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A memristor is a non-linear element. The chaotic system constructed by it can improve its
unpredictability and complexity. Parameter identification of a memristive chaotic system is
the primary task to implement chaos control and synchronization. To identify the unknown
parameters accurately and quickly, we introduce the Sine Pareto Sparrow Search
Algorithm (SPSSA), a modified sparrow search algorithm (SSA). in this research. Firstly,
we introduce the Pareto distribution to alter the scroungers’ location in the SSA. Secondly,
we use a sine-cosine strategy to improve the producers’ position update. These measures
can effectively accelerate the convergence speed and avoid local optimization. Thirdly, the
SPSSA is used to identify the parameters of a memristive chaotic system. The proposed
SPSSA exceeds the classic SSA, particle swarm optimization algorithm (PSO), and artificial
bee colony algorithm (ABC) in simulations based on the five benchmark functions. The
simulation results of parameter identification of a memristive chaotic system show that the
method is feasible, and the algorithm has a fast convergence speed and high estimation
accuracy.

Keywords: parameter identification, sparrow search algorithm, swarm intelligence, memristive chaotic system,
pareto distribution, sine cosine algorithm

1 INTRODUCTION

A memristor is the fourth fundamental circuit element except for resistance R, capacitance C, and
inductance. L. Strukov et al [1]. realized the first memristor in the world in 2008. It has set off an
upsurge of memristor research. In recent years, memristors have been intensely studied in many
application fields, such as memory [2], neural networks [3, 4], and image processing [5]. Amemristor
is a non-linear element. A chaotic system constructed by the memristor can improve the
unpredictability and complexity of the system [6–10]. Applying a memristive chaotic system is
also one of the research hotspots [11–13].

In practical engineering applications, the parameter identification of chaotic systems is the
primary problem in realizing chaos control and synchronization. The accuracy of the parameter
identification will directly affect the control effect of a chaotic system. Therefore, it is essential to
accurately identify the parameters of a chaotic system, which has crucial research significance. The
parameter identification of a chaotic system is essentially a complex non-linear numerical
optimization problem based on multi-dimensional search space. Because swarm intelligence (SI)
optimization algorithm does not need the derivative information of objective function, it has more
advantages than traditional optimization algorithm in parameter identification. At present, many
research results have emerged for some classical continuous memristive chaotic systems, such as
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particle swarm optimization algorithm [14, 15], differential
evolution algorithm [16, 17], artificial bee colony optimization
algorithm [18], bird swarm algorithm [19], Jaya algorithm [20].
For a discrete memristive chaotic system, the swarm intelligence
optimization algorithms also provide many practical solutions,
such as an improved PSO algorithm [21], meta-heuristic

algorithm [22], and enhanced differential evolution
algorithm [23].

The Sparrow search algorithm (SSA) is one of SI optimization
algorithms proposed in recent years [24]. It is created by imitating
the foraging behavior of a group of sparrows. Compared with other
SI optimization algorithms, SSA has the advantages of fewer
parameters, simple calculation, and easy implementation in
dealing with multi-dimensional problems and global search.
Therefore, SSA is used to solve the problem of parameter
identification in a chaotic system. However, the traditional SSA is
also easy to fall into local optimization. To avoid this phenomenon,
many researchers proposed some improved methods. For example,
Xiong et al. [25] used a fractional-order chaotic sequence to increases
the diversity of the population and used Pareto mutation to escape
local best. These methods achieve better results than traditional SSA
on 12 benchmark functions. But it is more time-consuming than
SSA. In this study, we propose a modified SSA called Sine Pareto
Sparrow Search Algorithm (SPSSA). The following are the primary
contributions of this paper:

(1) We use a sine-cosine strategy to improve the producers’
position update.

(2) To improve the location of the scroungers, we employ Pareto
distribution. This concept is useful for speeding up global
convergence and avoiding local minimum points.

(3) A memristive chaotic system’s parameters are determined
using the SPSSA.

In the following sections, Section 2 introduces preliminaries
for parameter identification and some concepts of the SPSSA.
Section 3 is the experimental results of the paper. Finally, our
conclusions presented in Section 4.

FIGURE 1 | Identification principle of a chaotic system [20].

TABLE 1 | Benchmark test functions.

Benchmark Functions Dim Range Fmin

F1(x) � ∑n
i�1x2i 30 [-100, 100] 0

F2(x) � ∑n
i�1|xi | +∏n

i�1|xi | 30 [-10, 10] 0

F3(x) � ∑n
i�1(∑i

j−1xj)2 30 [-100, 100] 0

F4(x) � ∑n
i�1([xi + 0.5])2 30 [-100, 100] 0

F5(x) � ∑n
i�1 − xi sin( ���|xi |√ ) 30 [-500,500] -418.9829×n

TABLE 2 | Experiment results of benchmark functions.

