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Cancer biomechanical properties, including high stiffness, solid stress, and

interstitial pressure, as well as altered micro-architecture, are drivers of

tumorigenesis, invasiveness and resistance to treatment. Magnetic resonance

elastography is an emergent non-invasive imaging method to assess the tumor

mechanical properties in a spatially resolved fashion. Several MRE acquisition

and reconstruction methods have been developed to assess tumors and

surrounding tissues. It is increasingly recognized that the visco-elastic

properties assessed with MRE are useful for characterizing malignant tumors

and evaluating treatment response in various organs. Generally, malignant

tumors, except brain tumors, have high stiffness and high visco-elastic ratio

or fluidity. MRE transducers, acquisition sequences and reconstruction

algorithms are continuously improved to increase depth penetration and

spatial resolution, and limit artifacts at spatial discontinuities. Moreover,

assessment of compression stiffening might provide new biomarkers of the

altered physical traits of cancer. Increasing research and clinical validation will

improve the efficacy of MRE for cancer characterization.
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1 Introduction

Malignant tumors have four physical hallmarks which are high stiffness, solid stress,

and interstitial fluid pressure, as well as altered micro-architecture. These biomechanical

properties facilitate tumor progression and limit treatment efficacy by hindering drug

delivery [1]. Magnetic resonance elastography (MRE) is increasingly used to assess tumor

visco-elasticity [2–5]. This assessment may be useful for characterization of cancer

severity and evaluation of treatment response [6–8].

2 MRE for tumor assessment

For reconstructing the tissue mechanical properties, MRE can be decomposed in

three steps [9, 10]. First, an actuator is placed close to the tumor to generate

mechanical vibrations. Second, a phase contrast MRI acquisition sequence, centred
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on the tumor, is used to encode the motion. Third, a

reconstruction algorithm is used to assess the

mechanical properties from shear wave propagation

(Figure 1).

2.1 Actuators

Several types of actuators have been developed to propagate

shear waves in tissues and tumors. The shape, size and power of

the actuators are adapted to the explored organ. Moreover,

drivers have been specifically developed to assess small

animals in which tumors can be induced or implanted for

preclinical studies.

2.1.1 Clinical studies
In early MRE studies, electromagnetic actuators have been

used [11]. The drivers are composed of a coil connected to a

piston. Using the B0 of the MR scanner, an alternating current in

the coil generates mechanical vibrations of the piston. This kind

of actuator has been used to detect tumors located in breasts [11],

to assess the mechanical properties of liver tumors [2] and to

compare MRE results with histologic features in prostate cancer

[12]. However, using this system, near field artefacts may occur

with echo planar imaging [13].

Alternatively, pneumatic drivers which use air pressure

waves to obtain mechanical vibrations, have been proposed. A

speaker system generates sinusoidal displacements in a passive

driver placed against the explored organ. System simplicity and

easy configuration of frequency and wave amplitude are

advantages of pneumatic drivers. Furthermore, the geometry

of the membrane can be optimized for the explored organ,

such as a pillow-like driver for propagating shear waves inside

the brain. Pneumatic drivers have been used to explore various

tumors in the brain [14, 15] and the liver [16]. They are easily

positioned but they work mainly at a frequency below 100 Hz

and have low frequency accuracy because of the relation with the

resonant eigenmodes of the pneumatic pipes [17]. A specific

transducer has been designed for tomoelastography [18]. It is

composed of air driven pressure pads, one or two pads being

placed on the anterior side and two pads on the posterior side [19,

20]. The multiple excitation sources allow for exploring

retroperitoneal located organs such as the pancreas [20].

A mechanical actuator using a rotational eccentric mass to

generate shear waves has also been developed. It is designed to

easily be placed close to different organs such as the brain [21].

One disadvantage of the system is the coupling between

frequency and amplitude of the shear waves. Hence, the

actuator may be less tolerated at high frequency by sensitive

patients.

FIGURE 1
MRE examination in patient with hepatocellular carcinoma indicated by the circle. (A) Anatomic T2-weighted MR image of liver showing slightly
hyperintense hepatocellular carcinoma in right liver lobe. (B) Anatomic MR image illustrating external driver position. (C) Shear wave color map
showing propagating waves within the liver and tumor. (D) Shear modulus color map showing liver and hepatocellular carcinoma stiffness.
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2.1.2 Preclinical studies
In preclinical high field (7T) MRE scanners, external

actuation is induced with piezoelectric transducers,

electromechanical uniaxial shakers or loudspeakers. The last

two systems need to be placed outside the bore. Shear waves

are propagated to the tumors with a rigid carbon rod. Small

animal studies have shown the ability to assess tumors implanted

subcutaneously [22] or orthotopically in brain [23, 24], breast,

pancreas [5] and colon [6]. Prostate tumors have also been

examined ex-vivo [25]. Pepin et al. [26] used an

electromechanical driver connected to a silver needle inserted

in mice Hodgkin’s lymphoma.

2.2 Motion encoding

In MRE, oscillating magnetic field gradients, also called

motion-encoding gradients (MEGs), are used to encode the

harmonic displacement in phase contrast images. The MEGs

can have various shapes. Rectangular and trapezoidal MEGs have

generally higher encoding efficiency than sinusoidal gradients.

MEGs are typically inserted at each side of the refocusing pulse.

One or more directions can be encoded, and for complete wave

field characterization, encoding of the three spatial directions is

needed.

The MEGs are inserted in several types of imaging sequences,

including gradient-echo, spin-echo or echo-planar imaging.

Echo-planar imaging reduces the acquisition time [27].

