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Inspired by notions of topological physics, recent years have witnessed the rapid
development of mechanical metamaterials with novel properties of topological states.
However, most of the current investigations have either focused on discrete mass-spring
lattices, with topological states limited to a single operating band, or on various elaborate
continuous elastic systems, enduring the drawbacks of modal couplings. It remains largely
unexplored how to design topological elastic systems that naturally possess multiple
operating bands and are free from modal couplings. In this study, we design an elastic
system based on fundamental mechanical elements (beams, rods and nuts), which is
capable of supporting multiband pure topological states. Through an equivalent beam-
spring model with lumped masses together with finite element analysis, we demonstrate
that our proposed structure exhibits multiple Dirac points (DPs) at different frequencies. We
show that simply adjusting the heights of nuts fastened on beams can lift the degeneracies,
giving rise to two kinds of valley Hall phases characterized by opposite valley Chern
numbers. The dispersion diagram of the supercell formed by unit cells with different
topological indices shows that there simultaneously exist perfectly pure interface modes
(i.e., no other modes coexist) within two frequency ranges. Furthermore, numerical
simulations demonstrate that the domain wall formed by structures with distinct
topological properties supports topologically protected interface waves over dual
frequency ranges. Our results have potential for the design of mechanical systems that
need to work under changeable working frequencies and may have significant impact on
many diverse fields such as vibration control, energy harvesting and seismic isolation.

Keywords: topological states, valley Hall phases, elastic waves, multiband states, beam-spring model, honeycomb
lattice

1 INTRODUCTION

In the last decade, the discovery and extensive study of topological insulators in condensed matters
[1] have brought innovative ideas to the design of classical wave systems with novel properties [2]. In
electronic systems, non-trivial topological phases, manifested by robust and backscattering-free
boundary states [3], are generally characterized by topological invariants, e.g., Chern numbers, which
are defined by the eigenstates on energy bands [4]. The concept of band structure has also been
introduced and largely studied in various artificial periodical structures such as photonic crystals [5]
and phononic crystals [6]. Consequently, various concepts in topological physics are naturally
introduced into classical wave systems [2], which provides many unprecedented new avenues for
wave manipulation [7], energy harvesting [8] and information transfer [9]. In return, taking
advantage of scalability and controllability, classical wave systems, e.g., acoustic crystals and
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mechanical structures, provide powerful and versatile platforms
for probing into topological physics and related unusual
phenomena [10].

Robust topological states exist at interface between phases with
distinct topological invariants [11]. Despite the origin of the
topological states varies dramatically in the existing proposed
structures, the common requirement in their realization is
breaking a certain kind of symmetry, namely, temporal or
spatial symmetry [12]. For example, analogous to quantum
Hall effect [13], active components [14–16], the application of
an external field [17–19] and synthetic gauge fields [20, 21], have
been widely exploited to break time-reversal symmetry, opening
topological bandgaps that support one-way edge modes. These
approaches make the system complicated and obviously difficult
to implement in practice. Recently, spatial symmetry have been
proven to be one of the most accessible way to achieve non-trivial
topological phases, since it relies on simple manipulating the
symmetry of the underlying lattice. For instance, quantum spin
Hall effect has been emulated by solely changing the geometric
parameters of the structure [22, 23], which breaks the point group
symmetry and results in topologically non-trivial bandgap
sustaining two dispersive edge states with opposite
propagation directions [19, 24, 25]. Particularly, simple
rotation or mirror operations have succeeded in realizing
topological interface states based on valley Hall effect [26–30].
Here, we propose a way to trigger the valley Hall phase transition
by adjusting the nuts fastened on Euler-Bernoulli (EB) beams,
which is amenable to practical implementation.

In spite of the fact that great achievements have been made in
designing mechanical systems possessing topological states, the
majority of those investigations have focused on discrete mass-
spring systems [14, 19, 31–33]. Thanks to its structural simplicity,
these discrete systems are excellent candidates for illustrating
abundant topological essentials associated with various exotic
phenomena [34, 35]. In particular, the resulting topological
interface modes hosted by mass-spring lattices are ideally
pure, meaning that there are no additional trivial bands
coexisting within the same frequency range [19, 31]. This
monomodal feature is beneficial to witness highly identifiable
interface guided wave propagation without any interference.
Nevertheless, the difficulty of transfer to practical
configurations and the nature of limited degree of freedom
induced frequency band singleness [19, 27, 31] make the
discrete systems hopeless of practical applications. In recent
years, tremendous efforts have been devoted to achieving
topological elastic wave transmission in various continuous
elastic systems [7, 36–40]. Unlike discrete systems, continuous
structures often possess a wide range of frequency bands due to
their infinite degree of freedom [41]. In terms of potential
application, this multimodal feature offers a tremendous
degree of flexibility in controlling wave dynamic response,
providing opportunities for designing structures possessing
broadband or multiband topologically protected waves
[42–46]. However, the nature of multimode inevitably leads to
a hybrid of the bands inside the topological bandgaps, which can
severely impedes the performance of interface states [38, 40, 47].
In other words, ubiquitous modal couplings greatly increases the

complexity and difficulty of topological band engineering for
elastic waves [45, 46]. From these points of view, designing elastic
structures with topological states featuring a combination of
multiple bands (i.e., with multiple working frequency ranges)
and purity (i.e., free from modal hybridization) remains elusive
and is rarely studied in the present literature.

