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We report the numerical and experimental realization of a type of ultrathin planar wall with
low-frequency dual-band sound absorption. The proposed planar wall is constructed by a
periodic subwavelength unit cell (with a thickness of λ/19) which consists of two different
multiple-cavity resonators embedded into a plate structure with a groove. The sound
absorption of the wall exists in two working bands (IandII) below 600 Hz which are created
by two different mechanisms. In addition to the band I created by a conventional
resonance coupling of the two multiple-cavity resonators, it is worth noting that the
band II is realized by a mutual resonance coupling between the resonators and groove
structure. The fractional bandwidths of the bands I and II can reach about 34.1 and 10.4%,
respectively. Furthermore, the application of the proposed ultrathin planar wall in the
design of a barrier-free anechoic room with omnidirectional low-frequency dual-band
sound absorption is further discussed in detail. The proposed planar wall has the
advantages of ultrathin planar structure and omnidirectional low-frequency dual-band
sound absorption, which provides diverse routes to design advanced sound-absorption
structures in noise control and architectural acoustics.
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INTRODUCTION

Low-frequency sound absorption has always been a research hotspot due to its wider applications in
several important fields, including noise control, environmental protection, and architectural
acoustics. In the recent years, the rapid development of metamaterial [1–10] and metasurface
[11–18] structures have provided alternative ways to design advanced acoustic absorbers which
effectively overcome the limitation of a relatively large size for conventional low-frequency sound
absorbers [19–21].

By designing resonance-type unit cells with a subwavelength size, external sound energy can be
absorbed in the unit cell based on different types of mechanisms, and part of energy is dissipated
during its propagation inside the unit cell. So far, the previously demonstrated unit cells of sound
absorbers mainly include Helmholtz resonators [22–26], Fabry-Perot resonators [27, 28], membrane
resonators [29–31], split-ring resonators [32–34], coherent perfect absorbers [35, 36], and
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metasurface-based absorbers [37–42], and these types of sound
absorbers can realize high-performance sound absorption with a
subwavelength structure. However, most of these sound
absorbers generally work in a single working band, and there
still exist some difficulties in designing multiband sound
absorbers.

To overcome this, by constructing a type of double-channel
Mie resonator backed with a rigid wall [43], a multi-band sound
absorber based on multi-order monopolar and dipolar
resonances have been proposed. Additionally, a perforated
composite Helmholtz-resonator [44] is designed by inserting
several plates with a small hole into the interior of a
Helmholtz resonator, and a multi-order sound absorption has
been realized. Beyond that, other types of absorber structures,
such as coiling-up space metasurfaces [45] by two nesting
subchannels with a circular hole in series, checkerboard
absorbers [46] composed of alternate distributions of
inhomogeneous Helmholtz resonators with extended necks,
and metaporous composite structures [47] by porous materials
with Helmholtz and Fabry–Pérot resonances, can also be applied
to the realization of dual- or multi-band sound absorption. In
these demonstrated structures, dual- or multi-band sound
absorption with high performance are realized. However, most
of them are usually designed to be attached outside the wall,
which greatly limits the use of space. Therefore, the design of low-
frequency ultrathin planar wall with multi-band sound
absorption becomes an urgent problem to be solved.

In this work, we propose an ultrathin planar wall with low-
frequency dual-band sound absorption which is composed of a
periodic unit cell designed by two different multiple-cavity
resonators embedded into a plate structure with a groove. The
designed wall can realize sound absorption in two working bands
(I and II) below 600 Hz based on two different mechanisms.
Besides the band I created by a conventional resonance coupling

of the two multiple-cavity resonators, we here introduce a mutual
resonance coupling between the resonators and groove structure
to realize the band II. The fractional bandwidth of both bands can
reach about 34.1 and 10.4%. The measured results agree well with
the simulated ones. Finally, we simulate the sound absorption of
the unit cell created by different incident angles, and discuss the
application of the proposed wall in the design of a barrier-free
anechoic room with omnidirectional low-frequency dual-band
sound absorption in detail.