However, this kind of readout is associated with distortion

artifacts which may have an impact on the displacement

estimation. Moreover, echo-planar imaging is characterized by

long echo times caused by the long echo train. At long echo times,

the image signal may be drastically decreased, especially in tissues

with short T2, such as the liver. In clinical practice, gradient-echo

and echo-planar imaging are mainly used [28, 29].

MRE provides an image of the harmonic wave displacement

at a particular time point of the oscillation. Since the motion is

synchronized with the pulse sequence, several time points of the

displacement are imaged by delaying the MEG. Typically, four to

eight-time steps are acquired along a period of the oscillating

displacement. Fourier transformation is applied to extract the

fundamental harmonic component of the displacement field.

2.3 Mechanical properties assessment

Several reconstruction methods have been developed to

assess the mechanical properties with MRE. The methods vary

according to unwrapping algorithm, noise reduction,

compression wave removal, and inversion algorithm.

2.3.1 Local frequency estimation
With the local frequency estimation the frequency of the

wave displacement is assessed locally [30, 31]. The shear modulus

G (Pa) is deduced from its equation into a local homogeneous,

linear, isotropic and elastic solid

G � ρ(ω
]
)
2

,

where ρ is the material density (typically assumed to be 1,000 kg/

m3), ω the angular frequency of the mechanical excitation (rad/s)

and ] the shear wave spatial frequency (m−1). The local frequency

estimation method assumes homogeneity and no attenuation,

thus only the real part of the complex stiffness is provided. The

method has been used in patients to assess breast [32, 33], liver

[34] and prostate cancer stiffness [35]. It has also been extended

to estimate tissue viscosity by applying the local frequency

estimation on the curl of the displacement field [36].

2.3.2 Direct inversion
The complex shear modulus (G*) can be expressed by direct

inversion of the Helmholtz wave equation,

G*(r,ω) � −ρω2 ui(r,ω)
ui,11(r,ω) + ui,22(r,ω) + ui,33(r,ω)

where r is the spatial coordinate system (1, 2, 3), u the complex

harmonic shear wave displacement, ω the angular frequency of

the mechanical excitation and i, the motion-encoding direction

[37, 38]. Direct inversion is performed after application of a high-

pass filter to remove the longitudinal wave [39] and assuming

that the viscoelastic medium is linear, isotropic and

homogeneous.

Another common method to remove the compression waves

is to apply a discrete curl operator to the displacement field before

the inversion [40]. In contrast to high-pass filtering, the curl is

applied in the three-dimensional space and requires wave

displacement encoding along the three spatial directions.

As the shear modulus is a complex quantity, it can be

expressed as G* � G′ + iG″. The real part G′ and the

imaginary part G″ correspond respectively to the storage

modulus representing tissue elasticity and to the loss modulus

representing tissue viscosity [41, 42]. Other parameters that

represent the visco-elastic ratio can be derived, including the

damping ratio (ζ � G″
2G′) and the shear modulus phase angle

(φ � arctan (G″G′)) which is also called fluidity, ranging from 0°

for purely elastic materials to 90° for purely viscous materials

[10, 43].

Direct inversion has been used in the clinics to assess the

viscoelastic properties of breast [11, 44], liver [2] and prostate

[25] tumors. It has also been used in preclinical MRE to assess

subcutaneous [22] and orthotopic tumors [23].
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2.3.3 Multifrequency direct inversion
With multifrequency direct inversion, multiple wave data

sets acquired at different vibrational frequencies are combined

[45]. With a variant of the method, called multifrequency dual

viscoelastic reconstruction, frequency averaging is performed

during the computation of the magnitude and the phase of

the complex shear modulus rather than averaging the complex

shear moduli obtained at each frequency [46].

More recently, tomoelastography has been introduced. It

consists in using spatial filters in k-space to obtain shear

waves in multiple directions. The shear wave speed and the

attenuation are then averaged over all directions and frequencies.

This method when used with multiple drivers placed around the

explored area [19] is particularly promising to assess tumors

located inside deep organs such as the pancreas. By increasing

data quantity, multifrequency direct inversion increases the

stability and the reliability of MRE. However, scan time can

be long. Tomoelastography has already been used in the clinics to

explore brain, liver, pancreas and prostate cancers [7, 20, 47, 48].

With the multifrequency direct inversion methods, the frequency

dependence of the shear modulus is not considered.

2.3.4 Finite element method
The local frequency estimation and direct inversion assume

local homogeneity. These methods work well in areas where the

elasticity is almost constant. However, it has been reported that

the homogeneity assumption may cause errors in regions where

the elasticity variation is high [49].

There are finite element methods in which the local

homogeneity assumption is not used. These methods are

categorized into two groups: direct [50] and iterative methods

[51, 52]. In the direct methods, the discretized equation of

motion is rearranged to result in a system of equations with

the shear modulus parameters as unknowns, which can be solved

directly for a map of the shear modulus. Alternatively, for

iterative methods, the inverse problem is considered as an

optimization problem in which the shear modulus is changed

iteratively to minimize the error between measured displacement

and the simulated displacements [53]. The finite element method

has been used to measure the mechanical properties of prostate

cancer [12].

2.4 Comparisons of MRE methods

As described in this section, various MRE methods have been

developed to reconstruct the tissue mechanical properties. Different

mechanical actuators, MR imaging sequences, and reconstruction

algorithms are used. How these various parameters influence the

results of mechanical properties measurements is a topic of ongoing

investigation. In chronic liver disease, Huwart et al. prospectively

compared the performance ofMRE using echo-planar and spin-echo

imaging for staging of hepatic fibrosis [27]. They showed that echo-

planar imaging substantially decreased the data acquisition time,

while maintaining the image quality and diagnostic performance for

staging liver fibrosis.

