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Structures with multiple deformation paths provide a promising platform for robotics and
reprogrammable mechanical and thermal deformation materials. Reconfigurations with a
multi-path can fulfill many tasks (e.g., walking and grasping) and possess multiple
properties (e.g., targeted Poisson’s ratio and thermal expansion coefficient). Here, we
proposed a new ring-like kirigami structure and theoretically and experimentally found that
for a basic unit, there are four discrete deformation patterns and a continuous shearing
deformation pattern; thus, there are a large number of discrete deformation patterns for a
multi-unit combination with geometrical compatibility coupled with a shearing deformation
mode. Moreover, targeted Poisson’s ratios (either + or -) in the x- and y-directions can be
realized by inversely designing the geometrical parameters for a certain deformation path.
Additionally, we showed the capability of constructing 2D and 3D cellular structures in
various patterns with the proposed ring-like units. The multiple deformation modes
demonstrated here open up avenues to design new reprogrammable materials and
robots across various scales.
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INTRODUCTION

Material deformation can provide motion, function, and power for diverse applications. For robotics,
the deformation of a material enables the realization of gripping motions, walking motions, sensing
capabilities, and muscle-like actuating forces [1–3]. Material deformation also provides a platform to
realize a negative Poisson’s ratio [4], negative thermal expansion [5], negative compressibility [6],
and negative stiffness [7–9]. The design of multiple deformation modes provides a flexible way to
create mechanical metamaterial switching between soft and stiff states [10], the mechanical
properties of which depend more on their own architectures but less on molecular or chemical
compositions [11]. These metamaterials have been studied for their potential applications in
vibration isolation [12–15], biomedical devices [16], protective systems [17], energy absorption
[18, 19], and wave attenuation [20]. Recently, origami has been used to create deployable mechanical
metamaterials with unusual “negative” properties coded in the inherent architecture [21–30]. For
example, negative Poisson’s ratio and negative stiffness are easily realized in a reentrant origami-
based structure [31] compared to traditional design methods.

Generally, materials with a positive Poisson’s ratio undergo a transverse contraction when
stretched, while materials with a negative Poisson’s ratio experience a transverse expansion when
stretched [32]. Although the deformation mechanism of mechanical metamaterials with either
positive and negative Poisson’s ratios has been investigated in previous studies [7, 10, 17, 20, 22,
31–33], critical aspects have been overlooked: 1) whether any combinations of Poisson’s ratio can be
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realized in different directions, 2) how the targeted Poisson’s
ratios are structurally realized, and 3) how the number of
deformation patterns of a cellular structure increases with the
configurations of unit cells in different deformation paths. This
mechanism may result in more applications. For example, in a
recent study, we found that there is a relation between Poisson’s
ratio and the thermal expansion coefficient in kirigami-based
materials [34]; thus if any combinations of Poisson’s ratio can be
realized, then that of the thermal expansion coefficient can be
realized in a designed material. Also, this auxetic design has some
merit for the biomedical application. When the structure is used
as implant in the intervertebral disc, the uniaxial compression
would not cause a cross-section expansion, and thus, it would not
squeeze the surrounding tissues and can avoid aching.

Here, our proposed ring-like kirigami structure can be easily
transformed into a concave shape in one direction for a negative
Poisson’s ratio and a convex shape in another direction for a
positive Poisson’s ratio. Compared to the origami-based designs
[35, 36], our kirigami-based design enables us to
straightforwardly generate a convex and concave pattern for
the same structural unit. In this way, we can obtain any
combinations of Poisson’s ratios along two orthometric
directions in the 2D Poisson’s ratio space due to the different
planar design angles and deformation modes in the two
directions. In this sense, the Poisson’s ratios can be
independently tuned and inversely designed [37]. Additionally,
in theory and experiment, we find that a basic ring-like unit has
four discrete deformation patterns and a continuous shearing
deformation pattern, and a structure with four basic units has 16
discrete deformation patterns. Furthermore, additional potential
deformation patterns can be realized by plenty of multi-unit
combinations (with 8, 16, or 32 . . . basic units). Finally, we
showed that a 3D cellular structure with multiple deformation
modes can be built by stacking 2D cellular structures layer
by layer.