Design of Model
As schematically shown in Figure 1A, we propose a type of
ultrathin planar wall composed of periodic unit cells, and the
cross section of a unit cell with the width of D is shown in
Figure 1B. We can see that the unit cell consists of two multiple-
cavity resonators (denoted as MRs I and II) with the distance of a
embedded into a plate structure with a groove. The multiple-
cavity resonator is composed of a central circular cavity
surrounded by 8 interconnected identical cavities which are
separated by 4 channels with the width of w. Here, the
thickness of cavity walls, the open width and the radial length
of 8 inner cavities, the outer and inner radii of resonators, and the
distances between the resonator and the bottom, left and top
surfaces of the plate are t, b, d, R, r, l1, l2 and l3, respectively. In
addition to the parameters d and r of the MRs I (d1 and r1 ) and II
(d2 and r2 ), the other parameters of both MRs are the same. The
unit cell is made of epoxy resin based on the 3D printing
technology, and its photograph is shown in Figure 1C. Here,
we introduce the software of COMSOL Multiphysics to
numerically design sound absorbers. Due to the sound
absorption created by the thermoviscous energy loss in the
unit cell, the module of Thermoviscous Acoustic-Solid
Interaction is used inside the unit cell, and that of Acoustic
Pressure module is adopted in the other parts of the model.

FIGURE 1 | (A) Schematic of an ultrathin planar wall with sound absorption, which is composed of periodic unit cells. (B) Cross section of the unit cell, (C) and
sample photograph.
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Beyond that, the surfaces inside the unit cell are set as the
thermoviscous acoustic boundary layers, and the thickness of
the thermoviscous acoustic boundary layer is dυ � �����

2μ/ρω
√

[37],
in which the parameters µ, ρ and ω are the coefficient of dynamic
viscosity, the density of air, and the angular frequency,
respectively. In the simulations, the parameters R, r1, r2, d1, d2,
t, b, w, a, l1, l2, l3 and D are selected as 5.0 cm, 5.0 mm, 7.0 mm,
38.8 mm, 36.8 mm, 1.6 mm, 3.0 mm, 1.0 mm, 4.0 mm, 1.0 mm,

2.0 mm, 3.0 mm, and 31.0 cm, respectively, and the material
parameters of air and epoxy resin are shown in Table 1.

PERFORMANCES AND MECHANISMS OF
LOW-FREQUENCY DUAL-BAND SOUND
ABSORPTION
Here, we conduct an experiment to measure the performance of
the design ultrathin planar wall. As shown in Figure 2A, the
experiment is carried out in a straight waveguide with a size of 2 ×
0.33 × 0.06 m3 which is fabricated with acrylic plates to satisfy the
condition of sound hard boundary. The sample of the unit cell is
made of epoxy resin by a 3D printing technology, which is placed
at the right side of the waveguide. Additionally, a loudspeaker
with the size of 4 × 4 cm2 driven by a power amplifier is placed at
the left side of the waveguide to obtain incident sound signals.
Two 0.25-inch microphones (Brüel and Kjær type-4954, marked
as Microphones 1 and 2) are inserted into the waveguide from
two holes with the same size to experimentally detect sound
signals. The measured data is recorded by the module of Brüel

TABLE 1 | Material parameters.

Parameter Air Epoxy resin

Density (ρ) p0M/RT 1,180 kg/m3

Longitudinal wave velocity (cl)
������
γRT/M

√
2,720 m/s

Transversal wave velocity (ct) / 1,460 m/s
Pressure (p0) 101.325 kPa /
Molar mass (M) 28.97 × 10–3 kg/mol /
Temperature (T) 293 K /
Molar gas constant (R) 8.31 J/(mol/K) /
Ratio of the molar heat capacities (γ) 1.4 /
Coefficient of dynamic viscosity (μ) 1.56 × 10–5 Pa·s /

FIGURE 2 | (A) Experimental set-up. (B) Measured and simulated sound absorption spectra, and black shaded regions are two working bands of the unit cell (I:
145–203 Hz, II: 490–544 Hz). (C) Simulated pressure amplitude eigenfunctions of the unit cell at 163 Hz, 182 Hz, and 517 Hz. (D) Simulated distributions of pressure
amplitude in the unit cell created by a normal incidence of sound (red solid arrows) at 170 and 518 Hz.
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and Kjær 3160-A-022, and is analyzed by the software of PULSE
Labshop.