More recently, the diagnostic performance of 2D gradient-

echo and 3D echo-planar MRE has been compared to stage liver

fibrosis. It was observed that the technical failure rate was lower

with 3D echo-planar versus 2D gradient-echo MRE, but the

diagnostic performance of both MRE sequences was similar

when the same shear wave frequency was used [29, 54, 55].

The two MRE acquisitions differed regarding image acquisition

(2D versus 3D, gradient-echo versus echo-planar), slice

thickness, and reconstruction algorithm.

Moreover, lower stiffness values were observed with 3D

echo-planar MRE than with 2D gradient-echo or 2D echo-

planar MRE. This has been attributed to the fact that the 2D

algorithm assumes all waves propagate in the imaging plane,

which can lead to overestimation of the wavelengths of waves

intersecting the imaging plane obliquely [55].

When comparing 2D echo-planar and gradient-echo MRE in

the liver, the image quality scores were significantly higher and

the failure rate substantially lower when using echo-planar

imaging [56]. The higher quality with echo-planar MRE may

be explained by the fact that the sequence is less sensitive to T2*

decay than gradient-echo imaging and because its acquisition

time is shorter, allowing single breath-hold acquisitions in the

liver.

In the normal brain, it has been found that stiffness values

obtained with a finite element model approach were 40% higher

than those obtained with direct inversion using a curl method

[57]. These higher values may be explained by lower noise

sensitivity with a finite element model [58].

As the measured stiffness depends on the choice of data

acquisition and image reconstruction, it has been recommended

to normalize stiffness measurements to a reference tissue. In brain

cancer patients, tissue stiffness has been measured relative to

healthy white matter [14]. In a cohort of patients with solid

pancreatic masses, it has been shown that the stiffness ratio

(calculated as the ratio of mass stiffness to the parenchymal

stiffness) outperformed stiffness for differentiating between

pancreatic ductal adenocarcinomas and benign mass forming

pancreatitis [59]. However, using a reference tissue for tumor

MREmay be limited by the variations of reference stiffness related

to age or disease (such as liver fibrosis in patients with liver cancer).

Various shear wave frequencies are used for MRE. In clinical

studies, frequencies below 200 Hz (usually between 40 and

60 Hz) are used. In small animal studies, higher frequencies

between 100 and 1,000 Hz are often used. Increasing the

frequency improves the spatial resolution but decreases shear

wave penetration. For the clinical MRE assessment of the deep-

seated pancreas, it has been observed that more consistent results

were obtained at 40 Hz than at 60 Hz [28].
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Increasing the frequency increases the apparent stiffness [60].

This shear wave frequency dispersion may complicate

comparisons between MRE studies performed at different

frequencies. However, when probed with multifrequency

MRE, the frequency dispersion coefficient may give additional

information about tissue structure [61–63]. The potential value

of multifrequency MRE in cancer remains to be determined.

One should also be aware of shear wave frequency differences

when comparing stiffness results between MRE and ultrasound

elastography. Indeed, whereas transient ultrasound elastography

uses 50 Hz, acoustic radiation force impulse–based techniques

have most of their energy between 120 and 160 Hz [64, 65].

Moreover, there are other differences between MRE and

ultrasound elastography. First, ultrasound work is based on

transient excitation and usually measures wave speed, but this

is a group velocity rather than a phase velocity. Second, Young’s

modulus (compression modulus) is usually the quantity reported

at ultrasound elastography, which is typically three-times the

shear modulus that is reported with MRE [10].

3 Biophysical properties of cancer
and elastography studies in animals

During the recent decades, our understanding of cancer has

evolved, and malignant tumors are currently viewed as aberrant

organs composed of tumor cells and their surrounding stroma,

both of which influence the biomechanical properties of cancer

[66–68]. These biomechanical properties include high stiffness,

solid stress and interstitial fluid pressure. These abnormal

physical traits affect tumor progression and treatment

resistance [69, 70].

3.1 Tumor biomechanical components

3.1.1 Definitions and origins of high stiffness,
solid stress and fluid pressure.
3.1.1.1 Stiffness

Stiffness or rigidity is an intrinsic property of tissue defined as

the resistance of the tissue to the applied force. Stiffness is mainly

determined by extracellular matrix composition and

organization [71]. Particularly, tumor stiffness is related to

collagen deposition and cross-linking [5]. It has been shown

that hyaluronic acid swelling also increases tumor stiffness [72].

Moreover, tumor stiffness is influenced by extracellular

matrix modifications caused by stromal cells. Indeed, it has

been shown that the fraction of stroma cells and the activity

of fibroblasts and immune cells correlate with stiffness [23, 73,

74]. In contrast, necrotic areas tend to decrease tumor

stiffness [75].

In addition to the structural part of tissue stiffness related to

matrix deposition, a functional part related to soft tissue water

content has been identified [60]. Indeed, several studies have

reported elevated stiffness in tissues with inflammation and high

interstitial or intravascular pressure [63, 76, 77].

3.1.1.2 Solid stress

The solid stress is a mechanical force influenced by the solid

components of the tumor, including the cancer cells, the collagen

fibers and the hyaluronan acid gel [68]. Cellular proliferation,

matrix deposition, cell contraction, and abnormal growth

patterns all lead to compressive and tensile solid stresses

within tumors (1). Solid stress can thus be generated by both

extracellular matrix and cells, in contrast to tumor stiffness which

is mainly a property of the extracellular matrix [78, 79]. This

difference between solid stress and stiffness is illustrated by the

fact that primary and metastatic tumors can have substantially

different levels of solid stress despite similar stiffness values [78].

