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Extreme weather has long been a threat to human life and critical infrastructures. Previous
studies have focused on the reliability and vulnerability of single or interdependent
infrastructures under extreme weather threats. However, knowledge of the interactions
between coupled real-world complex systems, especially the cascading failure process
induced by external shocks, is essential, but the interactions receive less attention. Here,
we took the historical winter storm of Texas that occurred in February 2021 as a case study
and collected multisource data to explore the interaction between humans and the power
system affected by extreme weather. A connectivity-based network was proposed to
analyze the connectivity robustness and simulate the cascade of overload failures under
random and malicious attacks. Results showed that this network presents higher
robustness under random attacks in terms of network connectivity. However, a highly
heterogeneous distribution of load was shown in this network, making it particularly
vulnerable to attacks and easier to trigger cascading failures. An interacting negative
feedback mechanism was discovered in this coupled extreme
weather–humans–infrastructure system. Extreme weather events directly caused
physical failure in infrastructures, while their impact on individuals stimulated the power
demand for heat. An increase in demand further intensified the load on the power network,
which induced functional failure in infrastructure systems and finally aggravated the
adverse impact on people as end-users in return. This feedback loop inspired us to
reconsider the relationship among natural disasters, critical infrastructure, and humans.
Furthermore, even under the background of climate change, the impact of extremely cold
weather on electric infrastructures is still worthy of attention since the fluctuation of yearly
minimum temperature outstood in eastern Texas, where the majority of the population and
electric transmission facilities are located. Thus, it is noteworthy to integrate the interaction
between systems in the vulnerability assessment of infrastructure systems or the impact
prediction of intense external shocks in future research.
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1 INTRODUCTION

Extreme weather has been recognized as the top global risk in
terms of likelihood by theWorld Economic Forum’s Global Risks
Report since 2017 and as one among the top 4 global risks ranked
by impact in 2020, following climate action failures, weapons of
mass destruction, and biodiversity loss [1]. The newly published
Sixth Assessment Report [2] by the Intergovernmental Panel on
Climate Change (IPCC) stressed that the intensity and frequency
of extreme events generally scale with global warming and that
even a small increase in global warming will cause significant
changes in extremes on the regional and global scales with high
confidence.

Extreme weather, as a typical external shock, has caused
widespread failure of power systems [3]. Electric grid, as a
vital component of critical infrastructures and the backbone of
modern life, has long been subject to extreme weather conditions.
Severe weather has been recognized as the leading cause of power
outages in the United States. Extreme weather events caused
approximately 679 widespread power outages, affecting at least
50,000 customers each year from 2003 to 2012 [4]. In the Nordic
region, from 2003 to 2012, the European Network of
Transmission System Operators for Electricity reported that
36–43% of grid disturbances resulted from environmental
factors in five countries, including Denmark, Finland, Iceland,
Norway, and Sweden [5]. Among the major weather-related
power outages worldwide, in the period 2011–2016, the outage
due to Super Typhoon Rammasun in 2014 affected the largest
number of people, as 13,000,000 customers suffered in Luzon, the
Philippines [6].

From the perspective of an isolated complex network, research
on the impact of natural disasters on electric power systems has
explored how to increase the resilience of a grid [7]. Reliability
analysis (to obtain a picture of a system’s likely behavior) and
vulnerability analysis (to estimate the magnitude of the negative
consequences that arise, given that a strain is imposed on the
system) are two main approaches [8]. Reliability of an electric
power system generally refers to the continuity and quality of
electric power supply to customers. Methods based on
Monte–Carlo simulation are currently the most effective and
widely used techniques to assess the reliability of power systems
[9, 10]. For instance, Zhou assessed the overhead distribution line
failure rates based on the Poisson regression model and the
Bayesian network model, which predicted the yearly weather-
related failure events on overhead lines and determined the
prediction bounds with a Monte–Carlo analysis [11].
Reference [12] summarized the approaches to evaluate the
network vulnerability, including scenario-specific, strategy-
specific, simulation, and mathematical modeling assessments.