Figure 2B shows the measured absorption spectra (red open
circles) created by the sample, in which the corresponding
simulated ones with the same conditions are also provided for
comparison (black solid lines), and the parameters of the sample
are the same as those in Figure 1. We can see that, there exist two
absorption peaks around 170 and 518 Hz, and their maximum
absorption coefficients can reach about 0.99 and 0.98,
respectively, showing a typical characteristic of low-frequency
dual-band sound absorption. Additionally, in the two black
shaded regions (denoted as the bands I and II), the absorption
coefficients are larger than 0.5, and thus the corresponding
fractional bandwidths (the ratio of the bandwidth to the center
frequency) can reach about 34.1 and 10.4%, respectively. The
measured and simulated absorption spectra match well with each
other. Moreover, the thickness of the unit cell is 104 mm, which is
equal to λ/19 (λ is the wavelength), exhibiting a characteristic of
ultrathin structure for the proposed wall.

To provide a further insight into its mechanism, we simulate
pressure amplitude eigenfunctions of the unit cell around 170 and
518 Hz. As shown in Figure 2C, 3 types of eigenmodes exist at
163 Hz, 182 and 517 Hz. We can see that the distributions of
pressure amplitude for the eigenmodes at 163 and 182 Hz are
almost the same, and most of sound energy is concentrated into
the cavities of the two MRs, showing that both eigenmodes are
related to a resonance coupling of both MR structures. However,
for the eigenmode at 517 Hz, the sound energy is mainly
concentrated into the space between the MRs and groove
structure, and little energy exists inside the cavity of both
MRs. Thus, this eigenmode is determined by a mutual
resonance coupling between the MRs and groove structure,
which is different from the eigenmodes at 163 and 182 Hz.
Figure 2D shows the pressure amplitude distributions in the
unit cell created by the normal incidence of sound at the
frequencies of both absorption peaks (170 and 518 Hz). We
can see that the sound energy is mainly concentrated into the
cavities of both MRs at 170 Hz, in which its distribution of

FIGURE 3 | Simulated absorption spectra of the unit cell in the bands (A) I and (B) II with the incident angle θ = 0°, 45° and 60°.

FIGURE 4 | (A) Schematic of a barrier-free anechoic roomwith omnidirectional low-frequency dual-band sound absorption. A cylindrical sound source is located at
the point O. Simulated absorption spectra created by the barrier-free anechoic room around the bands (B) I and (C) II. The absorption coefficients are larger than 0.5 in
the black shaded regions.
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pressure amplitude is the same as that of the eigenmodes at 163
and 182 Hz. It is therefore deduced that the absorption peak in
the band I is created by the resonance coupling of both MRs.
Additionally, the characteristics of the pressure amplitude
distributions at 518 Hz are almost the same as those of the
eigenmode at 517 Hz, indicating that the absorption peak in

the band II is attributed to the mutual resonance coupling
between the resonators and groove structure. Therefore, the
observed dual-band sound absorption of the wall arises from
two different mechanisms.

Moreover, we discuss the influences of the parameters r1 and l3
on the sound absorption of the unit cell in detail (see

FIGURE 5 | Simulated total pressure distributions in the barrier-free anechoic room at (A) 173 Hz and (B) 519 Hz, and its corresponding reflected intensity
distributions at (C) 173 Hz and (D) 519 Hz. White points at the center of the room are the positions of cylindrical sound source.

FIGURE 6 | (A) Schematic of a barrier-free anechoic room with a cylindrical sound source placed at the point O’. Simulated absorption spectra created by the
barrier-free anechoic room around the (B) bands I and (C) II. The absorption coefficients are larger than 0.5 in the black shaded regions.
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Supplementary Material), and the results show that the sound
absorption in the band II can be modulated by simply adjusting
both parameters r1 and l3, but that in the band I is only closely
related to the parameter r1, which provides the feasibility of
modulating both working bands.

APPLICATION OF ULTRATHIN PLANAR
WALL IN BARRIER-FREE ANECHOIC
ROOM
Figures 3A,B show the simulated sound absorption spectra of the
unit cell created by the incident waves with θ = 0°, 45° and 60° in the
bands I and II, respectively, in which θ is defined as the angle
between the incident direction and the normal line (shown in the
inset in Figure 3A). We can see that, with the increase of the angle θ,
the frequency of the absorption peak almost remains unchanged in
the band I (Figure 3A), and that slightly moves to the high-
frequency region in the band II (Figure 3B). Additionally, the
absorption coefficients of these peaks are larger than 0.9, showing
a high-performance sound absorption of the designed unit cell for
different incident angles. Such a phenomenon provides a feasibility
for constructing a barrier-free anechoic room.