In this paper, we design an elastic system composed of
fundamental mechanical elements (beams, rods and nuts),
which is capable of supporting pure topological states over
multi-frequency ranges. Through an equivalent beam-spring
model and finite element analysis, we demonstrate that the
honeycomb structure composed of EB beams exhibits multiple
Dirac degeneracy points at different frequencies, and adjusting
the heights of nuts fastened on beams can lift the degeneracies,
giving rise to two kinds of valley Hall phases characterized by
opposite valley Chern numbers. Dispersion analysis of the
supercell constructed by unit cells with distinct topological
indices together with numerical simulations for a finite-size
structure demonstrate that the domain wall formed by
structures belonging to distinct topological phases supports
interface waves at dual frequency ranges, which are
topologically protected manifested by the feature of being
immune to backscattering of sharp corner. The present study
can improve the shortcomings of the most existing phononic
topological insulators with only a single operating band, and is
expected to open up the possibility for the realization of frequency
switchable topological states.

2 METHODS

This section presents the free vibration analysis for the proposed
elastic honeycomb structure based on theoretical model and finite
element method (FEM).

2.1 Beam-Spring Model With Lumped
Masses
Considering the preconditions for the emergence of DPs [48], we
construct a honeycomb lattice structure using congruent circular
columns coupled with each other via slender rods, as shown in
Figure 1A, where, each column is equipped with two nuts whose
spacing is adjustable. Note that all the nuts are identical, and
colors red and green are only used to distinguish nonequivalent
sites within one unit cell. In order to facilitate theoretical analysis,
we propose an equivalent beam-spring model to simplify the
honeycomb lattice structure, where, the circular columns are
considered as EB-beams, the slender rods are regarded as the
massless springs and the nuts are replaced by lumped masses, as
shown in Figure 1B. A theoretical framework based on the beam-
spring model for the transverse free vibration analysis will be
elaborated, which will be applied to calculation of the band
structure of the infinite honeycomb lattice.

2.1.1 Governing Equations
Considering an arbitrary unit cell located at the site n1, n2{ } of the
infinite periodic lattice, with n1, n2{ } ∈ Z2, the governing
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equations for the motion of transverse free vibration of the two
EB beams within the unit cell are as follows:

EI
z4wn1 ,n2

1

zz4
+ ρA

z2wn1 ,n2
1

zt2
+m €wn1 ,n2

1 δ z − h1( ) + δ z − L + h1( )[ ]
(1a)

� pn1 ,n2
1 δ z − hc( ) + δ z − L + hc( )[ ],

EI
z4vn1 ,n21

zz4
+ ρA

z2vn1 ,n21

zt2
+ m€vn1 ,n21 δ z − h1( ) + δ z − L + h1( )[ ]

(1b)
� qn1 ,n21 δ z − hc( ) + δ z − L + hc( )[ ],

EI
z4wn1 ,n2

2

zz4
+ ρA

z2wn1 ,n2
2

zt2
+ m €wn1 ,n2

2 δ z − h2( ) + δ z − L + h2( )[ ]
(1c)

� pn1 ,n2
2 δ z − hc( ) + δ z − L + hc( )[ ],

EI
z4vn1 ,n22

zz4
+ ρA

z2vn1 ,n22

zt2
+ m€vn1 ,n22 δ z − h2( ) + δ z − L + h2( )[ ]
� qn1 ,n22 δ z − hc( ) + δ z − L + hc( )[ ],

(1d)
where wn1 ,n2

i and vn1 ,n2i denote the transverse displacement of the
beam labeled i (i = 1, 2) along x and y-axes, respectively. E, I, ρ, A
and L are Young’s modulus of elasticity, the cross-sectional
moment of inertia, density, the cross-sectional area and length

of the beam, respectively. m is the equivalent lumped mass,
attached at heights of h1 and L − h1 for the beam 1, and at h2
and L − h2 for the beam 2 (see Figure 1B). hc as well as L − hc is the
position at which the horizontal springs are connected with the
beams. Moreover, pn1 ,n2

i and qn1,n2i , which represent the forces
acting on the beam i (i = 1, 2) within the unit cell n1, n2{ } along x
and y-axes, respectively, due to the coupling to adjacent beams via
connecting springs, are expressed as:

pn1 ,n2
1

qn1 ,n21

( ) � ks un1−1,n2
2 − un1 ,n2

1( ) · t1t1 + un1 ,n2−1
2 − un1 ,n2

1( ) · t2t2[
+ un1 ,n2

2 − un1 ,n2
1( ) · t3t3], (2a)

pn1 ,n2
2

qn1 ,n22
( ) � ks un1+1,n2

1 − un1 ,n2
2( ) · t1t1 + un1 ,n2+1

1 − un1 ,n2
2( ) · t2t2[

+ un1 ,n2
1 − un1 ,n2

2( ) · t3t3], (2b)
where t1 � [−1/2, �

3
√

/2]T, t2 � [−1/2,− �
3

√
/2]T, t3 � [1, 0]T are

unit vectors characterizing the directions of connecting springs
of the same stiffness ks, and u

n1 ,n2
i denotes the displacement vector

formed by the two components of the transverse displacement of
the beam element i (i = 1, 2) within the unit cell n1, n2{ }, that is,

un1 ,n2
i � wn1 ,n2

i

vn1 ,n2i
( ), i � 1, 2 ∀ n1, n2{ } ∈ Z2. (3)