New trends discuss the cascading effects of power networks,
since the integration of critical infrastructures contributes to
increasing complexity and heterogeneity due to their
interdependence at multiple levels [13, 14]. Agent-based
modeling [15, 16], network-based modeling (topology-based
methods and flow-based methods) [17], economic-based
modeling [18], and Bayesian networks [19] are popular
methodologies for modeling cascading failures of electric

power outages in interconnected systems. Reference [20]
divided the research on cascading failure blackouts of modern
power systems into two branches. One branch is based on power
flow and stability analysis, and the other branch is based on
network topology analysis. Small-world network models and
scale-free network models are commonly applied in network
topology analysis. However, a power grid, in reality, is usually not
a typical type of network. The cascading effect of power outages in
a particular electric network could be different.

Moreover, the impact of power outages could be expanded if
the extreme weather coincides with social activities. For instance,
in January 2008, an unprecedented magnitude of frozen rain and
snow storms knocked down a sizable segment of the electric grid
in southern China, resulting in large-scale blackouts and road and
railway closures during the annual travel peak [21]. Since this
freeze occurred during the Spring Festival, which is the most
important traditional festival in China that marks the beginning
of a year, a large number of people needed to return to their
hometowns, which further aggravated the impact of this extreme
event on the public. In similar, ref. [22] examined the demand-
side responses of industrial, commercial, and residential sectors’
effect on the reliability of the power grid electricity after seismic
hazards and suggested improving community resilience by
regulating electricity consumption. In this context, limitations
arose due to the geographic scope of analysis and in terms of
handling case-specific variables.

Our study investigates the interactions between the power
system and humans affected by extreme weather events, in
particular the February 2021 historical winter storm in Texas.
Figure 1 shows the framework of this study. First, an electric
network using the complex network theory based on
infrastructure data in Texas is conducted; then, the network
connectivity-based critical components and areas are analyzed.
Random and malicious attacks are simulated to understand the
robustness of network connectivity. Then, cascading failures in
the network are simulated considering different tolerance
parameters of nodes. A correlation analysis is conducted to
explore variables related to power outages at the county level,
including socioeconomic, infrastructure, environmental, and
meteorological factors. An interacting negative feedback
mechanism in coupled human–infrastructure systems and the
long-term spatiotemporal distribution of extremely cold days in
Texas are discussed. An intersystem impact mechanism of the
connectivity and function of complex systems is concluded from
this case study. The interaction between systems is found to
amplify the impact of external shocks on both humans and
electric infrastructure systems.

2 METHODOLOGY

2.1 Disaster Description
In February 2021, a historical 9-day period of winter weather
brought snow, sleet, freezing rain, and extremely cold
temperatures to southeastern Texas. According to the National
Weather Service, this record-breaking Arctic air moved through
the region on 15 February as a strong upper-level low-pressure
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system with snow. Temperatures quickly fell into the teens and
single digits. All climate sites saw 5–6 consecutive days of
temperature records, as well as multiple days of record-
breaking snowfall. This historical event had catastrophic
impacts on the entire state of Texas, including South Central
Texas, with failed power grids, burst water pipes, limited road and
air travel, and other social impacts on the region [23, 24]. More
than 111 people died during the freeze, which was estimated to
cause $130 billion loss in Texas alone and $155 billion for the
country as a whole [25, 26]. More than 4.5 million households
were left without electricity at its peak, some for several days [27].