3.1.1.3 Interstitial fluid pressure

The isotropicfluid pressure includes the pressure exerted by liquid

within the interstitial space, blood and lymphatic vessels. In tumors,

elevated interstitial fluid pressure is caused by leakage of plasma from

abnormally permeable tumor blood vessels and insufficient lymphatic

drainage. It adds to the solid stress to compose the total tumor

pressure, which is dominated by the solid stress component, at least in

pancreatic tumors [80].

3.2.1 Effects of abnormal physical traits on tumor
progression.

High tumor stiffness, solid stress and interstitial fluid

pressure promote tumor progression and resistance to

treatment through activation of a large cascade of

mechanoresponsive pathways in cancer cells and stromal cells,

including endothelial, epithelial, mesenchymal and immune cells

[1, 81, 82]. The mechanotransduction effect of high solid stress

has been exemplified in a recent study showing that the

application on the healthy mouse colon of an external

pressure similar in magnitude to the stress induced by tumor

growth, caused the stimulation of tumorigenic pathways without

changes in tissue stiffness [83].

It should be noted that the physical traits favouring tumor

progression are intricate. Physicists were tempted to consider the

steps of the cancer metastasis cascade as single events caused by

one mechanical alteration. However, this simple view has been

challenged by the finding that several cancer parameters

influence each other and contribute to tumor growth and

cancer progression [84]. Indeed, by compressing blood and

lymphatic vessels, solid stresses contribute to increased fluid

pressure in tumors. Through strain-stiffening, solid stresses

also increase tumor stiffness. Finally, fluid flow activates

fibroblasts, which then contribute to increased solid stresses

and stiffness values [1].

Globally, the changing biophysical properties in cancer are

strongly coupled with abnormalities in the tumor vasculature and
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extravascular compartments [79]. Indeed, high solid stresses

related to high matrix stiffness and hyper-proliferative

pressure in tumors are large enough to compress the blood

and lymphatic vessels, impairing blood flow and the delivery

of oxygen, drugs, and immune cells [85–87]. Impaired drug

delivery is also promoted by the high interstitial fluid pressure

secondary to the hyperpermeability of tumor angiogenic vessels

[88]. Moreover, the pressure difference in the periphery of the

tumor causes fluid leaking from the vessels at the tumor

boundaries in the surrounding tissue. This facilitates the

transport of cancer cells into the host tissue, increasing tumor

progression and metastatic risk [89].

Both dysregulated angiogenesis which produces leaky blood

vessels and desmoplasia which compresses the vessels, reduce the

capacity of blood vessels to deliver oxygen to tumors. Hypoxia

not only promotes disease progression and resistance to radiation

and some chemotherapies, but also causes immunosuppression

in the tumor microenvironment. Moreover, newly formed

immature blood vessels cannot distribute infiltrating immune

cells efficiently, whereas excessive fibrosis poses a physical barrier

to immune cell migration in the tumor. Accordingly, hypoxia is

associated with poor survival and resistance to treatment,

especially to newly developed immunotherapies [90].

Improving drug delivery can be achieved by repairing the

hyperpermeability of tumor blood vessels and/or decompressing

tumor blood vessels by targeting tumor stromal components

[79]. Restoration of the vascular function can be achieved with

vascular normalization strategies, whereas decompression of

tumor vessels can be obtained with stress-alleviating methods

that target the tumor extracellular matrix and/or cancer

associated fibroblasts. Most antiangiogenic agents target the

vascular endothelial growth factor or its receptors. Recently, it

was shown that metronomic chemotherapy and immunotherapy

also can induce vascular normalization [90–92].

In contrast, stress alleviation strategies can be obtained with

matrix-depleting agents, such as collagenase, relaxin, and matrix

metalloproteinases. These agents have been used to reduce

collagen or hyaluronic acid levels in tumors and have been

shown to improve the efficacy of anticancer drugs in animal

models [5, 93, 94]. Furthermore, the PEGylated human

recombinant hyaluronidase (PEGPH20) has been used to

reduce fibrosis and solid stress and increase survival in mouse

models [95].

A second type of matrix normalization involves reversing

vessel compression with cancer associated fibroblast

reprogramming therapies. Hereby, cancer associated

fibroblasts are turned quiescent such that they produce a

smaller magnitude of forces. One such drug is losartan, which

is an anti-hypertensive drug with decades of use in patients with

high blood pressure. In preclinical models of pancreatic

adenocarcinoma, losartan was used to decrease solid stress

and decompress blood vessel, improving chemotherapy

efficacy [96]. However, results in clinical trials are not yet

convincing. More precisely, if losartan has shown some

promising clinical results in a phase II clinical trial [97], it is

not the case for PEGPH20 [97, 98]. There are several reasons for

this, including toxicity, complexity and heterogeneity of tumor

microenvironment.

Indeed, matrix alleviating therapies may have contra-

intuitive results. Whereas in vivo and in vitro studies have

shown that extracellular matrix stiffness promotes breast,

pancreas and brain cancer progression [99–102], it has

recently been observed that fibrosis may have a dual role in

tumor invasion as it produces stiffness induced mechano-signals

for tumor progression but also mechanically restrains tumor

spread [103]. The discordant results about the promoter versus

protective role of fibrosis may at least be partially explained by

tumor heterogeneity [5]. Indeed, heterogeneity poses the risk of

obtaining inconsistent results. Moreover, the heterogeneous

nature of pancreatic adenocarcinoma tissue has been reported

to be a driver of aggression. Indeed, the periductal region

surrounding tumor glands has been found to have increased

stiffness which drives metastasis [92]. These findings suggest that

the architecture and mechanics of collagen fibers adjacent to the

epithelial lesion, and not bulk collagen abundance, may be an

indicator of pancreatic adenocarcinoma aggression.