FIGURE 1 | (A) Elastic honeycomb lattice arranged by congruent circular columns placed in parallel alignment and connected by slender rods at two free ends,
each column is equipped with two nuts (denoted by red or green oblate column). The dotted rhombus shows the top view of the unit cell composed of two sites labeled 1
and 2, the inset shows the front view of the unit cell, which is arranged symmetrically up and down (B) The top view and front view of a unit cell located at the site {n1, n2} of
the equivalent beam-spring model, where, lumped masses represent the nuts in (A), t1, t2 and t3 are three direction vectors of connecting springs, a1 and a2 are
two basis vectors of the lattice.
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Using the time-harmonic assumption, i.e., wi =Wi exp (iωt),
vi = Vi exp (iωt), Eq. 1 can be rewritten as:

EI
z4Wn1 ,n2

1

zz4
−ρAω2Wn1 ,n2

1 −mω2Wn1 ,n2
1 δ z−h1( )+δ z−L+h1( )[ ]

(4a)
� Pn1 ,n2

1 δ z − hc( ) + δ z − L + hc( )[ ],
EI

z4Vn1 ,n2
1

zz4
− ρAω2Vn1 ,n2

1 − mω2Vn1 ,n2
1 δ z − h1( ) + δ z − L + h1( )[ ]

(4b)
� Qn1 ,n2

1 δ z − hc( ) + δ z − L + hc( )[ ],
EI

z4Wn1 ,n2
2

zz4
− ρAω2Wn1 ,n2

2 − mω2Wn1 ,n2
2 δ z − h2( ) + δ z − L + h2( )[ ]

(4c)
� Pn1 ,n2

2 δ z − hc( ) + δ z − L + hc( )[ ],
EI

z4Vn1 ,n2
2

zz4
− ρAω2Vn1 ,n2

2 − mω2Vn1 ,n2
2 δ z − h2( ) + δ z − L + h2( )[ ]

� Qn1 ,n2
2 δ z − hc( ) + δ z − L + hc( )[ ],

(4d)
where ω is the angular frequency, the capital symbols (W and V)
represent the corresponding time-harmonic solutions of Eq. 1,
Pn1 ,n2
i and Qn1,n2

i ,accordingly, are the time-harmonic form of
Eq. 2, which are not repeated here.

2.1.2 Bloch’s Theorem
For free vibration analyses in an infinite periodic lattice, Bloch’s
theorem states that the time-harmonic solution of the equation of
motion can be written as a periodic function with a spatial
modulation [49], that is,

u x( ) � U x( )eik·x, (5)
where k is the Bloch wave vector and U(x) is periodic with respect
to the basis vectors of the lattice, hence satisfies

U x + njaj( ) � U x( ), ∀ n1, n2{ } ∈ Z2 ∀x ∈ R2.

In this case, Eq. 5 leads to the well-known Floquet-Bloch
condition:

u x + n1a1 + n2a2( ) � u x( )eik· n1a1+n2a2( )

� u x( )pn1sn2 ,
(6)

hereinafter, notations p = exp (ik ·a1) and s = exp (ik ·a2) are
adopted for the sake of brevity.

Note that Bloch’s theorem allows the vibration response of an
infinite and periodic structure to be completely described through
the governing equations for a unit cell, with suitable boundary
conditions. The properties at any other location can be related to
those of this very unit cell according to the formula expressed
by Eq. 6.

By employing the Bloch’s theorem, our governing equation
Eq. 4 will turn into:

EIW 4( )
1 − ρAω2W1 −mω2W1 δ z − h1( ) + δ z − L + h1( )[ ]

� P1 δ z − hc( ) + δ z − L + hc( )[ ], (7a)

EIV 4( )
1 − ρAω2V1 −mω2V1 δ z − h1( ) + δ z − L + h1( )[ ]

� Q1 δ z − hc( ) + δ z − L + hc( )[ ], (7b)
EIW 4( )

2 − ρAω2W2 −mω2W2 δ z − h2( ) + δ z − L + h2( )[ ]
� P2 δ z − hc( ) + δ z − L + hc( )[ ], (7c)

EIV 4( )
2 − ρAω2V2 −mω2V2 δ z − h2( ) + δ z − L + h2( )[ ]