MATERIALS AND METHODS

Unit Design
Here, we designed a ring-like unit cell with multiple deformation
modes. In Figure 1A, the ring-like unit cell comprises four “z”-
shaped structures (also in the gray frame in Figure 1C), which are
folded with mountain (solid line) and valley (dashed line) creases
and formed into 3D configurations from the 2D patterns by
taping the edges (see purple edges in Figure 1A and see also
Supplementary Figure S1), where the opposite “z”-shaped
structures are centrosymmetric. γ1 and γ2 are important
planar design angles on the facets of the opposite “z”-shaped
structures, as shown in Figure 1A. For a regular unit, the “z”-
shaped structure with γ1 is perpendicular to that with γ2, that is,
β � 90°. The length parameters m, n, and q are identical for the
four “z”-shaped structures (in this study, m � n � 2q), and only
the angle parameters γ1 and γ2 are different. Deformation angles
θ1 and θ2 are defined as the dihedral angles between two facets,
corresponding to the “z”-shaped structures with γ1 and γ2,
respectively (Figure 1B top, pink, and blue dihedrals). Based

on the requirement of geometrical compatibility (the same height
in z-direction), there is a relation between θ1 and θ2 (Figure 1B
bottom; see Eq. 11). The panels of the kirigami structure are
assumed to be rigid. The Miura origami is a specific case of our
kirigami design, which is shown in Section 8 of SI.

Sample Fabrication
The ring-like unit samples were fabricated using the Strathmore
500 Series 3-ply Bristol card stock that was laser cut based on a
design pattern generated using Mathematica 11.2. The edges of

FIGURE 1 | Ring-like unit design. (A) Ring-like unit comprising four “z”-
shaped structures with their 2D folding patterns and lengths (m, n, and q) and
their angle parameters (γ1 and γ2). (B) Definition of the deformation angles θ1
and θ2 and their relations (in deformation paths, ① → ② → ③ and
④ → ⑤ → ⑥) for γ1 < γ2 and γ1 � γ2. (C) Structural configurations ① ~ ⑥.
(D) Nominal strains Δx

x0
(blue lines) and Δy

y0
(red lines) as functions of the

deformation angle θ1 with γ1 � γ2 � 60° (nonsolid lines, including blue dashed
and red dot–dashed lines) and γ1 � 45° and γ2 � 60° (solid lines). Inset,
nominal strains Δz

z0
as a function of θ1. For all units here, β � 90°.
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the given panels were glued to be connected (Figure 1A) to build
3D units for flexible foldability. See SI Section 6 for details.

Calculation Methods
The calculation methods for the sizes of a ring-like unit and four-
unit combination comprising four ring-like units and the design
method for targeted Poisson’s ratios are given in SI Sections 1–4.

Sample Size Measurement
The top box, camera, and bottom box were connected and moved
together with the test head under the control of a universal testing
machine. The sample was put on a motionless substrate. When
the bottom box touched the sample, it was deformed and
captured using a camera. Then, the binary images of the
sample at different times were obtained, and the sample in
each image was enclosed within a minimum enclosed
rectangle, and then, the x- and y-sizes were obtained. Finally,
the real size of the sample was obtained by using a conversion
factor of 0.4167 mm/pixel. The experimental setup is shown in
Figure 3F.

RESULTS AND DISCUSSION

Here, we used Mathematica 11.2 software to simulate the
deformation using geometrical relation equations (see SI) to

obtain the vertex coordinates and then the facets of the
structures at different deformation angles.

Unit Cell Deformation
Once θ1 is fixed, the height in the z-direction of the whole ring-
like structure is determined, and then, θ2 is determined. With
different initial settings of θ1 � θ2 � 0 and θ1 � 360° − θ2 � 0,
there are two deformation paths, that is, ① → ② → ③ and
④ → ⑤ → ⑥, in the θ1 − θ2 space (see Figure 1B for the plot
and Figure 1C for the configurations of① ~ ⑥). For γ1 < γ2, the
two paths are disconnected. However, for γ1 � γ2, the two paths
are connected at point O, and points② and⑤ overlap, resulting
in the connected “X”-shaped paths (Figure 1B plot). Figure 1C
shows the discrete configuration examples① ~ ⑥ of a unit with
γ1 < γ2 and γ1 � γ2 and the convex (θ2 < 180°) and concave
(θ1 > 180°) parts in a unit cell. Figures 1B,C show that these
discrete configurations are realized by continuously changing θ1.
In fact, for γ1 < γ2, configuration ② can be switched to ⑤ with
panel bending, and vice versa. Here, we study only the case of
γ1 ≤ γ2, as the case of γ1 ≥ γ2 can be known by swapping the
current γ1 and γ2, which means that the unit is rotated by 90°. See
SI Sections 1 and 2 for the detailed geometric model.