F SI Best Ave Std Computation time
(Second)

F1 PSO 7.134288e+01 1.959255e+02 60.0022 1.17
ABC 4.574426 8.274577 2.3966 17.44
SSA 0 1.874825e-140 1.02688e-139 4.56
SPSSA 0 0 0 8.01

F2 PSO 8.160150 3.057447e+01 20.0995 1.26
ABC 2.483748 3.248522e+01 23.3522 16.77
SSA 9.537863e-299 7.955561e-68 4.34102e-67 4.56
SPSSA 0 0 0 8.28

F3 PSO 2.908686e+03 8.612808e+03 5414.9 6.76
ABC 3.853256e+04 6.251440e+04 10947.1 27.90
SSA 0 4.102431e-78 2.24699e-77 12.23
SPSSA 0 0 0 13.40

F4 PSO 3.345754 7.431952 1.91963 1.28
ABC 45.48858 57.4692 5.74807 16.76
SSA 0 2.347171e-70 1.01756e-69 4.55
SPSSA 0 7.690814e-318 0 8.08

F5 PSO -9.476918e+03 -7.601357e+03 1069.6 1.91
ABC -1.453578e+63 -8.408056e+61 2.94628e+62 22.96
SSA -9.937985e+03 -8.648037e+03 656.408 5.62
SPSSA -1.256949e+04 -1.252106e+04 159.05 8.545
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2 METHODS

2.1 Parameter Identification of the Chaotic
System
Consider the n-dimensional original chaotic system with m
parameters

_X � F(X,X0, θ) (1)
where, X � (x1, x2,/, xn)T ∈ Rn is the state vector, θ �
(θ1, θ2,/, θm)T ∈ Rm is system parameter vector, X0 is the

initial state of the system. F: Rn × Rm → Rn is a given non-
linear vector function.

Assuming that the system structure is known, the identified
system can be defined as Eq. 2:

_Y � F(Y,X0, θ̂) (2)
where, Y � (y1, y2,/, yn)T ∈ Rn is the state vector of the
identified system. θ̂ � (θ̂1, θ̂2,/, θ̂m)T ∈ Rm is the identified
system parameter.

The parameter identified problem can be transformed into a Eq. 3

FIGURE 2 | Four algorithms’ convergence curves on five benchmark functions. (A) F1; (B) F2; (C) F3; (D) F4; (E) F5.
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θ̂ � argmin
θ

J(θ) � argmin
θ

1
Dn

∑Dn

i�1

����xi − yi

����2 (3)

where, Dn represents the data length used for state variables, xi
and yi represent the actual value and estimated value of the
system under their state variables, respectively. Through the
above analysis, the parameter identification problem of a
chaotic system can be transformed into a multivariable
optimization problem, and the relevant variables can be
adjusted to minimize the target value J. The optimization
principle is shown in Figure 1.

It is a multi-dimensional and multi-mode non-linear function,
and the chaotic system is dynamically unstable and sensitive to
initial parameters. Therefore, it is difficult to identify the
parameters of a chaotic system effectively and accurately. The
sparrow search algorithm is easy to realize in dealing with multi-
dimensional problems, so this paper proposes a modified SSA and
takes Eq. 3 as the objective function.

2.2 The Sparrow Search Algorithm
When a group of sparrows is searching for food, we can divide
them into three roles: producers, scroungers, and scouts.
Producers, also called finders, are some sparrows searching for
food. Scroungers are some sparrows following the producers’
track to search for food. Scouts are sparrows watching for
dangers. Producers usually account for 10%–20% of the
population. Some sparrows will be selected randomly as
scouts, which typically account for 10%–20% of the population.

In SSA, the behavior of sparrows searching for food can be
simulated as the process of solving optimization problems.
Consider that there exist N sparrows, the location of the ith
sparrow is Xi � [xi1, . . . , xij, . . . , xiD], where i = 1, 2, . . . , N, D
is D-dimensional search space.

The formula for the location update of producers is described
as below:

xt+1
ij �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt
ij · exp( −i

α · Tmax
), R2 < ST

xt
ij + QL, R2PST

(4)

where, t presents the current iteration, j = 1,2, . . . D. Tmax

indicates the cycles number. α ∈ (0, 1] and R2 ∈ [0, 1] are all
random numbers . ST ∈ [0.5, 1] is the alarm value. Q is a
random number subject to standard normal distribution; L is
a matrix of 1 × D. The initial values of all elements in the D
are set to 1.

The location of scroungers is updated as follows:

Xt+1
ij �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qexp(xt

worst − xt
ij

i2
) if i>N/2

Xt+1
P +

∣∣∣∣∣Xt
i,j −Xt+1

P

∣∣∣∣∣ · A+ · L otherwise

(5)

FIGURE 3 | The simplest memristor chaotic circuit.

