-phonon conversion based on the Brillouin
nonlinear effect, and importantly, it can guide and manipulate the phonons emitted by the
Brillouin effect on a chip-level device. There is hence excellent potential for this technique to
be applied in microwave sources using the on-chip Brillouin photoacoustic coupling
mechanism.
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INTRODUCTION

Stimulated Brillouin scattering (SBS) is a third-order nonlinear optical process that uses the
interaction of two photons in a medium to generate new photons and phonons [1–3]. Therefore,
the SBS effect can be used to force interaction between acoustic and optical waves, thereby
generating higher frequency photons and phonons. Customizable slow light can be generated
through techniques such as waveguide SBS photon-phonon coupling [4, 5], radio frequency
(RF)-photon signal processing [6, 7], narrow linewidth laser sources [8–10], RF-waveform
synthesis [11, 12] and optical frequency comb generators [11, 13, 14]. Silicon is the ideal
platform for nanophotonic devices because it is compatible with complementary metal-oxide
semi-conductors (CMOS). It enables nanoscale traveling-wave photon-phonon coupling
through Brillouin interactions to achieve high-performance signals [1, 15–18]. In the case of
nano-scale silicon-based optical waveguides, tight optical confinement results in significantly
enhanced Raman and Kerr nonlinearities [19–21]. In 2013, Rakich’s group proposed a novel type
of photon-phonon hybrid waveguide, which proved for the first time the process of forward SBS
(FSBS) nonlinearity and gain in a silicon waveguide [22]. In their work, the structure comprised
a suspended waveguide with Si3N4 on both sides and Si in the middle. Due to the significant
difference in refractive index between silicon (n = 3.5) and silicon nitride (n = 2.0), the structure
tightly confines the optical field mode to the central region of the silicon waveguide. The silicon
nitride films on both sides guide the phonons to perform photon-phonon coupling within the
silicon waveguide core. The SBS gain reached 2570 W−1m−1, and a tunable phonon range of
1–18 GHz was realized.
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As diamond and silicon both belong to the fourth group of
elements, they have many similar optical properties. Compared to
silicon, diamond has lower loss and higher nonlinear coefficient
across a wide range of operating wavelengths and can be used for
highly accurate phase-matching [23]. In addition, diamond has
excellent physical and chemical stability, especially with regard to
its extremely high thermal stability, enabling it to overcome the
inevitable thermal effect which can plague traditional laser gain
media at high powers [24, 25]. Meanwhile, its wide spectral
transmission range enables the operating wavelength of
diamond lasers to cover the ultraviolet, visible to mid-infrared
[24, 26]. Moreover, diamond has been proved to be a promising
Brillouin material for its high Brillouin gain coefficient and large
Brillouin frequency shift [27]. Currently, tens of watts of single-
frequency and cascaded Brillouin lasing have been realized in
diamond based on free-space structures [27, 28]. However, there
are very few studies on the characteristics of diamond Brillouin
lasers which employ a waveguide structure. Therefore, it is
important to investigate schemes which will yield higher
Brillouin gain, especially in the form of highly integrated and
tunable on-chip Brillouin lasers.

In this brief report, we detail the design of a novel type of
photon-phonon waveguide structure utilizing forward SBS
(multi-mode SBS). Here, the optical field is coupled in
different spatial modes to achieve the customizable FSBS of a
traveling wave. The Brillouin gain reaches 4400W−1m−1, and the
generation of phonons with frequencies across the range
1–95 GHz is realized. The simulation results show that the
nonlinear (Brillouin) enhancement caused by the radiation

pressure due to the design of the structure far exceeds the
nonlinear enhancement caused by the material. We believe
that this enhanced broadband coherent phonon emission
paves the way for hybrid on-chip CMOS signal processing
technologies.

THEORETICAL MODEL

The FSBS process involves the interaction between pump, Stokes
(or anti-Stokes) and acoustic waves [29, 30]. Specifically, in the
FSBS process, the optical waves (pump and Stokes) propagate in
the same direction while the acoustic (phonon) wave propagates
perpendicular to the optical waves [31, 32]. Phase matching of the
FSBS process requires the conservation of energy andmomentum
yielding the following conditions:

kA
�→ � kp

�→− ks
→

(1)
Ω � ωp − ωs (2)

Where, �kA, �kp and �ks represent pump, Stokes, and acoustic waves,
respectively. Considering the propagation direction of optical
waves, SBS can be categorized as FSBS and backward SBS (BSBS).
In this paper, we only focus on the coupling between modes
in FSBS.