� Q2 δ z − hc( ) + δ z − L + hc( )[ ], (7d)
with

P1

Q1
( ) � −ks T 1 + T 2 + T 3( )U 1 + ks ppT 1 + spT 2 + T 3( )U2,

(8a)
P2

Q2
( ) � ks pT 1 + sT 2 + T 3( )U 1 − ks T 1 + T 2 + T 3( )U 2, (8b)

where

Wn1 ,n2
1 � W1p

n1sn2 , Vn1 ,n2
1 � V1p

n1sn2 ,
Wn1 ,n2

2 � W2p
n1sn2 , Vn1 ,n2

2 � V2p
n1sn2 ,

U 1 � W1
V1

( ), U 2 � W2
V2

( )
have been used, the superscript (p) denotes complex conjugation,
and T i � ti◦ti (notation ◦ denotes the outer product of
two vectors) with i = 1, 2, 3. Equations 7,8 can be succinctly
written as:

EIU 4( ) − ρAω2U −mω2HU � ksT U δ z − hc( ) + δ z − L + hc( )[ ],
(9)

with

I � I · 14×4, (10a)
U � W1, V1,W2, V2[ ]T, (10b)

H z( ) �
δ z − h1( ) + δ z − L + h1( ) 0

0 δ z − h2( ) + δ z − L + h2( )( ) ⊗ 12×2,

(10c)
T � − T 1 + T 2 + T 3( ) ppT 1 + spT 2 + T 3( )

pT 1 + sT 2 + T 3( ) − T 1 + T 2 + T 3( )( ), (10d)

where 1n×n is a n-by-n identity matrix, and notation ⊗ denotes the
Kronecker product of twomatrices. It is noteworthy that Eq. 9 is a
fourth order differential equation with respect to z, while the
unknown U itself is composed of the transverse displacements of
the beam in the Oxy plane.

2.1.3 Eigenvalue Problem
In order to obtain the eigenvalue problem associated with the free
vibration problem presented above, we use Galerkin method and
the superposition of modes [50] to deal with Eq. 9, in which the
time-harmonic Bloch solutions can be expressed as:

W1 � ∑N
n�1

ξ1 n( ) ~W n( ), (11a)
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V1 � ∑N
n�1

η1 n( ) ~W n( ), (11b)

W2 � ∑N
n�1

ξ2 n( ) ~W n( ), (11c)

V2 � ∑N
n�1

η2 n( ) ~W n( ), (11d)

where trial functions ~W(n) (n � 1, 2, . . . , N) are taken to be the
normalized modes shapes of an individual free-free EB beam,
expressed as Eqs. S.10 and S.16 in Supplementary Material. ξ1(n),
η1(n), ξ2(n), η2(n) are the corresponding superposition coefficients,
constituting the eigenvector to be solved in the following. N is the
number of truncation order of the trial function been adopted.
Substituting Eq. 11 into Eq. 9, followed by taking inner product
with every term of the set of the trial functions, and using the
orthogonality conditions [detailed as Eq. S.18 in Supplementary
Material], one can obtain:

Ωψ − ω2ψ −mω2Hψ � Sψ, (12)
where, ψ denotes the eigenvector, formed by the assembly of
unknown coefficients in Eq. 11, i.e.,

ψ � ξ1 1( ), ξ1 2( ), . . . , ξ1 N( ), η1 1( ), η1 2( ), . . . , η1 N( ), ξ2 1( ),[
ξ2 2( ), . . . , ξ2 N( ), η2 1( ), η2 2( ), . . . , η2 N( )]T,

and, accordingly,

Ω � 14×4 ⊗ W, (13a)
H � 12×2 ⊗ Uh1◦Uh1 + UL−h1◦UL−h1( ) 0

0 12×2 ⊗ Uh2◦Uh2 + UL−h2◦UL−h2( )( ),
(13b)

S � ksT ⊗ Uhc◦Uhc( ) + UL−hc◦UL−hc( )[ ], (13c)
in which,

W �

ω2
0 1( ) 0 . . . 0

0 ω2
0 2( )

..

.

..

.
1 0

0 . . . 0 ω2
0 N( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (13d)

with ω0(n) (n = 1, 2, . . . , N) being the nth order natural
angular frequency of the free-free EB beam, corresponding
to the normalized natural modes ~W(n). Uh is a vector
formed by the value of each order normalized eigenmode at
z = h, that is,

Uh � ~W 1( ) h( ), ~W 2( ) h( ), . . . , ~W N( ) h( )[ ]T, (13e)
and the matrix T , defined in Eq. 10, is given by:

T �

−3
2

0
1
4

e−ik·a1 + e−ik·a2( ) + 1 −
�
3

√
4

e−ik·a1 − e−ik·a2( )
0 −3

2
−

�
3

√
4

e−ik·a1 − e−ik·a2( ) 3
4

e−ik·a1 + e−ik·a2( )
1
4

eik·a1 + eik·a2( ) + 1 −
�
3

√
4

eik·a1 − eik·a2( ) −3
2

0

−
�
3

√
4

eik·a1 − eik·a2( ) 3
4

eik·a1 + eik·a2( ) 0 −3
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Eq. 12 is equivalent to the well-known generalized eigenvalue
problem:

Kψ � ΛMψ, (14)
with K = Ω − S, M � 14N×4N +mH and Λ = ω2. Note that the
Hermitian property of the matrix T (and so that K) ensures that
Eq. 14 has real eigenvalues. Consequently, solutions of Eq. 14
unequivocally yield the eigenfrequencies and eigenmodes of our
infinite honeycomb lattice based on the theoretical model, which
will be detailed in the next section.

