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Research on discrete memristor models applied to discrete maps deserves more in-depth
discussion. In this paper, a continuous memristor is introduced and the discrete memristor
model is obtained by the forward Eulerian difference algorithmic discretization. This model
is coupled to a cosine map to further obtain a two-dimensional memristor cosine map. The
dynamical characteristics of the memristor cosine map are investigated through numerical
simulations and other analytical methods. For example, the phase diagram, the bifurcation
diagram, the Lyapunov exponential spectrum and the Spectral Entropy complexity with
parameters, etc., In addition, multi-stability phenomena of the system are identified. The
results show that the cosine map coupled with a discrete memristor has more complex
dynamical behaviors and is more suitable for applications in cryptography.
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INTRODUCTION

In 1963, the meteorologist Lorenz proposed the Lorenzmodel and the “butterfly effect” [1–3]. Since then,
chaos theory has gradually entered the eyes of scholars. With a series of significant research results in the
history of chaos, the study of chaos theory and chaos properties has become a major research hotspot
[4–8]. In recent years, chaos science has interpenetrated with other disciplines, and breakthroughs have
been made in chaotic synchronous control [9, 10], chaotic secure communication [11–14] and chaotic
neural networks [15–18]. This has led to a wide range of applications of chaos theory in both natural and
social sciences. Although some progress has beenmade in the study of chaos theory [19], its complexity is
still not understood and how to chaoticize it is still a very interesting issue for scholars to explore further.
Chaosification is the process of generating or enhancing the chaotic nature of a system. Chaosification can
increase the complexity and unpredictability of a system, and making it more suitable for areas such as
secure communications.

In 1971, Chua introduced the concept of memristors [20–22] and its associated theory. Unlike
resistor, inductor and capacitor, memristor is the fourth fundamental element describing the
relationship between charge and flux [23, 24]. The first report of the realisability of memristors
from Hewlett-Packard (HP) Labs in 2008 [25]. The result quickly gained attention and caused a surge
of research on memristors by scholars in various fields [26–28]. Compared to the other three
fundamental components, the memristor has a very interesting property in that it is a non-linear
component with a memory function [29]. It is because of the memory property of memristors that the
research related to memristors reflects the cross-fertilisation of several disciplines. Memory properties
have had a great impact on computer science, biology [30], neural networks [31] and communication
engineering [32, 33]. The application of memristors to the construction of non-linear circuits and
systems produces complex dynamical behaviors, and therefore memristors are widely used in the field
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of chaos [34, 35]. Currently, most of the research on chaotic
systems based on memristors is focused on continuous chaotic
systems. For example, [36] et al. proposed a novel simple chaotic
circuit, which includes a memristor, a linear inductor and a
memcapacitor. [37] constructed a deoxyribonucleic acid (DNA)
encoding algorithm with memristor based chaotic system. [38]
et al. reported a 3-D conservative memristive system with
amplitude control. However, discrete chaotic systems have the
advantages of simplemodel building and fast iteration [39–41]. Is it
possible if memristor is applied to discrete chaotic systems? Some
scholars have already studied the discretization of memristors to
obtain discrete memristor models [42–45]. For example, [46] et al.
discussed a second-order map model based on memristor. And to
enhance the chaotic performance of the 1-D maps, [47] et al.
proposed a chaotification method. These research results have laid

a solid foundation for the application of memristors in discrete
chaotic systems. There are still great prospects for introducing
discrete memristor models into discrete chaotic maps. In this
paper, a new memristor cosine map is proposed based on a
one-dimensional cosine map coupled with a magnetically
controlled memristor model. It is shown that the memristor
cosine map has richer dynamical behaviors.

The rest of the paper is structured as follows. The discretized
memristor model and the memristor cosine map model based on
a one-dimensional cosine map are presented in the “System
Model” section. This is followed by the “Dynamics Analysis”
section, which describes the dynamical behaviors of the
memristor cosine map as the parameters and initial values are
varied. Finally, we summarized the conclusions drawn from the
research in this paper and give directions for future research.

SYSTEM MODEL

Model of Discrete Memristor
In this section, a triple magnetron memristor has been chosen,
which can be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i(t) � W(φ)v(t)
dφ(t)
dt

� v(t),
W(φ) � α + βφ2

(1)

FIGURE 1 | Characteristics of the discrete memristor when being applied to a discrete sinusoidal current in = Hsin (ωn), where α = 0.5 and β = 0.5. (A) Current and
voltage sequences; (B) H = 0.1, φ0 = 0; (C) ω = 0.1, φ0 = 0; (D) H = 0.1, ω = 0.1.