For the FSBS process, let us assume that the propagation
directions of the pump wave and Stokes wave are both along the
z-axis, so the optical wave field of the pump wave and Stokes wave
can be described as:

FIGURE 1 | (A) Schematic diagram of the suspended waveguide structure. (B) Front view of the suspended waveguide highlighting the internal air slot; t = 215 nm,
w = 800 nm, air slot length s = 2 nm. (C) Frequency-wavevector plot showing the interaction of the pump, Stokes and phonon waves in the FSBS process; the optical
curves represent the optical resonances generated for different spatial modes. (D) Schematic diagram of the generation of Stokes and phonon waves produced by the
annihilation of a pump wave.
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EP(z, t) � ~Ep(x, y)ei(kpz−ωpt) (3)
Es(z, t) � ~Es(x, y)ei(ksz−ωst) (4)

Where Ep (z, t) is the pump optical wave, and Es (z, t) is the Stokes
optical wave. Using small signals as an approximate replacement,
when the power of the pump wave in the waveguide is greater
than the power of the Stokes wave, the coupling between the two
optical waves should meet the following conditions [33]:

dPp

dz
� −(α + βPp + γP2

p)Pp (5)
dPs

dz
� (α − gPp + 2βPp + γP2

p)Ps (6)

Where Pp and Ps are the power of the pump wave and the power
of the Stokes wave respectively, α is the linear loss coefficient of
optical wave caused by the structure, size, and other parameters of
the material. β and γ are nonlinear loss coefficients (including
two-photon absorption and free-carrier absorption). In Eqn. 6, g
represents the Brillouin gain coefficient, which has a Lorentzian
shape and can be expressed as [34]:

g(Ω) � ∑
m

Gm
(Γm/2)2

(Ω − Ωm) + (Γm/2)2 (7)

Ωm is the characteristic frequency that is satisfied by the total
characteristic equation of the acoustic mode when the acoustic
loss is ignored. Γm is the loss coefficient of acoustic mode when
acoustic loss is taken into account [35], depending on the
mechanical quality factor Qm with the relation given as: Qm �
Ωm
Γm [36]; subscript m is themth acoustic mode (m = 1,2,3 . . . . . . ).

Considering the acoustic loss, the peak value of the SBS gain
spectrum can be simplified as follows:

Gm � 2ωQm

Ω2
mVgpVgs

∣∣∣∣〈f, um〉
∣∣∣∣2

〈Ep, εEp〉〈Es, εEs〉〈um, ρum〉
(8)

WhereVg, ε, and ρ are the optical group velocity, conductivity and
density, respectively. f is the total of the optical forces of the pump
and Stokes waves. It is assumed that ωm ≈ ωs � ω and 〈X,Y〉 �∫Xp · Yds integrally cover the entire waveguide cross sectional. It
is the overlap integral between the total optical force [37] and a
single mth optical eigen-mode, and it represents the optical-
mechanical coupling strength of the suspended waveguide [38].

The acoustic displacement field is included in the total optical
force, satisfying the phase-matching conditions of Equations 1, 2
[35]. To facilitate the calculation um, the elastic loss in the
isotropic medium can be ignored, and the ideal acoustic
equation should satisfy:

−ρz2t ui +∑
jkl

zjcijklzkul � −fi (9)

Where Cijkl denotes the photo-elastic tensor, and fi is the ith
component of the total optical force of the acoustic field zj is the
derivative along the jth space direction of j, in which j ∈ {x, y, z}.
When the driving force fi is absent in Eqn. 9, the displacement
component umi of the acoustic field in different modes can be
obtained. Hybrid acoustic waves (HAW) include transverse
waves and vertical displacement components which are excited
in the waveguide structures.