2.2 Finite Element Model
2.2.1 Irreducible Brillouin Zone
In general, to obtain the band structures, we have to sweep every
wave vector k in the first Brillouin zone (BZ) of the reciprocal
space, spanned by the basis vectors expressed as:

b1 � 2π
a2 × a3

a1 · a2 × a3( ), (15a)

b2 � 2π
a3 × a1

a1 · a2 × a3( ), (15b)

where a1 � [3a/2,− �
3

√
a/2, 0] and a2 � [3a/2, �

3
√

a/2, 0] are two
basis vectors defining the periodicity of the honeycomb lattice,
a3 = [0, 0, 1] is assumed to be the unit vector ez. Thanks to the
symmetry of our hexagonal lattice, the band structure can be
calculated by considering only the wave vectors along the
boundaries of the first irreducible Brillouin zone (IBZ) (see the
inset of Figure 2), whose edges can be expressed as:

Γ � 0 × b1 + 0 × b2, (16a)
M � 1

2
× b1 + 1

2
× b2, (16b)

FIGURE 2 | Band structures of the honeycomb lattice arranged with
unperturbed unit cells with all the nuts being fastened at the same height on
the beams, obtained by theoretical model and FEM, exhibit two degenerate
Dirac points at frequencies around 400Hz and 1,100 Hz. The inset
shows the IBZ (the cyan area) together with reciprocal basis vectors b1 and b2.
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K � 1
3
× b1 + 2

3
× b2. (16c)

Following the ideas of the theoretical method proposed in Sec.
2.1, solutions of displacement fields of the two beams within one
unit cell are all expanded by the trial function truncated to order
N [i.e., Eq. 11]. Then for each point along Γ-K-M-Γ, the
eigenvalue problem Eq. 14 need to be solved to obtain the
corresponding natural angular frequency ω and eigenvector ψ.

2.2.2 Finite Element Analysis
In this study, we perform finite-element simulations for the elastic
waves in the honeycomb lattice structures using COMSOL
Multiphysics with the solid mechanics module. The solid
honeycomb lattice model is established, shown as in
Figure 1A, where the material of two circular columns and
nuts is selected as aluminum (Eal = 70 GPa, ρal = 2,700 kg/m3

and ]al = 0.33) and that of slender connecting rods is nylon (Eny =
2 GPa, ρny = 1,150 kg/m3 and ]ny = 0.4). Throughout this paper,
the diameter of the slender rods is set to be d = 0.4 cm, and that for
the circular columns is D = 2 cm. The nuts denoted by oblate
columns have a diameter of 2D and a height of hn = 1.5 cm. All
other parameters needed in modeling can be found in Table 1.
We calculate the band structure of the infinite and periodic
honeycomb structure using a single unit cell, wherein the
Floquet-Bloch periodic boundary condition is applied in both
the a1 and a2 directions. The eigenfrequency study is performed
for every wave vector k scanned along the boundaries of the IBZ
whose edges are expressed as Eq. 16.

3 RESULTS AND DISCUSSION

3.1 Multiple Dirac Points
We first consider a periodic honeycomb structure in which the
nuts on the left and right beams are fastened at the same height,
i.e., h1 = h2 = h0, with h0/L = 0.25, where L is the length of the
beam. Other unknown parameters are listed in Table 1. Note that
the cross-sectional moment of inertia of the beam I = πD4/64, the
equivalent stiffness of the connecting spring ks = Enyπd

2/[4 (a −
D)] and the equivalent lumpedmassm = ρalπ[(2D)

2 −D2]hn/4 are
all obtained corresponding to the parameters adopted in the finite
element model.

Figure 2 demonstrates the band structure of the initial unit cell
with h1 = h2 = h0, obtained by theoretical method based on the
equivalent beam-spring model and FEM. Despite some slight
differences, which was caused by neglecting the bending action of
slender rods in the equivalent beam-spring model, the theoretical
results and FEM both show two Dirac degeneracy points at
frequencies around 400 and 1,100 Hz at K point. It is worth
noting that the emergency of DPs is ensured by C3v symmetry of
the underlying lattice [48], while the multiplicity of DPs is
attributed to the multimode characteristic of transverse free
vibration of beams (referring to the mode shapes displayed in
Figure 5). Since that the emergency of DP is the prerequisite for
engineering valley Hall phases [51], one can expect to achieve
topological states within the dual working frequency ranges by
simultaneously gaping the two DPs aforementioned. This will be
detailed below.

3.2 Mirror Symmetry Breaking and
Topological Phase Transition
It has been widely recognized that the Dirac degeneracy can be
lifted by breaking spatial symmetries [48], which provide simple
ways to achieve topological order. In this study, we break the
mirror symmetry of the primitive lattice by adjusting the
fastening heights of nuts such that h1 is no longer equal to h2.
We define the strength of perturbation as:

β � h1 − h0
L

� h0 − h2
L

, (17)

where h0 is the initial height of the nuts fastened on both the left
and right beams. Note that h1 and h2 deviate from the
unperturbed value h0 with the same perturbation strength but
opposite sign. In this case, two different symmetry-invariant
configurations of the perturbed unit cell, shown as Cell A (β >
0) and Cell B (β < 0) in Figure 3, are created by breaking the
mirror symmetry in two opposite ways.