FIGURE 2 | Structural diagram of the cosine map coupled by the
discrete memristor.
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here, i(t) and v(t) are the input current and the output voltage of
the memristor, respectively. W(φ) is a non-linear function about
φ(t) with the samemagnitude as the conductance value, called the
amnesic conductance, indicating dependence on the control of
the internal variable φ(t) of the memristor. And φ is the magnetic
flux and represents the amount of internal magnetic flux change
in the memristor. Then, α and β are the control parameters of the
memristor.

First, discrete i(t), v(t),φ(t) by sampling at unit time n to obtain in,
vn and φn respectively. Then, one can discretize thememristormodel
described in Eq. 1 by using the forward Eulerian difference
algorithm, the discrete memristor model can be obtained as

{ in � (α + βφ2
n)vn

φn+1 � φn + kvn.
(2)

Assuming that the sinusoidal current in = Hsin (ωn) is added
to the model of the discrete memristor, the characteristics of the
model are analyzed. Let α = 0.5, β = 0.5, and its characteristic
curve can be obtained in Figure 1A. In order to further analyze
this discrete memristor model, the voltammetric characteristic
curves of the amnestic resistor obtained by taking different ω, H,
and φ0 respectively, are shown in Figures 1B–D.

Memristor-Coupled Map
A cosine map with a simple structure and few parameter variables
was chosen and it was defined as

xi+1 � a cos(πxi). (3)
Based on the chaotic control method of modulation and

coupling, coupling the discrete memristor model (2) with the

cosine map (3), a new two-dimensional chaotic mapmodel can be
obtained. Figure 2 is a schematic diagram of the two-dimensional
map coupled by the discrete memristor, where γ is the coupling
parameter. The mathematical expression is

{ xn+1 � a cos(πxn) + γxn(α + βy2
n)

yn+1 � yn + exn,
(4)

where, a is the control parameter of the cosine map (3), α and β
are the control parameters of the discrete memristor model (2),
and e is the step length.

DYNAMICAL ANALYSES

Bifurcation and Lyapunov Exponent
Analysis
In order to analyze the dynamical characteristics of this discrete
chaotic map, the bifurcation diagram and the Lyapunov
exponential spectrum of the map with respect to the
parameter a are plotted as shown in Figure 3. Set the other
parameters γ = −0.4, e = 0.02, α = 0.5 and β = 0.5, the initial value
is (1, 1), the step size is 0.001. The discrete map has a number of
divergent points as the parameter a varies in the range
0.25–1.363. Therefore, the range of parameter a is divided into
three segments for analysis. When a ϵ (0.25, 0.66), the bifurcation
diagram and Lyapunov exponent spectrum of the discrete system
are shown in Figures 3A1,B1. As can be seen in the figure, the
system has a clear multiplicative period bifurcation behavior. The
map goes from two cycles to four cycles and then into a chaotic
state. The bifurcation and LEs with the parameter a when a ϵ

FIGURE 3 |Bifurcation and LEs of the map with parameter a. (A1) a ϵ (0.25, 0.66); (A2) a ϵ (0.67, 0.862); (A3) a ϵ (0.875, 1.363); (B1) a ϵ (0.25, 0.66); (B2) a ϵ (0.67,
0.862); (B3) a ϵ (0.875, 1.363).
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(0.67, 0.862) are plotted in Figures 3A2,B2. The simulation
results show that the two correspond well. When the
parameter a ϵ (0.875, 1.363), the bifurcation diagram and the
Lyapunov exponent diagram of the chaotic map are drawn in
Figures 3A3,B3. In addition, the trajectory of this map when
taking different values of a is plotted as shown in Figure 4.

Spectral Entropy Complexity
The complexity of chaotic systems is a way to characterize the
dynamical properties of chaotic systems. There are many
algorithms to calculate the complexity value of chaotic
systems, and where the complexity algorithm of the Spectral
Entropy (SE) is used [48]. Its algorithm is described as follows.

First, for a pseudo-random sequence{x(m),m = 0, 1, 2, . . ., M-
1} of length M, the DC part is removed through the following
equation.

x(m) � x(m) − �x, (5)

�x � 1
M

∑M−1

m�0
x(m). (6)

FIGURE 4 | The phase space motion trajectory of this discrete system. (A) a = 0.3; (B) a = 0.5; (C) a = 0.6; (D) a = 0.65; (E) a = 0.7; (F) a = 0.85; (G) a = 0.9; (H) a =
1; (I) a = 1.2.