Tomore clearly describe Eqn. 8 and 8 can be transformed into:

Gm � COTm

∣∣∣∣QCm

∣∣∣∣2 (10)
Where QCm � 〈f, um〉 denotes the influence of optomechanical
coupling on Gm, while COTm � CFVmCEFm is the influence of other
factors (including optical group velocity, material quality factor,
optical energy flow, and phonon energy flow) on Gm, where,
CFVm � 2ωQm

Ω2
m]gp]gs

, CEFm � 1
〈Ep,εEp〉〈Es,εEs〉〈um,ρum〉. From the two

parameters in the above expression, we can see that in the
waveguide structure, the angular frequency, the group velocity
of the optical waves, the energy flow of the optical and acoustic
waves, and the characteristics of the waveguide material are all
related to COTm.

FIGURE 2 | Data obtained showing the radiation pressure distribution of the designed waveguide in the case of an acoustic mode m = 0. (A) Schematic diagram
showing the radiation pressure distribution of the slot waveguide. (B) The guiding lateral profile of the fundamental optical mode highlighting the Ex, Ey and Ez field
components.
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In the suspended waveguide structure, the linear sum of all
overlap integrals between a single optical force and the mth
acoustic eigenmode during the optical-mechanical coupling
process can be expressed as:

QCm � ∑
n

〈fn, um〉 (11)

It is worth noting that the contribution of a single overlap
integral depends on the optical force, and its relative phase is
affected by interference effects. In a nano-level waveguide, the
Brillouin gain coefficient in Eqn. 8 needs to consider two
influencing factors: the electrostriction force and the radiation
pressure, namely f Total = f PE + f MB. Electrostriction is the
secondary response of mechanical strain excited by an external
electric field. The ith component of the electrostriction force is
defined as [39]:

fPE
i � −∑

ij

z

zj
σ ij (12)

Where σij is the electrostriction tensor that is given by:

σ ij � −1
4
ε0ε

2
rpijkl(EpkE

p
sl + EplE

p
sk) (13)

Where pijkl denotes the photo-elastic tensor, and εr and ε0 are the
relative permittivity and vacuum permittivity of the material
respectively. Since common materials used in integrated
photonics have either a cubic crystalline lattice (e.g., silicon) or
are isotropic (e.g., silica glass), and most waveguide structures are
fabricated to be aligned with the principal axes of the material, we
consider the crystal material of the waveguide to have spatial
symmetry. pijkl is zero if it contains odd number of a certain
component, and Eqn. 13 can be written as:

FIGURE 3 | (A) Distribution diagram of the total optical force within the waveguide. (B) Displacement diagrams of phonons in the x and y directions for each mode.
(C) Representations of the mode distribution diagram of each acoustic mode determined in b which satisfies phase matching when the waveguide width is 800 nm. (D)
Finite element simulation of the photoacoustic coupling rate varying with the width of the waveguide in the slot waveguide structure. The depth of the color represents the
coupling efficiency.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(14)

When the acoustic wave with frequency Ω excited by the
electrostriction body force propagates, the dielectric constant
inside the bulk medium changes by Δε. In this process, the
photon-phonon interaction mainly occurs inside the medium.
The electrostriction force is generated by the dynamic mechanical
response of the medium to the optical waves, and the relative
permittivity inside the medium changes so that a complex spatial
force distribution occurs inside the medium. Its magnitude and
direction are determined by the photo-elasticity tensor of the
material, and the electrostriction body force becomes f PEei(qx−Ωt)

according to Eqn. 14, with vector components:

fPE
x � −iqσxx − zyσxy − zzσxz

fPE
y � −iqσxy − zyσyy − zzσyz

fPE
z � −iqσxz − zyσzy − zzσzz

(15)

Radiation pressure acts only on boundaries where the gradient
of εr is not equal to zero [40]. It can be derived from the Maxwell
tensors between material 1 and 2, which can be written as:

fMB
i � (T2ij − T1ij)nj (16)

Tij � ε0εr(EiEj − 1
2
σ ijE

2) (17)

Where n is the normal vector points frommaterial one tomaterial
2. For the waveguide with constant horizontal direction, only the
transverse component of the force can contribute to the SBS gain
coefficient.

RESULTS

The factors affecting SBS gain mainly include electrostriction
force and radiation pressure. Since waveguide size needs to reach
the order of micrometers to nanometers, the SBS nonlinearity
caused by the material will be weakened, resulting in lower SBS
gain of the entire waveguide. So we need to design some specific
structures to increase the SBS gain. At the micro-nanometer scale,
the SBS nonlinearity caused by radiation pressure also plays a key
role. Our waveguide model adds an air slot in the center of the
waveguide, this results in an increase in the radiation pressure,
and the contribution to the SBS nonlinearity caused by the
radiation pressure is much higher than that from the material
itself. In addition, the use of suspended waveguides better
promote photon-phonon coupling because the suspended
waveguide better confines the optical field and the acoustic
field in the waveguide in comparison to a waveguide within
the substrate [41].