2.2 Data Source
This study primarily involves three types of data, including
meteorological data, electric system data, and socioeconomic
data. Two types of meteorological data are utilized. Station
meteorological data collected from the Global Historical
Climatology Network-Daily (GHCN-Daily) dataset Version
3 [28], including daily maximum and minimum temperature
(Celsius), precipitation (mm), snowfall (mm), and snow depth
(mm), are used to analyze meteorological factors during the
extreme event in this research. This dataset is provided by the
National Centers for Environmental Information of National
Oceanic and Atmospheric Administration. In addition,
historical temperature data (K) from GFDL-CM4 with 100 km
resolution from 1850 to 2019 are obtained and used for trend
analysis [29]. The data for electric transmission lines, substations,
and power plants are collected from the Homeland Infrastructure
Foundation-Level Data1. Data on power outages across the state
of Texas on 16th and 17th February at the county level are
obtained from the USA Today, to verify the critical component
results of this research2. Moreover, the hourly electric system
operating data, including demand and net generation by energy
source for Texas, are obtained from the U.S. Energy Information
Administration3. The SRTM 30 m Digital Elevation Data4 is
utilized in spatial correlation and regression analysis. The
census data are obtained from the demographic center of
Texas5, and GDP at the county level is collected from the
Bureau of Economic Analysis6.

2.3 Network Construction
Since Texas’s electric grid is largely self-contained, a network that
represented Texas’s main grid based on the transmission lines is
constructed. Considering that the transmission lines of EI Paso
and Hudspeth are not connected with the other counties in Texas,
both counties are excluded. In this network, nodes (V) represent
transmission lines, and edges (E) represent the connectivity
between lines. This means that if two transmission lines
represented by nodes V1 and V2 are physically connected, an
edge E12 is added to this network. The network is shown as
G � (V, E), where V � {1, 2, . . . ,N}, E ⊆ {1, 2, . . . ,M}. The
degree of node V (Kv) is the number of edges connected to
node V. The impact of natural hazards on an electrical network
can be evaluated by changes in network connectivity.

2.4 Critical Analysis
Considering that the network topology determines heterogeneity
of the node’s importance to network connectivity, critical analysis
is utilized to quantify this character of nodes in an electric
network. Critical node identification aims to determine a set
of nodes whose removal minimizes the network connectivity. In
this research, the size of the largest connected components (Cl) is
used to measure the network connectivity.

Cl � max|V(C)|, C ∈ Comp(G), Comp(G) � {C1, C2, . . . , Cl}
(1)

C is a subgraph of graph G, and l is the number of components in
the connected subgraph. Elements in Comp (G) are sorted in
ascending order. Birnbaum’s importance measure is used to
identify the critical component of this network [30].

IV � ΔGV

Cl
(2)

where IV refers to the importance of node V that is measured by
the percentage of decrease in size of the largest connected
components due to removal of node V. ΔGV is the size of the
largest connected component, which changes due to the removal
of node V. Cl represents the size of the largest subgraph in the
initial stage. Based on the above definition of critical components,
the critical area is defined as the components in which the area
has higher importance than others. The critical index of each
county is measured by calculating the total IV of nodes located in
this area.

CIi � ∑ IVt (3)
whereCIi refers to the critical index of county i, andVt represents
the node geologically located in county i.

2.5 Cascading Failure
In real-world electric power systems, the power flow under
external attack can be a very complex issue and refers to
relevant theories, technologies, and data support. Since this
research focuses on the interactions between humans and the
electric system under the external shock of extreme weather based
on spatial heterogeneity analysis, the complex network analysis
method can be used to simulate load distribution. For the

1Homeland Infrastructure Foundation-Level Data. Electric Power Transmission
Lines (2021). https://hifld-geoplatform.opendata.arcgis.com [Accessed 22 April
2021].
2United States today, Miller R. W (2021), ‘Massive failure’: Why are millions of
people in Texas still without power? https://www.usatoday.com/in-depth/news/
nation/2021/02/16/texas-weather-power-outage-rolling-blackouts-leave-millions-
dark/6764764002/ [Accessed 26 July 2021].
3U.S. Energy Information Administration (2021). https://www.eia.gov/opendata/
qb.php?category=3390033&sdid=EBA.TEX-ALL.NG.H [ Accessed 10 June 2021].
4Jarvis A., Reuter H.I., Nelson A., Guevara E. (2008). Hole-filled seamless SRTM
data V4, International Centre for Tropical Agriculture (CIAT). https://srtm.csi.
cgiar.org [Accessed 7 January 2022].
5Texas Demographic Center. 2020 Census Data Releases (2022). https://
demographics.texas.gov/Data/Decennial/2020/[Accessed 6 January 2022].
6Bureau of Economic Analysis. GDP by County, Metro, and Other Areas (2022).
https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas [Accessed
1 April 2022].
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constructed network, it is assumed that the energy is exchanged
between each pair of nodes and transmitted along the shortest
path connecting them from the perspective of reducing energy
loss. The load at a node can be measured using the total number
of shortest paths passing through the node [31–34], which is
computed as:

BCVi � ∑
Vs≠Vi≠Vt

nVi
VsVt

gVsVt

(4)

where nVi
VsVt

is the number of shortest paths passing through node
Vi and gVsVt is the number of shortest paths connecting node Vs

and node Vt. The equation can be normalized as

BCVi �
1

(N − 1)(N − 2)/2 ∑
Vs≠Vi≠Vt

nVi
VsVt

gVsVt

(5)

A single node failure changes the energy redistribution in the
network as well as the shortest paths. If the redistributed load
exceeds the capacity of a node, the node fails. The failure of every
single node may lead to a new redistribution and result in
subsequent failure until a new balance is reached in the
network. However, the initial load and capacity of each node
in reality are unknown. Thus, in this research, it is assumed that
the tolerance rates of nodes in this network are homogeneous.
The capacity of node V (PV) is the maximum load that the node

can handle, which is generally limited by cost in the real world. It
is assumed that the capacity of node V is proportional to its initial
load LV, α is the tolerance rate of the node, and N is the initial
number of nodes in this network.

PV � (1 + α)LV, V � 1, 2, . . . , N, α≥ 0 (6)

3 RESULTS

3.1 Network Analysis
The complex network theory is applied to electric network
analysis. The results show that the constructed network
contains 6,413 nodes and 17,652 edges in total, and it is not
fully connected. The size of the largest connected components
(Cl) is 6,278. Each node is connected by 5.5 edges on average.
Figure 2A shows the degree distribution of nodes in Texas’s
electric power grid. The distribution curve is not linear, which
indicates that Texas’s electric grid is not a typical scale-free
network. Figure 2B demonstrates the topology of the electric
network and highlights the top 2% critical nodes identified by
Birnbaum’s importance analysis. This network has reasonable
robustness considering the size of the largest components affected
by the removal of one single node, and Supplementary Table S1

FIGURE 1 | Framework of this study.
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lists the top 21 important nodes in detail. The minimum size of
the largest connected components after the removal of one node
remains 6,258, which is 99.7% of the original size of the largest
subgraph (Cl). This indicates that this network is resilient to
individual node failure.

From the perspective of the spatial distribution of critical
nodes, Figure 2C shows the top 21 key nodes and critical index of
each county. In general, the top 21 critical components are mainly
located in the northwest and southeast regions of Texas. The
critical index values of counties including Lubbock, Tarrant,
Dallas, Travis, Bexar, Harris, Jefferson, and Brazoria are above
1.5 standard deviations. The majority of critical areas are located
in eastern Texas, which indicates that these counties are essential
for maintaining this network performance.

To evaluate the connectivity robustness of this network,
random attacks and two strategies of malicious attacks are
simulated. The network connectivity is measured by the size
of the largest subgraph in the network. As demonstrated in
Figure 3, this network shows higher connectivity robustness
under random attacks compared to malicious attacks. In terms
of malicious attacks, target nodes are selected from those with the
highest loads (in violet) and the largest degrees (in yellow). A
discontinuous change is observed in the network connectivity
when 13–25% of nodes with the largest degree are removed. The
threshold of this phenomenon decreased to below 5%when nodes
with the highest load are attacked. This indicates that from the

perspective of network connectivity, nodes with the highest load
are of high importance. To maintain the majority of components
connected, it is essential that these nodes are protected and are in
a high priority for repair.