3.2.2 Measurement methods of cancer
biophysical properties

Classically, tissue stiffness and viscoelasticity are measured

ex-vivo with invasive methods, including atomic force

microscopy and rheometry [104]. Currently, in vivo

measurements of stiffness and viscoelasticity can be performed

with ultrasound and MR elastography [105].

The measurement of solid stress remains more difficult, even

with invasive methods. Stylianoupoulos et al. [106] proposed to

cut excised tumors and to measure the stress relaxation as the

extent of tumor opening normalized to the diameter of the

tumor. By using mathematical modelling, the growth-induced

stress could be assessed [106, 107]. The method has been

extended by Nia et al. [78] to quantify the deformation of the

tumor cut plane with ultrasonography.

In vivo, the total tumor pressure, solid stress and

interstitial fluid pressure can be quantified separately by

inserting a piezoelectric pressure catheter inside the

tumor [80, 95]. This invasive method is not routinely used

in humans.

Non-invasive methods to assess tumor solid stress are being

developed, using ultrasound or MR elastography measurements.

Islam et al. have proposed a poroelastography model to quantify

solid stress with ultrasound elastography [108, 109]. Fovargue

et al. have suggested to investigate the mechanical properties of

the tissue surrounding the tumor to estimate its pressure with

MRE [110]. Based on the compression stiffening effect [111, 112],

Pagé et al. have shown the potential of compression MRE to

assess tumor solid stress in liver cancer [113, 114].
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Non-invasive elastography may also be useful to assess fluid

pressure by showing a correlation between fluid pressure and

viscoelasticity. At ultrasound elastography, Rotemberg et al. and

Gennisson et al. showed a relation between fluid pressure and

tissue stiffness (measured with shear wave speed) in liver and

kidney [115, 116]. Rotemberg et al. demonstrated a correlation

between shear wave speed and portal venous pressure in excised

canine liver. Gennisson et al. observed high kidney shear wave

speed after renal vein or ureter ligation and low speed after renal

artery ligation in pigs. With MRE, a correlation between liver and

spleen viscoelasticity and portal venous pressure in small animals

and in patients has been reported [77, 117–119].

Alternatively to elastography, dynamic-contrast enhanced

MR imaging has been proposed to assess fluid flow and

interstitial pressure in tumors [120, 121].

3.2.3 Non-invasive preclinical investigationswith
elastography

Elastography measurements have been performed in tumors

implanted in mice to investigate the relation between stiffness

and tumor progression [8, 73, 122]. In soft brain tumors

(glioblastomas) Schregel et al. [8] observed decreased stiffness

with tumor progression using MRE. In contrast, Ahmed et al.

[122] found a stiffness increase during progression of liver

metastases from pancreatic adenocarcinomas using shear wave

elastography. In an ultrasound elastography study, Riegler et al.

[73] observed a strong correlation between stiffness and tumor

volume for slow growing tumors such as breast and pancreatic

cancers.

Moreover, MRE studies have shown stiffness decrease with

collagenase in breast cancer [5], anti-VEGF antibodies in

glioblastoma [8], vascular disrupting agents in colon tumor

and colorectal cancer [6, 22] and chemotherapeutic agents in

glioma [26]. Several causes have been mentioned for this

decreased stiffness. It has been related to the direct effect of

collagenase on fibrosis, to the vascular normalization by anti-

VEGF antibodies, and to the association between vascular

disrupting agent effect and tumor necrosis. For the stiffness

decrease with a chemotherapy treatment, it has been

postulated that changes in interstitial pressures, cellularity,

and extracellular components are involved [27]. However, the

actual mechanism of the stiffness change is unknown.

The effect of radiation therapy was investigated on

glioblastomas orthotopically implanted in mice [24]. In this

study, the authors observed a decrease of tumor stiffness over

time independently of radiation therapy.

In another study, the effect of radiation therapy was

assessed in pancreatic cancer implanted in mice [123].

Here, a decrease of shear modulus was observed in

pancreatic tumors after stereotactic body radiation therapy.

It was concluded that shear modulus could help to

differentiate between tumors responsive to radiation

therapy and non-responsive tumors.

At ultrasound elastography, it has been observed that the

tissue stiffness correlated with drug delivery in two orthotopic

mouse models of pancreatic tumors [124]. However, as already

discussed, drug delivery depends not only tumor stiffness, but

also on solid and fluid pressure and on tumor

heterogeneity [111].

It is expected that non-invasive measurements of solid stress

with compression MRE may result in new elastography

modalities to decouple stiffness from solid stress and improve

our understanding of the roles of stiffness and stress in tumor

progression and treatment response [111, 114]. Finally, high

resolution ultrasound and MR elastography may be used to

explore cancer heterogeneity [5, 125].

3.4. MRE for tumor assessment in patients

3.4.1 Liver
MRE is used to assess the biomechanical properties not only

of hepatic tumors, but also of the liver parenchyma. Indeed, MRE

offers good diagnostic accuracy to assess the features of chronic

liver disease, including fibrosis, cirrhosis, and portal

hypertension [118, 126–133]. These factors, especially liver

cirrhosis, are promotors of hepatocellular carcinoma

development [134].

3.4.1.1. Investigating the risk of cancer development

In a retrospective MRE study, the liver stiffness was measured

in 301 patients with chronic liver disease of which 66 patients had

hepatocellular carcinomas [135]. It was found that the patients

with hepatocellular carcinomas had higher liver stiffness (mean:

5.0 kPa) than those without it (3.8 kPa). Moreover, at

multivariate analysis, liver stiffness was the only significant

predictor of hepatocellular carcinoma, in contrast to age,

gender and blood markers.