As shown in Figure 1A, the Brillouin laser system is made
from a diamond wafer. The diamond parameters are as follows:
Young’s modulus E = 1,220 GPa, Poisson’s ratio v = 0.07, density
ρ = 3515 kg/m3, photo-elastic tensor p11 = −0.249, p12 = 0.043, p44
= −0.172, relative Permittivity ε = 5.86. The outline of the air slot
is shown in Figure 1B. The thickness of the diamond wafer was t
= 215 nm, wafer width w = 800 nm, and width of the air slot s =
2 nm. The waveguide width was variable with width w =
500–2,000 nm, and the displacement field associated with the
waveguide mode satisfying the phase matching relationship is
shown in Figure 1C. In the FSBS, the m = 0 order acoustic mode
phase-matching conditions are shown in Eqs. 1, 2. This multi-

FIGURE 4 | (A) Plot showing the Brillouin gain as a function of frequency with the waveguide width set to w = 800 nm; the red line represents the MB effect, the
orange line the PE effect, and the blue line the total gain. (B) Calculated FSBS gain coefficients as the width of the air slot s is varied.
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mode, suspended waveguide provides low-loss guidance for
different types of acoustic modes, resulting in higher
mechanical quality factor (Qm) cavity modes with altered free-
spectral-range (FSR). As shown in Figure 1D, when the pump
wave with frequency ωp was injected into the slot waveguide, a
beat frequency signal with frequency Ω was generated. Under the
action of the beat frequency signal, an optical force was be
generated in the waveguide, and the exciting optical force
caused the waveguide material compress or expand, creating
an acoustic signal:

Finite Element Simulation using COMSOL software was
applied to examine the in the inter-mode FSBS; here the
pump and the Stokes waves were injected into the optical
waveguide as different modes. At the time, the incident pump
frequency, Stokes frequency, and the generated phonon
frequency satisfy Eqs. 1, 2 (s = 2 nm, w = 800 nm). To
simplify the calculation, we assumed that the optical quality
factor Q = 1,000 and the transformation of the eigenfrequency
of the optical mode did not affect the optical quality factor Q. By
examining the results shown in Figure 2A, it was found that the
radiation pressure at the central air slot was significantly higher
than that compared to other sections. Figure 2B shows the
distribution diagram of the electric field components when
m = 0 (basic optical mode). It can be observed that both
optical and acoustic waves were guided in the thin film
waveguide of Figure 1A. The optical wave was confined in the
air slot by total internal reflection, guiding the TE-like optical
mode. This produced strong Brillouin coupling, which
significantly improved the photon-phonon coupling efficiency.

We calculated the total optical force as shown in Figure 3A.
The result was consistent with the previous conjecture. Due to the
existence of an air slot, most of the optical force was concentrated
in the air slot. The acoustic displacement presented a symmetric
and anti-symmetric spatial pattern in different directions for
different acoustic modes. These are plotted in Figure 3B, and
the pump wave is 1,550 nm. Efficient selection of waveguide and
acoustic modes enables autonomous regulation of the photon-
phonon coupling. As shown in Figure 3C, when the waveguide
width was 800 nm, the slot waveguide exhibited five acoustic
modes (m = 5) under the action of the PE and the MB effect.
Especially between the first-order acoustic breathing mode and
the TE optical mode, the strain component of the acoustic and the
optical mode had a significant overlap integral, which
significantly improved the photon-phonon coupling efficiency.
Figure 3A and Figure 3B show that the higher the degree of
agreement between the optical force and acoustic mode
distribution, the higher the photon-phonon coupling
efficiency. In the case of the first-order acoustic mode, the
optical force and the acoustic displacement distribution in this
mode had a very high degree of overlap. At the same time, with
the increase of the mode order, the overlap integral of the optical
force and the acoustic displacement became smaller, so the degree
of Brillouin coupling gradually decreased. Since optical fields are
symmetrically distributed in space, only the acoustic field modes
with symmetry or anti-symmetry can produce effective Brillouin
coupling with the optical field, as shown in Figure 3C. When the
Brillouin spectrum changes with the size of the waveguide, a