3.2 Cascading Failure
In a real power transmission grid, each node handles a certain
load. Failure of a node changes the balance of flows that can
trigger cascading failure across the whole network due to
reloading. The shortest paths connecting each pair of nodes
may change with a node failure, resulting in changes in the
load of connected nodes. If the newly allocated load exceeds the
maximum capacity of a particular node, the node is regarded as a
failure and removed from the network. In converse, if the newly
allocated load is smaller than the maximum capacity of a node, it
is a “survived” node. The maximum capacity of a node is
determined by its current load and tolerance rate (α), which is
defined as the ratio of additional load that a node could handle to
its initial load (refer to Section 2.5).

Figure 4 shows the cascading failure of removing a single node
of the network by a random breakdown and malicious attack.
This network exhibits a highly heterogeneous distribution of load,
since a homogeneous network does not experience cascading
failures due to either malicious (always attack the node with the
highest load) or random (attach each node with the same
probability) attacks for tolerance rates as small as 0.05. For a

FIGURE 2 | (A)Degree distribution of nodes in Texas’s electric power network. P(K) is the probability that a randomly chosen node will have degree K. (B) Topology
of the constructed network. The top 2% critical nodes are highlighted. (C) Spatial distribution of the top critical components and critical index at the county level.
Numbers are the critical importance ranking of the top 21 nodes.
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small value of tolerance rate, the failure of a node with the highest
load can reduce the size of the largest connected component to
less than 10%. If the tolerance rate of nodes increases to 0.2, it
could effectively protect this network collapse from the cascading
failure caused by random failure of a single node. In general,
malicious attacks on nodes are considered effective strategies to
destroy network connectivity rather than random attacks. In this
research, the load redistributed to other nodes may be higher after
a malicious attack, and other nodes are highly likely to be
overloaded. Therefore, in this electric network, the size of the
largest connected components is smaller than 90% of the initial
size after a malicious attack, even if the nodes in this network can
deal with twice the initial load. All these indicate that if the load of
nodes in the electric network is close to its critical tolerance rate, a

disturbance of a single node could lead to collapse of the whole
network.

3.3 Analysis of the 2021 Texas Winter Storm
Outage
In February 2021, a historical winter storm event hit Texas,
causing a large number of Texans to suffer power outages.
The spatial distribution of customers experiencing power
outages on 16–17 February at the county level is shown in
Figure 5. More than 7.7 million customers experienced power
outages on these 2 days. Tarrant, Dallas, Bexar, Harris, and
Brazoria all had more than 300 thousand customers without
power on February 16th. According to meteorological data

FIGURE 3 | Connectivity robustness of the electric network under random attacks (RA) and malicious attacks (MA). The random attack is simulated by randomly
removing 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of nodes from the network. The range shows the results of 100 simulations, and the black point
represents the average value of changes in the size of the largest components under RA. MA are simulated by removing the node with the largest degree (yellow) and the
highest load (violet) until 90% of the nodes are removed from the network.

FIGURE 4 | Cascading failure in the electric network in Texas, triggered by the removal of a single node chosen among those with (A) the highest load and (B) at
random (remove one node randomly and repeat as many times as the number of 1% of total nodes). The curve shows changes in the size of the largest connected
components (Cl ) (■square) and the number of surviving nodes (▲triangle) in the network.
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provided by the National Centers for Environmental Information
of the National Oceanic and Atmospheric Administration, the
daily maximum and minimum temperature in the majority of
counties in Texas dipped below 0°C (see Supplementary Figure
S1). It is interesting that the six highly impacted counties during
the research period are all included in the critical areas shown in
Figure 2.