FIGURE 4 | 3D diagram of the memristive chaotic system Eq. 11

FIGURE 5 | The convergence curve of a memristive chaotic system.
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where, Xt+1
P is the producers’ best location at iteration t + 1, while

xt
worst denotes the current global worst location.A is amatrix of 1 × D.

In A, all of the elements are initialized at random A+ � AT(AAT)−1.
In addition, the position of the scouts is updated by (6)

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt

best + β ·
∣∣∣∣∣Xt

i,j −Xt
best

∣∣∣∣∣ if fi >fg

Xt
i,j +K · (

∣∣∣∣∣Xt
i,j −Xt+1

worst

∣∣∣∣∣
(fi − fw) + ε

) if fi � fg

(6)

where, Xt
best is the optimal place at iteration t. β is a parameter that

controls the size of the steps. It is a random number with a normal
distribution, with a mean of 0 and a variance of 1. The current
sparrow fitness value, the best fitness value, and the worst fitness
value are fi, fg and fw, respectively. K is a random number that ranges
from -1 to 1. ε is a small constant that prevents zero-division-error.

2.3 The Modified Sparrow Search Algorithm
2.3.1 Updating Scroungers’ Locations
In the process of foraging, scroungers often forage around the best
producer. During this process, the producers and the scroungers
may switch roles with each other due to the competition for food.
According to the optimization method proposed in [26], the Pareto
distribution is introduced to improve scroungers’ location so that we
can avoid the algorithm falling into local optimization.

A random variable is said to obey the Pareto distribution if its
cumulative distribution function has the following equation [26].

F(x3) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − ( k

x3
)h

, x3 ≥ k

0, x3 < k
(7)

where, k > 0 is the scale parameter, h > 0 is the shape parameter
(Pareto’s index of inequality).

To avoid the local minimum points, the Pareto distribution is
utilized [25]. As a result, the scroungers’ location update formula
is changed by Eq. 8

xt+1
ij �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(xt

worst − xt
ij

i2
), i>N/2

xt
ij + α ⊗ Pareto(k, h) ⊗ (xt

i − xbest), otherwise

(8)

where, Pareto(k, h) is a random number that follows the Pareto
distribution. α is the step scale factor, and ⊗ is the point-to-point
multiplication.

2.3.2 Updating Producers’ Locations
In the Eq. 4, when R2 < ST, as the number of iterations increases, the
producers gradually approach the local best location. Scroungers will
also pour into that location, and the diversity of population locations
will be decreased. The algorithm may inevitably fall into local
optimum. To solve this problem, the idea of the sine cosine
algorithm (SCA) is integrated into the producers’ location update
method [27], and a learning factor is introduced. The learning factor
has a bigger value in the early stage of the search, which is conducive
to global exploration, and a smaller value in the later stage, which is

conducive to improving local development ability and accuracy. The
learning factor formula and the improved producers’ location
formula are described as follows:

ω � ωmax − t × (ωmax/Tmax) (9)

Xt+1
i,j � { (1 − ω) ·Xt

i,j + ω · sin(r1) ·
∣∣∣∣∣r2 ·Xt

best −Xt
i,j

∣∣∣∣∣, R2 < ST
(1 − ω) ·Xt

i,j + ω · cos(r1) ·
∣∣∣∣∣r2 ·Xt

best −Xt
i,j

∣∣∣∣∣, R2PST

(10)
where, ωmax is a constant, t indicates the current iteration, r1 is a
random number in [0,2π], and r2 is a random number in [0, 2].

Implementation of an improved sparrow search algorithm for
parameter identification of a memristive chaotic system.

Algorithm 1 shows the pseudo code for determining a
memristive system’s parameters using the SPSSA.

Algorithm 1. Pseudo code of SPSSA in parameter identification.

3 EXPERIMENTS AND DISCUSSIONS

To check the performance of SPSSA, we carry out some
simulation experiments. The software platform is Windows 10
and MATLAB 2021b. The hardware platform is a desktop PC
which a CPU is 3.20 GHz, and a memory size is 16 GB.

3.1 Benchmark Function Comparison
Experiment
To prove the performance of the proposed SPSSA, we select five
benchmark functions, which have been widely used to test the
effectiveness of the SI algorithm [23]. Table 1 shows the name,
range, and the minimum value of the benchmark test function.
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In our experiment, we input the population number N = 50,
Tmax = 500, ωmax � 0.6, Fd = Sd = 0.2. The dimension and the
search range are set according to the Table 1. The five benchmark
functions are used as fitness functions. Each benchmark test
function is run 30 times using four different SI algorithms.
Table 2 contains the best value, average, standard deviation,
and computation time. The best value reflects exploration ability,
the average value demonstrates convergence accuracy, and the
standard deviation depicts the SPSSA’s stability under the same
benchmark test function [25].