Brillouin resonance of 1–95 GHz is produced, achieving
unprecedented nonlinear tunability. For example, in the case
of the first-order acoustic mode, when the waveguide, initially
2000 nm wide, becomes 500 nm wide, the frequency of the
acoustic wave shifts from 6.14 to 22.8 GHz, and a strong
Brillouin resonance occurs at this frequency. In Figure 3D, it
can be observed that in the case of the first-order acoustic mode,
the photon-phonon coupling efficiency reaches the maximum,
which is due to the optical force distribution mentioned above
and the modal distribution of the acoustic wave being very
consistent.

In the case where the optical quality factor was set toQ = 1,000
and the waveguide width was set to w = 800 nm, the resultant
Brillouin gain is as shown in Figure 4A. In the case of a first-order
mode, the Brillouin gain reaches a maximum of 4400W−1m−1. It
can be seen that the gain is mainly produced by the MB effect,
while the Brillouin gain produced by the PE effect is minimal.
With the increase in the mode order, the Brillouin gain gradually
decreases. This is due to the mismatch of the optical force
distribution due to the complicated profile of the model in
space so that the rapid spatial oscillation of the elastic mode
largely offsets the overlap integral. At the same time, it can be
observed that in the case of the third-order acoustic mode, the
partial gain (SBS nonlinearity caused by the radiation pressure)
exceeds the total gain. This is due to the coupling between the
third-order breathing mode and the surrounding TE modes, the
competition between the photo-elastic effect, and the moving
boundary effect [42]. The boundary and volume integrand have
opposite phases for this geometry, causing a self-canceling effect.

Next, the effect of the air slot width s on the FSBS gain
coefficient was studied. We fixed the geometric size letting
w = 800 nm and t = 215 nm. Then we varied s from 2 to
40 nm and calculated the FSBS gain coefficients. The
corresponding FSBS gain coefficients are plotted in Figure 4B.
The results show that as the air slot width S decreased, the total
Brillouin gain decreased. This strong photon-phonon coupling
phenomenon is produced by the combined action of
electrostriction force and nanoscale radiation pressure, and the
narrow air slot in the middle has considerable radiation pressure.
The emergence of large radiation pressure-induced coupling
represents a new form of boundary-induced Brillouin
nonlinearity and a new form of boundary-mediated Brillouin
coupling in subwavelength structures. This novel waveguide
geometry enables independent control of acoustic modes and
optomechanical driving forces, creating customizable Brillouin
coupling over a 1–95 GHz bandwidth. The finite element
simulations show that the FSBS effect is produced in the
suspended slot waveguide and the obtained SBS gain reaches
4400W−1m−1.

CONCLUSION

In this work, we designed a novel hybrid waveguide system.
We demonstrated a Brillouin laser with a slot waveguide
structure, which leveraged the favorable refractive index
and the photo-elastic characteristics of diamond to
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generate a broad Brillouin frequency shift. The design uses the
FSBS effect and by adjusting the cross-sectional width of the
slot waveguide, achieves tuning of the frequency of the SBS
acoustic wave. Multiphysics simulations reveal that the
strength of photon-phonon coupling is dependent on the
combined action of electrostriction force and nanoscale
radiation pressure, with the narrow air slot in the middle
of the waveguide generating considerable radiation pressure.
The photon-phonon coupling induced by significant
radiation pressure is a new form of Brillouin coupling
which is induced by boundary-induced Brillouin
nonlinearity and subwavelength structures. This suspended
waveguide structure enables independent control of the
acoustic wave and enables customizable Brillouin coupling
over an ultra-wide bandwidth of 1–95 GHz. According to the
PE and MB effect, the SBS laser of this slot waveguide shows
an SBS gain of 4400 W−1m−1. At the same time, multiple
transverse acoustic modes were coupled to produce relatively
flat Brillouin gain across the 1–95 GHz frequency range.
Therefore, this slot waveguide width tuning scheme can
yield photon-phonon conversion based on the Brillouin
nonlinear effect and guide and manipulate the phonons
emitted by the Brillouin process on a chip. Therefore, we
believe that this technique provides a means by which
microwave sources can be produced via an on-chip
Brillouin photoacoustic coupling mechanism.
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