To further explore the potential key factors influencing the
number of power outages, a correlation analysis is conducted,
taking into consideration meteorological factors, infrastructure
factors, environmental factors, and socioeconomic factors, as
shown in Table 1. At the county level, the number of
customers experiencing power outages is significantly

positively correlated with population, GDP, critical index of
electric infrastructure, length of transmission lines, and the
number of substations and power plants in the county.
Meanwhile, to exclude the effect of population, population
density, GDP per capita, and infrastructure index (calculated
by dividing the critical index value by the county population) are
examined. The results show that there is still a significant
correlation with population density, but for the GDP per
capita and infrastructure index, the correlation is not
significant. In addition, there seems to be little correlation
between meteorological factors and power outage amount,
even though this outage is clearly caused by the extreme weather.

3.4 Interacting Negative Feedback
Mechanism
The results of the case study show that socioeconomic factors and
infrastructure factors are more relevant to the number of local
customers suffering from electric power outages. However, the
meteorological data do not show a significant association with
power outages (Table 1). This means that the direct impact of
extreme weather on the electric system may not be the immediate
cause of a large number of power outages. Meanwhile, a strong
positive correlation is observed between the county population
and density and power outages. Population size is probably a
more intermediate variable than the impact of extreme weather
events on power systems.

To further explore the hidden factors amplifying the impact of
extreme weather on the electric system, the correlation between
six meteorological factors and electric power net supply and
demand in Texas is analyzed (see Supplementary Figure S2),
including precipitation, snowfall, daily minimum and maximum

FIGURE 5 | Power outage amount in Texas on (A) 16th February and (B) 17th February, 2021.

TABLE 1 | Correlation analysis of the 2021 Texas power outages with potential
attributes.

Potential attributes Correlation p-value

Meteorological factors Daily maximum temperature 0.15 0.0007
Daily minimum temperature 0.16 0.0003
Precipitation 0.001 0.9858
Snowfall −0.081 0.0689
Snow depth −0.103 0.0205

Socioeconomic factors Population in 2020 0.845 <0.0001
Population density 0.849 <0.0001
GDP in 2020 0.769 <0.0001
GDP per capita −0.026 0.5650

Environmental factor DEM −0.225 <0.0001
Infrastructure factors Critical index 0.774 <0.0001

Infrastructure index −0.081 0.0682
No. of substations 0.765 <0.0001
No. of power plants 0.646 <0.0001
Length of transmission line 0.723 <0.0001
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temperature, the fastest 5-s wind speed, and the fastest 2-min
wind speed. A highly negative relation is shown between
temperature and energy demand. The correlation between
daily electric power demand and temperature in Texas from a
longer time scale is examined (Figure 6A). In general, as the
temperature dropped down in February, the demand for electric
power tends to increase. From the perspective of power supply,
according to the U.S. Energy Information Administration, the
absolute amount of net generation noticeably increased together
with the increase in demand during this winter storm, as shown
in Figure 6B. An increase in power supply during this extreme
event indicates that the majority of facilities were able to provide
an excess amount of power, even though clean energies were
seriously affected. From the perspective of demand, a significant
increase in the gap between demand and supply is demonstrated
in Figure 6C. Demand seems to be an essential factor in this
large-scale power outage and is mainly determined by the
population size. This also explains why the population is
found to be the most relevant factor in power outages.

These results indicate that the path of this catastrophic event is
different from the common pattern, which generally considers
direct failure and cascading failure within a single system. In this
event, extreme cold weather increased people’s demand for
electricity to keep warm. The increased demand leads to a
higher load of nodes in the electric network and even close to
some of their maximum capacity. A small disruption could lead
to the collapse of the whole network. In this case, rolling power
outages was the necessary action taken by local entities to avoid
greater risk. However, as many local people rely on electricity for

heat, power outages impact people’s physical health and daily life,
which is difficult to quantify. If the service interruption of other
critical infrastructure caused by the power outages is taken into
consideration, such as road closures and water outages, the
negative feedback on humans is even worse.