Figure 4A demonstrates the band structures of the
honeycomb lattice arranged with unit cells of type-A (with β =
0.076), obtained by both the theoretical method and FEM. We
can notice that the splittings of the two DPs occur and two
complete bandgaps (indicated by cyan and gray region) emerge at
frequencies around 400 Hz and 1,050 Hz. The consistency of

TABLE 1 | Parameters to be used for modeling and dispersion diagram analysis.

[1 pt] parameter Value Description

L 30 cm length of beams
a 10 cm hexagonal lattice constant
hc 1.8 cm height of connecting springs
I 7.854 × 10−9 m4 cross-sectional moment of inertia of beams
ks 2.618 × 105 N/m equivalent stiffness of spring
m 0.0382 kg equivalent lumped mass
E 70 × 109 Pa Young’s modulus of beams
ρ 2,700 kg/m3 density of beams
N 20 the highest order of eigenmodes been adopted
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FIGURE 3 | Top view of the supercell formed by connecting 7 type-A unit cells (h1> h2) and 7 type-B unit cells (h1< h2) on both sides of the interface (the thick gray
line) (Throughout this paper, we use colors red and green to distinguish layouts of the two nuts fastened on the two columns within a unit cell.) The inset gives the direction
of the wave vector kp along which the projected band structure of the supercell would be calculated.

FIGURE 4 | (A)Band structures of the honeycomb lattice arranged with unit cells of type A (with β =0.076), obtained by theoretical model and FEM, exhibit splittings
of the Dirac points and two complete bandgaps at frequencies around 400 and 1,050 Hz. The red (K−

1 , K
−
2) and green dots (K+

1, K
+
2) represent lower and upper bounding

frequencies of the bandgap, respectively, for FEM results. The inset shows the evolution of widths of the first (cyan) and second bandgap (gray) opened due to the
symmetry breaking as a function of β, obtained from theoretical model (B) The combined Berry curvature associated to the first bandgap (bottom panel) and the
second bandgap (top panel), calculated from theoretical model and FEM.
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bandgap widths shows again that the theoretical model is in good
agreement with FEM.

Interestingly, we find that the two bandgap widths show
dramatically different trends with the adjustment height of the
nuts (i.e., with different values of β). The inset of Figure 4A
displays the evolution of bandgap widths as functions of β,
wherein Δf quantifies the frequency difference between
K+

1(K+
2 ) and K−

1(K−
2 ). It clearly indicates that the width of the

first bandgap changes linearly with the change of β, while that of
the second bandgap seemingly changes quadratically.
Nevertheless, there exists an intersection between the two
curves (with β of about 0.076 and Δf of about 41.5 Hz), which
corresponds to the optimal point at which the two bandgaps have
nearly the same size. The band structures presented in Figure 4A
are just obtained upon this optimal point.

We emphasize that this provides an accessible way to tune the
bandgaps (namely, the operating frequency ranges of the
topological states shown in the following text). Specifically, if
we adjust the fastening heights of the nuts such that the
perturbation strength β is larger than 0.076, then the lower
frequency bandgap is dominant; while for β smaller than
0.076, the higher frequency bandgap dominates.

By analogy with the valley in quantum systems [26], two pairs
of states of two band extreme at K point called as valley states
appear near the two lifted DPs respectively, denoted by K+

1(K+
2 )

and K−
1(K−

2 ) marked in Figure 4A. In order to investigate the
valley states in the honeycomb structures and to gain the full
knowledge of the topological properties related to them, we
demonstrate the evolution of bounding frequencies of the two
gaps with β varying from −0.12 to 0.12 along with the modal
shapes associated with the valley states for β = ±0.076, as shown in
Figure 5. Both for the lower and higher bandgap, it is clearly
shown that the two bands will cross each other when β transits
from positive to negative, with degeneracies occurring when β =
0, which corresponds to the initial unperturbed unit cell. When β
changes its sign (i.e., from unit cell of type A to B or vice versa),
both the two bandgaps experience an opening-closing-reopening
process, accompanied by the well-known band inversion
phenomena [28], manifested as up and down exchange of
eigenmodes corresponding to the valley states K+

1(K+
2 ) and

K−
1(K−

2 ). Specifically, one can notice that, for β > 0 (Cell A),
the eigenmodes for the upper (lower) band feature left-hand
(right-hand) circularly polarized mode of the left (right) circular
column entity; while for β > 0 (Cell B), the eigenmodes for the
upper (lower) band feature right-hand (left-hand) circularly
polarized mode of the right (left) circular column entity. This
symmetry-breaking induced band-inversion phenomena
evidently suggests that the topological phase transition occurs
when β varies from positive to negative.