In another study, two MRE acquisitions were performed at

12-months interval in 161 patients with chronic liver diseases

[136]. The patients were divided into three groups according to

sequential changes in liver stiffness as follows: high (> 4.7 kPa) on

the first MRE (group A), low (< 3 kPa) on both MRE

examinations (group C) and other combinations (group B).

Group A classification was an independent risk factor for

hepatocellular carcinoma development. The authors concluded

that patients with chronic liver disease and high liver stiffness on

previous MRE examinations were at high risk for developing

hepatocellular carcinoma.

3.4.1.2 Characterization of liver tumors

Diffusion-weighted and dynamic contrast-enhancedMRI are

routinely performed for tumor detection and characterization

[137]. By investigating the mechanical properties, MRE offers a

new opportunity for tumor characterization. Venkatesh et al.

[16] studied the stiffness of 44 liver tumors. They found that the
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malignant tumors had significantly higher stiffness than the liver

(10.1 ± 3.6 kPa versus 2.3 ± 0.3 kPa), whereas benign tumor

stiffness (2.7 ± 0.4) was similar to the liver stiffness.

In another study, MRE and diffusion-weighted imaging were

performed in 79 patients with 124 focal liver lesions [138]. Again,

mean stiffness of malignant tumors was significantly higher than

that of benign lesions (7.9 vs. 3.1 kPa, p < 0.0001) and MRE had

higher diagnostic performance than diffusion-weighted imaging

for differentiating between benign and malignant tumors

(AUC = 0.99 versus AUC = 0.87; p = 0.002).

Visco-elastic properties of 72 liver tumors were assessed [2].

In contrast to the two previous studies, 3D images were acquired,

allowing for the reconstruction of the complex shear modulus

from the curl reconstruction method. It was observed that the

increase of complex shear modulus magnitude in malignant

tumors was mainly caused by an increase of the loss modulus

(viscosity) rather than the storage modulus (elasticity). These

results have been confirmed in a recent study showing high

tumor stiffness and fluidity in malignant liver tumors [7].

3.4.1.3 Recurrence

Tumor recurrence complicates 70% of hepatocellular

carcinomas after hepatic resection at 5 years and is the

expression of both early intrahepatic metastases and late

development of de novo tumors. Predictive factors for early

recurrence within 24 months of surgery, are mainly tumor-

related (i.e., tumor size, tumor number, presence of tumor

budding, microsatellites and vascular invasion). In contrast,

late recurrence (>24 months after surgery) is probably related

to the evolution of the underlying chronic liver disease, including

fibrosis stage and portal hypertension severity [139, 140].

This difference in the cause of early and late recurrence

explains that tumor stiffness has been explored as predictive

marker of early recurrence, whereas liver and spleen stiffness has

been assessed as marker of late recurrence [139, 141, 142]. In a

cohort of 99 patients, Wang et al. found that high tumor stiffness

and vascular invasion were two determinants associated with

early hepatocellular carcinoma recurrence after

hepatectomy [141].

For predicting late tumor recurrence, Marasco et al.

measured liver and spleen stiffness in 175 patients before

surgical resection and showed that spleen stiffness was an

independent predictor of late hepatocellular carcinoma

recurrence. Similarly, in a study performed in 192 patients,

Cho et al. [142] observed that liver stiffness before treatment

was a predictor of late hepatocellular carcinoma recurrence.

3.4.1.4 Therapy response

Few studies have been performed to assess the evolution of

hepatocellular carcinoma mechanical properties after treatment.

Gordic et al. [143] quantified hepatocellular carcinoma stiffness

in patients after transarterial chemoembolization or yttrium

radioembolization. Decrease of the mechanical properties was

observed in the treated patients. This decrease was paralleled by

an increase of tumor necrosis.

Qayyum et al. [144] observed an increase of the

hepatocellular stiffness after 6-weeks immunotherapy with

pembrolizumab in patients with hepatocellular carcinomas.

The stiffness was correlated with tumor T lymphocytes

infiltration, overall survival and time to progression.

3.4.2 Breast
Manual palpation is an easy procedure to detect breast lumps

but it has limited sensitivity of about 55% to detect breast cancer

[145]. MRI can be used to improve breast cancer diagnosis.

Dynamic contrast-enhanced MRI is routinely performed in the

clinics for breast tumor detection and characterization, and more

recently it has been associated with diffusion weighted and T2-

weighted imaging to perform a multiparametric analysis [146].

However, contrast-enhanced MRI still has many false-positive

results [147].

Breast MRE represents an additional tool for assessing breast

cancer. Early studies showed the feasibility to assess the

mechanical properties of breast cancer, including stiffness,

visco-elasticity, phase angle, anisotropy and frequency

dispersion [11, 33, 40, 41, 148–150]. Globally, these studies

and more recent clinical series [44, 151] showed increased

viscosity and phase angle in malignant tumors with variable

changes in elasticity, which may be increased or decreased

relative to that in benign lesions. This variability may at least

be partially explained by the type of breast lesions that are

included in the studies.

Assessment of breast cancer is already performed in the

clinics with ultrasound elastography [152, 153]. The

accessibility of the organ and the fact that ultrasound

elastography is easy to use and widely available are arguments

in favour of this method. However, MRE provides better spatial

resolution and encodes the three spatial directions of the shear

wave displacement improving the accuracy of mechanical

parameter quantification. This could be relevant to investigate

the relation between mechanical parameters and tumor

heterogeneity [5].