Therefore, an interacting negative feedback mechanism is
discovered in this real-world case, as demonstrated in
Figure 7. Extreme weather as a typical external attack causes
physical failure of infrastructure facilities and threatens the
physical health of humans. In response to this threat, the
actions taken by local people increase the demand for the
power system and lead to functional failure of the electric
infrastructure. Functional failure further induces disturbance
in human life, even social disturbance, considering the
negative impacts transmitted from other interconnected
critical infrastructures. Thus, integrating negative feedback
between infrastructure and humans is essential in assessing the
vulnerability of infrastructure systems or predicting the impact of
extreme weather especially in the context of climate change.

4 DISCUSSION

4.1 Power Outage Attributes
In addition to the interacting negative feedback mechanism
analyzed above, a multiple linear regression model is utilized
to discuss weights for power outage attributes in this case study.
Power outages in this case are modeled as a linear function of
other attributes, including the abovementioned factors inTable 1.

FIGURE 6 | (A) Relationship between daily electric power demand and temperature in February in Texas from 2017 to 2021; (B) demand and net generation by
energy source for Texas in February 2021; and (C) gap between demand and net generation in February 2021.

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9125698

Wu et al. An Interacting Negative Feedback Mechanism

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The results show that GDP, population, snow depth, the number
of power plants, and DEM are most relevant to power outages.
This model has a coefficient of determination (R-squared) of 0.74
(see Supplementary Tables S2A,S2B). Snow depth, as an
indicator of the intensity of natural hazards, shows a negative
correlation with the number of power outages. In addition, a
negative correlation is also observed in DEM. This is because the
population is mainly located in counties with lower DEM and the
snow depth decreases with lower DEM (see Supplementary
Table S2C). The number of power plants and population both
display a positive correlation with power outages. This may be
due to the exposure increases with population and then results in
an increase in power outages. Moreover, a county with a higher
level of GDP means residents and local entities are more likely to
invest in disaster mitigation and risk reduction, which can
decrease the impact of external shocks caused by extreme
weather. These results are in accordance with the basic
theoretical frameworks of disaster systems in which the impact
of natural disaster is a coupling effect between multiple elements,
consisting of hazards, exposures (hazard-affected body), and
environments (hazard-formative environment) [35].

Furthermore, power consumption is another important
element that needs to be discussed. The Texas power market
design normally allows for price discovery between buyers and
sellers, which means prices rise with demand. During the extreme
weather event in February 2021, the Public Utility Commission of
Texas set a $9,000 per MW hour (MWh) price cap, while pre-
storm spot prices were about $30/MWh [36]. Previous evidence
indicates that the household electrical consumption scales
linearly with the population [37]. In terms of extreme
temperatures, residential electricity consumption was found to

be significantly increased on days with extreme temperatures in
previous research [38]. The electric power consumption of
different groups of the population may be affected by
socioeconomic factors, i.e., the pricing rules, purchasing
power, and electric facilities utilized in the house. Also, the
population is dynamic in cities [39, 40], and when extreme
weather hits, the power consumption and power outages may
vary with the population dynamic.

4.2 Local Trend in Extremely Cold Weather
Climate change has been widely studied. Models project increases
in the frequency and magnitude of warm daily temperature
extremes and decreases in cold extremes by the end of the
21st century [41]. To explore the long-term trend in Texas,
the extreme cold weather temperatures (95th percentile) in
Texas from 1850 to 2019 are analyzed. The results show that
the average number of extreme days from 1935 to 2019 is
0.13 higher than that from 1850 to 1934 (see Supplementary
Figure S3). In this case, the extreme cold weather seems to have
increased over the past 170 years. Furthermore, the extreme cold
weather in Texas shows spatial variation. Comparing the variance
in the yearly minimum temperature in Texas (see Supplementary
Figure S4), it is found that the eastern area of Texas is more likely
to experience more intense extreme cold weather. In current, the
majority of inhabitants and electrical transmission lines in Texas
are located in the eastern area. The findings imply that the
compound effect of extreme cold weather and population
density might be more challenging in eastern Texas. This
indicates an urgency to enhance electric infrastructure
resilience to reduce the influence of extreme cold weather in
the future.