FIGURE 5 | SE complexity diagrams of the map when the parameter a
varies.
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Second, performing the discrete Fourier transform on the
sequence x(m),

X(k) � ∑M−1

m�0
x(m)e−j2πMmk � ∑M−1

m�0
x(m)Wmk

M , (7)

Where, k = 0, 1, 2, . . ., M-1.
Third, for the transformed sequence X(k), take the first half for

calculation. Based on the Paserval theorem, calculate the power
spectrum value of one frequency point as

p(k) � 1
N
|X(k)|2, (8)

Among them, k = 0, 1, 2, . . ., M/2-1, the overall power of the
sequence is

ptot � 1
M

∑M

/

2−1

K�0
|X(K)|2. (9)

The relative power spectrum probability of the sequence is

Pk � p(k)
ptot

�
1
M|X(k)|2

1
M ∑M

/

2−1
k�0 |X(k)|2

� |X(k)|2
∑M

/

2−1
k�0 |X(k)|2

, (10)

Fourth, calculate the spectral entropy as follows

se � − ∑M

/

2−1

k�0
pk lnPk. (11)

Finally, to facilitate the consideration, the spectral entropy is
normalized

SE(N) � se

ln(M/2). (12)

According to the above algorithm, the complexity curve of this
discrete map with the parameter a is plotted in Figure 5. The
vertical coordinates in the figure represent the SE complexity
values corresponding to different values of a. A larger complexity
value means that the sequence is closer to a random sequence and
the system is more secure. Set γ = −0.4, e = 0.02, α = 0.5 and β =
0.5, and the initial value remains unchanged.When a ϵ (0.2, 0.5) Ս
(0.76, 0.8), the complexity value of the discrete system is low and
the system is in a periodic state. When a ϵ (0.8, 0.85) Ս (0.86, 0.9)
Ս (0.95, 1), the complexity value of the discrete system is high and
the system is in a chaotic state.

Coexisting Attractors
When the system parameters are fixed, changing the initial value
gives two or more different attractors coexisting. This interesting
phenomenon can also be called multi-stability. In general, multi-
stable systems aremore sensitive to initial values and aremore secure
in their application to cryptography and secure communications. In
this section, the phenomenon of attractors coexistence can be
observed in the course of the experiment. When a = 0.77, γ =
−0.4, e = 0.01, α = 0.5 and β = 0.5, the bifurcation diagram of this

FIGURE 6 | Experimental results graph when a = 0.77. (A) Bifurcation with initial value x (0); (B) Attractors coexistence phase diagram.

FIGURE 7 | Experimental results graph when a = 1.03. (A) Bifurcation with initial value x (0); (B) Attractors coexistence phase diagram.
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map with the initial value x (0) is shown in Figure 6A. From the
diagram, there are two different attractors for different initial values,
and the phase diagram for the coexistence of the two attractors is
drawn as shown in Figure 6B. The bifurcation diagram with the
initial value x (0) is plotted in Figure 7A when a = 1.03, and other
parameters remain unchanged. The coexistence of period four
attractor and chaotic attractor can be observed in the bifurcation
diagram. The plotted attractor coexistence phase diagram is shown
in Figure 7B. In addition, let x (0) = 1, the bifurcation diagrams with
the initial value y (0) are analyzed and the simulation results are
shown inFigures 8A, 9A. Based on the two bifurcation diagrams, we
take two sets of initial values (1, −1.5) and (1, 1). Then, the
coexistence phase diagrams of the chaotic attractor with the
period-3 attractor and the coexistence phase diagrams of two
different chaotic attractors are plotted as shown in Figures 8B, 9B.

CONCLUSION

In this paper, a continuous magnetron memristor was chosen and the
discrete memristor model was obtained by means of the forward
Eulerian difference algorithm. The discrete memristor was coupled
with a one-dimensional cosine map to obtain a new two-dimensional
chaotic map. The dynamical characteristics of the discrete system were
analyzed by computer simulations. The results of the study show that
the newly constructed discrete system has complex dynamical
behaviors, higher complexity, and a higher degree of initial value

sensitivity. These findings suggest that the chaoticisation method of
coupling discrete memristor with discrete maps is worthy of further
research, and that the map after the introduction of the discrete
memristor model is more suitable for applications in areas such as
secure communications. In the future, other ways of implementing this
discrete systemwill be considered and attempts will be made to explore
its practical applications.
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FIGURE 9 | Experimental results graph when a = 0.72. (A) Bifurcation with initial value y (0); (B) Attractors coexistence phase diagram.

FIGURE 8 | Experimental results graph when a = 0.69. (A) Bifurcation with initial value y (0); (B) Attractors coexistence phase diagram.
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