3.4.3 Brain
Surgical strategies to treat intracranial tumors depend on

tumor consistency. Soft tumors generally require less invasive

surgery, while firm fibrotic tumors may require more open

surgery. It has been shown that determining brain tumor

stiffness with MRE is feasible and correlates with surgical

consistency [3, 154–157]. Another important factor in

determining the difficulty of resection is the adherence of the

tumor to the surrounding tissue, where tumors that are

adherent are more difficult to remove. To address this

problem, slip interface imaging has been developed. The

basic idea is that if two adjacent compartments of tissue are

free to move independently of one another, then as a shear wave
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propagates across the boundary, a discontinuity will be

created. This discontinuity can be detected on a shear strain

map [158].

Regarding tumor characterization, several studies have

suggested that benign meningiomas are the stiffest

intracranial tumors and that they have the highest fluidity

(phase angle) and viscosity (loss modulus) [3, 159, 160]. In

contrast, malignant tumors, especially glioblastomas, are

characterized by low stiffness (soft tumors) and low fluidity

and viscosity [43]. However, discrimination between different

tumor types based on the values of the mechanical parameters

is currently limited because of substantial overlap of the

distributions of each of the parameters from different

tumors. To remove the bias in the reported values of the

mechanical parameters caused by differences of hardware,

reconstruction methods and signal to noise ratios, it has

been recommended to compute the difference in each shear

modulus parameter between the tumor and the contralateral

normal appearing white matter. This has resulted in some

improvement in defining the distribution of values in different

tumors. Particularly, the distribution of delta loss modulus

values in meningiomas is unique in that it is the only

distribution with a predominantly unipolar positive

distribution. Nevertheless, even after normalizing a wide

range of values for essentially all tumors and all parameters

remains [3].

Further characterization of gliomas with MRE has been

shown by Pepin et al. [161]. In their study, gliomas were softer

than healthy brain parenchyma, with grade IV tumors

softer than grade II. Tumors with an isocitrate

dehydrogenase 1 (IDH1) gene mutation were significantly

stiffer than those with wild type IDH1. The authors conclude

that noninvasive determination of tumor grade and

IDH1 mutation may result in improved stratification of

patients for different treatment options and the evaluation of

novel therapeutics.

The potential role of fluidity in brain tumor aggressiveness

has been described by Streitberger et al. The authors found that

fluidity of neurotumors is anomalous in that it decreases as water

content increases, enabling glioblastomas to infiltratively finger

in normal surrounding brain matter [43]. The quantification of

the fluidity as marker of invasiveness in brain cancer could

potentially improve clinical prognosis and therapeutic

management of patients.

Most applications of brain MRE assumes an isotropic tissue

while brain white matter is likely to produce an anisotropic

mechanical response [162]. Not taking the anisotropy into

consideration can lead to misestimation of mechanical

parameters in the normal brain, but this is probably less relevant

in brain cancer. To measure the anisotropic effect, several MRE

reconstruction methods have been developed [163–165].

Before the adoption of brain tumor MRE in routine clinical

practice, more studies should be performed and the

reproducibility MRE parameters as imaging biomarkers of

cancer should be assessed. Further studies on the relation

between tumor mechanical parameters and extracellular

matrix composition should also be performed.

3.4.4 Prostate
Multiparametric MRI including T2-weighted imaging and

dynamic contrast-enhanced MRI has shown its usefulness in

prostate cancer diagnosis. However, the specificity remains low

and prostate biopsy is still required [166]. Evaluation of stiffness

could provide additional information about prostate cancer

characterization. Indeed, ex-vivo studies have shown the high

effect of collagen deposition in the evaluation of prostate tumor

grade [167, 168].

A challenge in prostate cancer MRE is to propagate shear

waves inside the organ. Specific drivers have been developed

to respond to this need [169, 170]. In 2011, Li et al. have

provided an in vivo study evaluating the viscoelastic

properties in 12 patients with prostate cancer and 14 with

prostatitis [35]. A transducer was placed above the pubis to

transmit mechanical waves at 100 Hz. Prostate cancer was

found to have significantly higher stiffness than the healthy

peripheral zone (6.55 ± 0.47 kPa vs. 2.26 ± 0.45 kPa, p < 0.01)

and a positive correlation was observed between elasticity of

prostate cancer and Gleason score. Moreover, viscoelastic

properties provided a good separation between malignant

and benign prostate tissue (elasticity: 6.55 ± 0.47 kPa vs.

1.99 ± 0.66 kPa, p < 0.01; viscosity: 6.56 ± 0.99 Pa s vs.

2.13 ± 0.21 Pa s, p < 0.01).

In a later study, Sahebjavaher et al. [12] used a transducer

placed against the patient perineum. They have evaluated the

repeatability in six volunteers and performed MRE

acquisitions in 11 patients. Despite the poor repeatability

results (25% variation in stiffness), a significant

difference in stiffness was found between cancerous and

normal tissue.

More recently, Dittmann et al. have shown the benefit of

tomoelastography with drivers placed around the pelvis to

assess prostate mechanical properties [19]. Twelve healthy

volunteers and three subjects with a malignant prostate lesion

were explored using three excitation frequencies (60 Hz,

70 and 80 Hz). Compared to the previous study, good

reproducibility was found (3.7% and 2.7% in the peripheral

and central prostate zone respectively). Consistent with the

studies of Li and Sahebjavaher [12, 35] the shear waves speed

in prostate cancer was higher than in healthy tissue.

In a recent prospective study with 208 participants, it was

shown with tomoelastography that prostate cancer stiffness and

fluidity were higher in prostate cancer than in benign prostatic

disease. Multiparametric MRI combined with stiffness and

fluidity measurements enabled detection of prostate cancer

with 95% specificity, which was significantly higher than with

use of multiparametric MRI alone (77%) [48].
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3.4.5 Pancreas
Pancreatic ductal adenocarcinoma is a highly aggressive cancer,

the overall 5-years survival rate among patients with pancreatic cancer

being less than 5 % [91, 171]. It is characterized by a dense and rich

stroma which plays a critical but debated role in its progression, as

explained above [103]. The quantification of pancreatic cancer

mechanical properties could help to evaluate its severity. However,

the pancreas is a deep-lying organ and it is difficult to transmit

mechanical shear waves in the pancreas of obese patients who are at

risk of pancreatic ductal adenocarcinoma development [172].