In addition, topological phase transition with the sign of β
flipping can be quantitatively inferred by the valley Chern
number, which is an index to characterize the topological
nature of the band [27, 33] and obtained by integrating the
Berry curvature over an individual valley, expressed as:

C v( ) � 1
2π

∫∫
BZ v( )

F k1, k2( )dk1dk2, (18)

where, v = K(K′) is the BZ corner, the integration domain BZ(v) is
a local area near the point v, and F denotes the Berry curvature
associated with the bands forming the valley v. It has been shown
that by means of k ·p perturbation method [19], the non-
vanishing valley Chern numbers are related to the sign of
geometrical perturbation β, that is,

C K,K′( ) � ±
sgn β( )

2
, (19)

where sgn(β) means the sign of β, herein depends on the relative
fastening height of the nuts on the left (h1) and right (h2) beam.
Due to the fact that the two types of unit cell possess the opposite
sign of β (see Figure 3), one can immediately realize that the
valley Chern numbers of them also have opposite signs,
representing two distinct valley Hall phases. For the sake of
verification, we calculate the Berry curvature around valleys by
the numerical method [14], using the eigenvectors stemming
from the theoretical model and Bloch eigenmodes from FEM,
respectively. For β = 0.076, the combined Berry curvatures
associated with both the two bands above the two bandgaps
are shown in Figure 4B (calculation details are presented in
Supplementary Material). For both the results from our
theoretical model and FEM, the integral of the Berry curvature
over the full BZ is precisely zero with the total Chern number C =
0, which is ensured by time-reversal symmetry [3]. For both lower
and higher frequency bands, the associated Berry curvatures are
prominently localized near valleys K and K′, and feature exactly
the same amplitude but opposite signs with respect to K and K′.
By integrating these Berry curvatures (taking the results from
FEM as an example), we obtain the valley Chern numbers CK(K′) =
+(−)0.37 (lower bands) and CK(K′) = +(−)0.29 (higher bands).
Recalling that, endowed with ± β, the two types of unit cell are
symmetry-invariant, implying that K(K′) for type-A unit cell is
just equivalent to K′(K) for type-B. Therefore, if CK = +0.37
(+0.29) characterizes the topological properties associated to the
first (second) bandgap for type-A unit cell, then CK′ = −0.37
(−0.29) corresponds to type-B unit cell. In spite of apparent
discrepancy between numerical valley Chern numbers and the
theoretical predictions (±1/2), the different signs, + and −, clearly
distinguish different valley Hall phases.

It is worth emphasizing that, although we only care about
type-A unit cell above, the type-B unit cell with opposite value of
perturbation strength (β = −0.076) has exactly the same
dispersion diagram as that of A, though band inversion is
implied with the eigenmodes associated with the
corresponding valley states flipped [27], which echoes the
opposite valley Chern numbers aforementioned. Therefore,
topological phase transition occurs when we cross the domain
wall between lattices formed by type-A and type-B unit cells, and
according to the bulk-edge correspondence [1], topological states
are bound to appear in the two bandgaps shared in common by
these two lattices.

3.3 Interface Modes
To verify the existence of elastic valley Hall interface states, we
consider a strip supercell composed of 14 unit cells with different
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topological valley Hall phases at either side of the interface, as
shown in Figure 3. Note that the supercell is arranged
periodically along the a1 direction, with periodicity

�
3

√
a, and

has finite size along the a2 direction. Therefore, the wave vector kp
along which the projected band structure of the supercell shall be

calculated can be restricted to −π/( �
3

√
a)≤ kp ≤ π/( �

3
√

a), in the
direction of a1 � [3a/2,− �

3
√

a/2, 0]. During the numerical
calculation process, the Floquet-Bloch boundary conditions are
in the a1 direction, while the upper-right and lower-left edges are
set free.

FIGURE 5 | (A) Evolution of bounding frequenciesK−
1 (red line) andK+

1 (green line) of the first bandgap atK (see Figure 4A) as a function of β. The insets showing the
displacement fields and modal polarization associated with eigenmodes of K−

1 and K+
1 states for β =±0.076 reveal the band inversion and thus manifest the topological

phase transition as β varies from positive to negative. Note that the bandgap is filled with different colors to identify different topological phases (B) The same as (A), but
the phase transition at frequency around the second DP is revealed.

FIGURE 6 | (A) Band structure of the supercell consisting of two distinct topological phases (shown as Figure 3, with β =±0.076). Colour indicates the degree of
interface confinement of the eigenmodes, defined by the ratio α in Eq. 20. The enlarged band diagram clearly shows perfectly pure interface modes (i.e., no other modes
coexist) spanning the two bandgaps, highlighted by red dots (B) Displacement fields of the interface modes at two frequency ranges indicated by black arrows, together
with those of the bulk modes.
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The corresponding band structure of the strip supercell is
presented in Figure 6A, wherein the color bar indicates the
degree of localization of the mode at the interface by making a
ratio α between the average displacement nearby the interface and
in the whole supercell, defined as:

α �
∫∫∫

I2

����������
u2
x + u2

y + u2
z

√
dV

∫∫∫
SC

����������
u2
x + u2

y + u2
z

√
dV

, (20)

where I2 represents two unit cells on each side of the interface, SC
means the whole supercell, and ux, uy, uz are three displacement
components in x, y, and z axis, respectively. Notably, α would be
close to 1 (red) for modes localized near the interface and much
less than 1 or near 0 (blue) for bulk modes.