FIGURE 7 | An interacting negative feedback mechanism.
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4.3 Limitations
The impact of the 2021 winter storm on human and power systems
is a complex question. Due to data limitations, in this study, only
power outages data are considered to illustrate the impact of the
extreme weather event. Data on the direct physical damage of this
extreme event on facilities in Texas’ electric grid, such as damage to
power plants, substations, and transmission lines, are unavailable.
In this case, the number of power plants, substations, and the
length of transmission lines located in the county are used in
correlation analysis. Thus, the internal interactions within the
infrastructure system caused by this extreme weather event are
not quantified which limits the implication of this work in power
outage prediction. Besides, we employed the complex network
analysis method to simulate cascading failure in the electric
network. The load at a node was measured by the total number
of shortest paths passing through the node which did not take the
physical laws into account. The duration of power outages as
another indicator of severe consequences is not included due to the
limitation of the temporal revolution of outage data. Instead, the
intensity of function failure is mainly measured by the amount and
percentage of customers suffering power outages in each county. In
addition, the analysis results could be affected by emergency
actions taken by the local authorities to avoid a larger-scale
failure. In reality, the power outage data reflect the severe
consequence of the interacting negative feedback in this coupled
extreme weather–humans–infrastructure system at a certain time.

5 CONCLUSION

This study used the 2021 winter storm in Texas as a case study,
whereby the electric network was constructed, with the critical
components and areas analyzed using the complex network
theory. Compared to malicious attacks, this network showed high
connectivity robustness under random attacks. Meanwhile, in terms
of the strategy taken by malicious attacks, if targeted nodes are
selected from those with the highest load, the network connectivity is
more vulnerable. The removal of a node leads to energy
redistribution in an electric network, which could trigger
cascading failure in the whole network. Random attacks and
intentional attacks were simulated to determine the cascading
failure in this network, considering different tolerance rates of
nodes. The load capacity of nodes, network topology, and types
of attacks could affect the impact of cascading failure. In general, the
network exhibited a highly heterogeneous distribution of load.
Under malicious attacks, the network connectivity could not
maintain 90% of the initial state, even if each node could deal
with double the load. In particular, if the load of nodes in an electric
network is close to its capacity, a disturbance of a single node could
lead to the collapse of the whole network. These results readdress the
importance of system redundancy subject to various disturbances.
With a higher level of redundancy, a new balance of load distribution
could be quickly achieved in the absence of one or several nodes,
avoiding a large-scale cascading failure in a system.

The proposed framework is the main contribution of this study,
in which a regression model explores the causal relationship among
meteorological factors, infrastructure factors, socioeconomic factors,

environmental factors, and power outages. An interacting negative
feedback mechanism was discovered in this real-world case study.
The outage caused by extreme weather in Texas in February
2021 demonstrated that electric network topology and capacity,
meteorological factors, and socioeconomic factors correlated.
However, extreme weather events not only physically damage the
infrastructure, but also stimulate an increase in power demand (load)
via response actions taken by the public. As the load intensified,
functional failure occurred in the power network, which, in return,
aggravated the negative effect on people as end-users. This negative
feedback loop contributed to the amplification of the negative impact
of extreme events on the social-economic system. Reducing
dependence on electricity through alternative ways to heat the
house might be an option to cut off the feedback loop. In the
face of climate change and frequent extreme weather events, the
analysis of extremely cold days in Texas presented a slight upward
trend from 1850 to 2019. The variance in the yearly minimum
temperature in the eastern area increased, which means that the
majority of the population and power networks might be threatened
by extremely cold weather. Thus, even under the background of
global warming, the risk of extremely cold weather is still worthy of
attention. Overall, with case-based analysis, this study provides a new
perspective to understand the relationship between extreme events
and critical infrastructures, revealing the importance of synthesizing
the interactions among natural disasters, critical infrastructure, and
human beings in risk and impact assessments, especially within the
context of climate change.
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