Improvement in sequence acquisition time (use of echo

planar imaging, parallel imaging) and development of new

actuators (with tomoelastography) to propagate shear waves

in deeply located organs, has increased the capacity of MRE

to estimate the mechanical parameters of the pancreas [28,

173–175]. Several recent studies have shown the good

diagnostic performance of MRE to differentiate between

benign and malignant pancreatic masses [4, 20, 28, 172].

Pancreatic adenocarcinomas and malignant endocrine tumors

exhibit higher stiffness and fluidity than the normal pancreas and

benign lesions, including autoimmune pancreatitis.

3.4.6 Kidney
MRE is increasingly used to investigate the renal mechanical

parameters. Preliminary studies have shown the feasibility of MRE

to estimate the renal stiffness [176] and to assess the renal

mechanical parameter variations caused by hydration and

urinary status [177]. In a study published in 2018, the

viscoelastic parameters of small renal tumors were assessed in

19 patients [178]. Compared to dynamic contrast-enhanced and

diffusion-weighted imaging, MRE viscoelastic parameters provided

the best discrimination between renal oncocytomas and carcinomas.

In accordance with the literature in ultrasound elastography [179],

malignant tumors were stiffer than benign lesions.

4 Discussion

MRE is an emergingmethod to assess cancer. Increasing number

of preclinical and clinical studies show the potential of MRE for

cancer characterization and treatment follow-up. When evaluating

the surrounding tissue, the usefulness of MRE to predict the risk of

cancer occurrence or recurrence has also been shown [139, 180].

Generally, malignant tumors, except brain tumors, have

elevated stiffness and mainly elevated fluidity relative to the

surrounding parenchyma and relative to benign tumors and

pseudo-tumors. This is a general trend and there is some

overlap of the biomechanical properties between benign and

malignant tumors. In the brain, glioblastomas have variable

stiffness and low fluidity enabling them to infiltratively finger

in normal surrounding brain matter [43].

4.1 Issues of MRE technique in cancer
investigation

MRE is still a recent method that is not yet standardized.

Differences in generation of mechanical vibrations (frequency of

the mechanical shear waves), in acquisition and reconstruction

methods between studies may bias the mechanical parameter

values. There is thus a clear need for method standardization,

reproducibility assessment and multicenter clinical validation.

From a technical point of view, MRE is still limited for the

examination of deep-lying tumors or brain tumors. Pancreas cancer

imaging is difficult because the pancreas is retroperitoneal and the shear

waves are attenuated by more superficial structures of the abdomen

including adipose tissue, colon, stomach and liver. Therefore, the wave

amplitude may not be sufficient to obtain accurate estimation of the

pancreatic tumor stiffness. Specific transducers have been developed

with multiple drivers placed around the abdomen to increase the

number of sources providing mechanical vibrations [173].

Ongoing research is also performed with passive elastography

[181]. The method uses shear waves generated naturally from

cardiac motion or blood pulsatility. Passive elastography might be

interesting to investigate cancers located in organs where shear

waves cannot be transmitted with sufficient amplitude from an

external driver, such as the brain.

Another limitation of cancerMRE is related to small tumor size. In

some studies, patients with lesions smaller than 10mm in the liver [16]

or 20mm in the brain [161] have been excluded. The assessment of

early cancer may be limited, as small tumors cannot be distinguished

from surrounding parenchyma because of large point-spread function

[182]. MRE acquisition with echo planar imagingmay reduce the scan

time and increase the matrix resolution [183, 184].

Still another limitation is related to the homogeneity assumption

often used for stiffness assessment. At the tissue-tumor interface

especially, a large difference between the mechanical properties can

affect the homogeneity assumption. A wave inversion method,

called heterogeneous multifrequency direct inversion has been

developed to accommodate heterogeneous elasticity within a

direct inversion by incorporating first-order gradients and

combining results from a narrow band ofmultiple frequencies [185].

4.2 Perspectives

MRE may be used to assess the altered physical traits in cancer,

i.e., high stiffness, interstitial fluid pressure and solid stress, and altered

micro-architecture. This non-invasive assessment may help

understanding cancer dynamics and diagnosing cancer aggressiveness.

Tumor stiffness and visco-elasticity which are related to collagen

density and cross-linking but also to fluid pressure aremeasuredwith

basal MRE [5, 6, 77, 118]. However, compression MRE assessing

non-linear stiffness (compression stiffening) may be useful to
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evaluate tumor solid stress which is influenced by the solid elements

of the tumor, including cells and extracellular matrix [114, 186, 187].

Assessing tumor solid stress with compression MRE might have

prognostic significance, as it has been recently reported that

microvascular invasion in patients with hepatocellular carcinoma

can be assessed with compression MRE [188].

Tumor heterogeneity which also plays an important role in

cancer severity might be further assessed with high resolution

MRE, radiomics and deep learning [189].

Further studies should investigate the relation between MRE

parameters, including multifrequency MRE and MRE under

compression, and altered physical parameters as determinants

of cancer aggressiveness.

In conclusion, MRE is an emergent method to quantify

tumor mechanical properties, offering a clinically usable

method for determining cancer prognosis and assessing

treatment response. Increasing research and clinical validation

will improve the efficacy of MRE for cancer characterization.
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