Finally, we discuss the application of the designed unit cell in a
barrier-free anechoic room. As shown in Figure 4A, the proposed
structure of barrier-free anechoic room with the size of 3.41 ×
3.41 m2 is composed of 40 unit cells, in which the parameters of
each unit cell (shown in the inset in Figure 4A) are the same as
those in Figure 1B. Moreover, the module of Thermoviscous
Acoustic-Solid Interaction is used inside the unit cells, while the
module of Acoustic Pressure is adopted in the other parts of the
model. Figures 4B,C show the simulated sound absorption
spectra created by the barrier-free anechoic room, in which a
cylindrical sound source is placed at the center (point O) of the
room. We can see that, the absorption coefficients are larger than
0.5 in the black shaded regions around the bands I (149–194 Hz)
and II (490–543 Hz). The maximum values of absorption
coefficients are 0.98 and 0.96 at 173 and 519 Hz, respectively,
and the corresponding fractional bandwidths can reach about
26.0 and 10.2%, showing a typical characteristic of
omnidirectional low-frequency dual-band sound absorption.

To further present the performance of sound absorption, we
also simulate the total pressure distributions and their
corresponding reflected sound intensity distributions in the
barrier-free anechoic room at 173 and 519 Hz, which are
shown in Figures 5A–D. We can see that the total pressure

FIGURE 7 | Simulated total pressure distributions created by the barrier-free anechoic room at (A) 171 Hz and (B) 519 Hz, and their corresponding reflected
intensity distributions at (C) 171 Hz and (D) 519 Hz. White points represent the positions of cylindrical sound source.
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distributions in the barrier-free anechoic room at both
frequencies are obviously different from those in the room
with hard boundaries (see Supplementary Material), but are
similar to those in the free space (see Supplementary Material).
Beyond that, the reflected sound intensity distributions created by
the anechoic room are very weak, indicating that the sound
energy are almost absorbed by the unit cell in all directions of
the room, showing a typical characteristic of omnidirectional
low-frequency dual-band sound absorption.

To verify the robustness of the barrier-free anechoic room, we
simulate the sound absorption spectra created by the anechoic
room with a cylindrical sound source placed at the point O’
(shown in Figure 6A), in which all parameters of the anechoic
room remain unchanged. As shown in Figures 6B,C, the
absorption coefficients are larger than 0.5 around the bands I
(156–185 Hz) and II (501–534 Hz), which are shown in the black
shaded regions, in which the maximum values of absorption
coefficient can reach about 0.97 at 171 Hz and 0.96 at 519 Hz, and
the corresponding fractional bandwidths are about 16.9 and 6.3%,
respectively, showing high-robustness dual-band sound
absorption of the designed room structure.

Figure 7 shows the simulated total pressure distributions and
their corresponding reflected sound intensity distributions
created by the barrier-free anechoic room at 171 and 519 Hz.
We can see that the characteristics of total pressure distributions
and corresponding reflected intensity distributions are almost the
same as that in Figure 5. Therefore, the proposed ultrathin planar
wall with omnidirectional low-frequency dual-band sound
absorption shows great potential for applications in
architectural acoustics and noise control.

CONCLUSION

In conclusions, we have demonstrated an ultrathin planar wall
with low-frequency dual-band sound absorption. The results
show that the sound absorption of the wall exists in two
frequency bands (I: 145–203 Hz and II: 490–544 Hz) based on
two different mechanisms. The band I is created by the
conventional resonance coupling of the two multiple-cavity
resonators, but it is worth noting that the band II is realized

by the mutual resonance coupling between the resonators and
groove structure. The corresponding fractional bandwidth of
both bands can reach about 34.1 and 10.4%, and the measured
and simulated results agree well with each other. Additionally, the
influences of incident angles on the sound absorption of unit cell
are simulated, and the characteristics of sound absorption almost
remains unchanged with different incident angles. Finally, the
application of the proposed ultrathin planar wall in the design of a
barrier-free anechoic room is discussed in detail. The proposed
ultrathin planar wall with the characteristic of omnidirectional
low-frequency dual-band sound absorption has wide prospects in
noise control and architectural acoustics.
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