In terms of the best value, average value, and standard
deviation, the optimization accuracy of SPSSA is superior than
the other three algorithms, as shown in Table 2. Especially for
benchmark functions F5, only SPSSA converges to the optimal
value. Although SPSSA is not the fastest, its accuracy and stability
are the best. It shows that the SPSSA has a strong global search
ability and better equilibrium. To further prove the dynamic

convergence performance, four swarm intelligence techniques are
utilized to show the convergence curves of the five benchmark
functions (in Figure 2).

From Figure 2, we can see that SPSSA proposed in this paper
has a faster downward trend, steeper slope, and fewer iterations
compared with the other three algorithms, obviously in
Figure 2A,C, and Figure 2E. Figures 2B,D also show that
SPSSA can get the best result. As a result, SPSSA outperforms
PSO, ABC, and SSA in terms of convergence speed and
optimization impact.This shows the feasibility and superiority
of SPSSA.

3.2 Parameter Identification of a Memristive
Chaotic System
Figure 3 shows the simplest memristor chaotic circuit model.
A linear passive inductor, a linear passive capacitor, and a
non-linear active charge driven memristor make up the
circuit [28].

The dimensionless equation of that simplest memristor circuit
system can be described by Eq. 11

⎧⎪⎨⎪⎩
_x � ay
_y � −b(x + d(z2 − 1)y)
_z � y − cz + yz

(11)

where, _x � dx
dt , _y � dy

dt , _z � dz
dt. a, b, c, d are system parameters.

When the system parameters Eq. 11 are set to a = 1, b = 1/3,

FIGURE 6 | Convergence and optimization curve of parameter identification for a memristive chaotic system. (A) Optimization curve of parameter a. (B)
Optimization curve of parameter b. (C) Optimization curve of parameter c. (D) Optimization curve of parameter d.

TABLE 3 | Identified parameters by PSO,ABC,SSA, and BSA algorithms.

SI a b c d Best J
value

PSO 1.0551 0.2943 0.6722 1.7747 5.800800e-03
ABC 1.0016 0.3213 0.6507 1.5913 5.670232e-03
SSA 0.9960 0.3355 0.6023 1.4876 5.620233e-03
SPSSA 0.9982 0.3342 0.6014 1.4953 5.620033e-03
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c � 0.6, d � 1.5 the system Eq. 11 exhibits hyperchaotic behavior.
When the initial state values are set to x (0) = 0.1, y (0) = 0, z (0) =
0, we can use fourth-order Runge Kutta method to solve the
differential Eq. 11. The phase diagrams of the hyperchaotic
attractor are shown in Figure 4, in which the step length h =
0.1 and the sampling times Sn = 20000.

In the following simulations, we set a = 1, b = 1/3, c = 0.6, d =
1.5. x (0) = 0.1, y (0) = 0, z (0) = 0 are initial value of the original
system. The step length h is 0.01 and the sampling times Sn = 500.
The parameters of the SPSSA are input as follows: N = 20, Tmax =
100. Other parameters are same as those in Section 3.1. The range
of the parameters of the memristive chaotic system is set to
0≤ a≤ 3, 0≤ b≤ 2, 0≤ c≤ 3, 0≤ d≤ 2.

Figure 5 displays the convergence curve of the chaotic system
Eq. 11. Figure 6 show the curve of parameters identification
convergence. The final identified parameters of the PSO, ABC,
SSA, and SPSSA are provided in Table 3.

As shown in Figure 5, it is obvious that the SPSSA has the fastest
convergence speed and the smallest J value. Although SSA converges to
the optimal value, its rate is significantly slower than SPSSA.This shows
that among the four algorithms, SPSSA has the best performance.
From Figure 6 we can see among the four algorithms, SPSSA always
converges to the optimal value fastest. It is clear to see fromTable 3 that
the parameter values calculated by SPSSA are the closest to the actual
value. All these show that the convergence and stability of SPSSA are
better than the other three algorithms.

4 CONCLUSION

In this paper, a novel swarm intelligence optimization algorithm,
the modified sparrow search algorithm, is used for the parameter
estimation of a memristive chaotic system. The proposed
algorithm, SPSSA, uses a sine cosine method to the sparrow
finders’ position to avoid falling into local optimization in the

later search stage. Pareto distribution is used to adjust the current
individual position, to improve the speed and the global
optimization accuracy. Five standard test functions are used to
verify the algorithm, and the results show that the SPSSA has high
search accuracy. The simulation results show that the SPSSA can
identify the parameters of the simplest memristive chaotic system
more accurately, more rapidly, and more stable than the PSO, the
ABC, and the SSA. This proves that SPSSA has good effectiveness
and robustness. Other memristive chaotic systems can benefit
from the SPSSA. If we know the equation of other systems, we can
identify the system parameters by the methods mentioned in the
article.
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