From the enlarged view of the band structure, we can find that
the interface modes (denoted by the red dots) appear
simultaneously in the overlapping bulk bandgaps discussed
above, with working frequencies around 400Hz and
1,050 Hz. It is worth noting that the interface modes
spanning the two bandgaps are perfectly pure, namely, no
other modes coexist at the same frequency ranges. This
extraordinary feature, as one of the essential points of this

paper, has rarely been reported and can hardly been realized in
the existing topological elastic structures wherein modal
hybridization is ubiquitous and unavoidable [2].

In order to demonstrate the localized properties of the
interface modes, we plot the displacement fields for some
typical eigenmodes evaluated at four frequencies indicated by
the black arrows, as shown in Figure 6B. It can be seen clearly
that, for the interface mode, either in low-frequency or high-
frequency range, only beams close to the interface have a strong
vibration, while all the beams of the supercell have considerable
displacement amplitude for the bulk mode. What’s more, it is
worth observing that both the low-frequency and high-frequency
interface modes are gapless, signifying that two bandgaps resulted
from the splittings of DPs (see Sec. 3.2) are just the expected
operating frequency ranges of the topological elastic waves.

3.4 Topologically Protected Interface States
at Multi-Working Frequencies
To gain further insight into the topological interface states
observed in the previous section, we construct a typical
configuration with zigzag waveguide (shown as the top-left
panel of Figure 7) to carry the numerical simulation of

FIGURE 7 | A topological configuration with a zigzag interface separated by lattices A and B (top-left panel), in which the black star indicates the excitation point.
Displacement fields of interface states within low-frequency range (bottom-left panel) and high-frequency range (bottom-right panel), excited with frequency 415 Hz and
1,088 Hz, respectively. Displacement field of bulk states (top-right panel) is also shown for comparison, excited with frequency 350 Hz.
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topological elastic wave propagation property. Simulations are
carried by the frequency domain study of solid mechanics in the
COMSOL. During the simulation, tips of the two beams located
near the black star are subjected to a horizontal harmonic
displacement excitation with some specified frequency, while
other beams and nuts, including those on the boundaries, are
all set free. The displacement fields, indicating the dynamic
response, are drawn to reveal the characteristics of the wave
propagation at this very frequency.

The contours of displacement fields of dynamic responses
correspond to the excitation frequencies 415 Hz and 1,088 Hz are
displayed in the bottom-left and bottom-right panels of Figure 7,
respectively. As we can see, for both lower and higher frequencies,
elastic waves are localized and can pass the zigzag interface
without any hindrance. This is exactly what we expected since
the two excitation frequencies are both located in the bandgaps in
which the valley Hall interface modes occupy, as we
demonstrated in Sec. 3.3. For comparison, we map the
dynamic response displacement field for excitation frequency
350 Hz, corresponding to the bulk band, as displayed in the top-
right panel of Figure 7. Unlike the former cases in which
displacement fields are concentrated near the interface, for the
bulk band frequency, the structure experiences almost a full-field
dynamic response. These results are in complete agreement with
the previous dispersion analysis, and provide strong evidence that
our proposed structure supports topological elastic wave
propagation with multi-working frequencies.

4 CONCLUSION

This study present a strategy to design elastic structures
exhibiting pure topological states over multi-frequency ranges.
We proposed an equivalent beam-spring model with lumped
masses for investigating dispersion relations of the designed
structures, together with numerical simulations using FEM for
verification. The band structures for the initial unit cell obtained
by these two ways, agreeing well with each other, document two
Dirac points at different frequencies. The emergence of these
deterministic Dirac points is ensured by the C3v symmetry of the
underlying lattice and the multiplicity is attributed to the nature
of multi-order natural modes of the EB beams consisting our
structures. We demonstrated that simply adjusting the heights of
nuts fastened on beams can lift the degeneracies, resulting in
distinct valley Hall phases characterized by opposite valley Chern
numbers. The dispersion analysis of the supercell formed by unit
cells featuring different topological phases indicated that there
simultaneously exist perfectly pure interface modes (i.e., no other
modes coexist) within two frequency ranges. These multiband

pure topological states are strongly confirmed by numerical
simulations. It is worth noting that the purity and the
multiplicity of topological states hosted by our elastic
structure just right correspond to the merit of discrete
lattices and that of continuous systems, respectively. In
addition, we pointed out that adjusting the heights of
fastening nuts can not only trigger the topological phase
transition but also provide an accessible way to tune the
operating bandgaps for topological states, although we only
focused on the scenario that the two frequency ranges of interest
are roughly equal in this paper.

Our proposed strategy open new possibilities of managing
multiple elastic wave modes and is undoubtedly promising for
multiband applications, e.g., multiband filters and multiband
waveguide. Besides, composed of ubiquitous mechanical
elements, our proposed structure would be amenable to
physical implementation, hence we envisage that this
architecture can be exploited in practice as an excellent and
versatile platform to explore other intriguing wave propagation
phenomena brought about by richer topological notions.
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