Here, the ring-like units possess various deformation
behaviors in the x- and y-directions. Figure 1D shows the
isotropic deformations for γ1 � γ2 � 60° along paths ① → ②

and ⑤ → ⑥, where the nominal x- and y-strains are equal

FIGURE 2 | Shearing deformation modes of the ring-like unit. Configurations of the ring-like unit with (A) β � 70°, (B) 90°, and (C) 110°. (D) Overlapped
configurations of (A–C). The dimensionless size, (E) x/n and (F) y/n, as functions of the deformation angle θ1 with (A) β � 70°, (B) 90°, and (C) 110°. Here, γ1 �
45° andγ2 � 60°.
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(Δxx0 �
Δy
y0
, see the overlapped blue and red nonsolid lines, where

the nonsolid lines are pertaining to γ1 � γ2 � 60°, and the solid
lines are pertaining to γ1 � 45° and γ2 � 60°), and the
anisotropic deformations (Δxx0 ≠

Δy
y0
) for γ1 � γ2 � 60° along

paths ② → ③ and ④ → ⑤ and for γ1 � 45° and γ2 � 60°
along all paths. The nominal z-strain is always symmetrical
about θ1 � 180° (see Figure 1D inset). Here, the nominal strain
is defined as Δs

s0
� s

s0
− 1, where s � x, y, z denotes the dimension

and s0 � s|θ1�180° denotes the initial dimension. Figure 1D
implies that we may obtain arbitrary combinations of
different Poisson’s ratios along the x- and y-directions. The
relations between the nominal z-strain and the nominal x- and
y-strains are shown in Supplementary Figure S3, which is a
variant of Figure 1D.

There are two degrees of freedom (DOFs) of the ring-like unit,
that is, θ1 and β. To explain the two DOFs, Figures 2a and c show
that the ring-like unit can be skewed by β ≠ 90° with fixed θ1
compared to that with β � 90° (Figure 2B), with the opposite “z”-
shaped structures remain parallel. We defined the dimensions of
the units by aligning the AB side in the y-direction, as shown in
Figure 2A, and found that with the continuous change of β, the
ring-like unit shows a continuous shearing deformation mode.
The size changes in the x- and y-directions under different values
of β are shown in Figures 2E, F, respectively. This shows that θ1
controls the opening and closing mode of the structure, while β
controls the shearing mode.

To demonstrate the analytical geometrical model with
experimental data, we compressed a paper-made ring-like unit

FIGURE 3 | Experimental verification. Dimensions of a unit with γ1 � 45°, γ2 � 60°, and β � 90° under compression in the z-direction for four patterns: (A)①, (B)③,
(C) ④, and (D) ⑥ (curves, analytical model; points, measured data). (E) γ1 and γ2 in the binary image and structural model. (F) Experimental setup.
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(Figure 3) in the z-direction using a universal testing machine.
Here, the unit with γ1 � 45° and γ2 � 60° is programmed into
four discrete patterns (①, ③, ④, and⑥ corresponding to
Figure 1C; the sample cannot stay at θ1 � 180°,
i.e., transitional patterns ② and ⑤) and compressed in the
z-direction. From the top, a camera is used to obtain a video
of the unit deformation process to calculate the x- and
y-dimensions (see Figure 3F for the experimental setup and
Supplementary Videos S1–4). The measured x- and
y-dimensions are shown in Figures 3A–D and compared to
the analytical curves. When the unit is shrunk in a given
direction under compression, the scraping and friction
between the unit and substrate become apparent; thus, the
measured dimensions oscillate around the analytical values
(see Figures 3B–D). Figure 3E is used to show the sample
layout direction compared with the model. The results of the
model and experiment agree with each other well. The
experimental setup is shown in Figure 3F.

Inverse Design for the Desired Poisson’s
Ratio
After validating the analytical model, we focused on the inverse
design of a unit with β � 90° for targeted Poisson’s ratios as the x-
and y-dimensions can be clearly defined with β � 90° (see
Figure 2B). Poisson’s ratios in the x- and y-directions under
compression in the z-direction are calculated by ]zx � −dx/x

dz/z and
]zy � −dy/y

dz/z [31] based on the definition in Figure 1B. Even with
γ1 � γ2, the ring-like unit shows various Poisson’s ratios in
different paths. In Figure 4A, with γ1 � γ2 � 60° for
deformation path ① → ②, we have ]zx > 0 and ]zy > 0; for
② → ③, ]zx < 0 and ]zy > 0; for ④ → ⑤, ]zx > 0 and ]zy < 0;
and for ⑤ → ⑥, ]zx < 0 and ]zy < 0. Therefore, we can expect
more various Poisson’s ratios of a unit cell with γ1 ≠ γ2. Taking
γ2 � 60° as example, we plotted Poisson’s ratio curves (]zx − ]zy
relations) with γ1 � 60°, 59°, and 55° for paths ① → ②,
② → ③, ④ → ⑤, and ⑤ → ⑥ as shown in Figure 4B. If
we plot the ]zx − ]zy curves within γ1 ≤ γ2 � 60°, the curves

FIGURE 4 |Optimal design for the targeted Poisson’s ratios in the x- and y-directions. (A) Poisson’s ratios along different deformation paths with γ1 � γ2 � 60°. (B)
With γ1 < γ2 � 60°, the region in the 2D Poisson’s ratio space where the curve (]zx , ]zy ) can reach are plotted. Pink region, deformation from ① → ②; green region,
② → ③; blue region, ④ → ⑤; and yellow region, ⑤ → ⑥. (C) Optimal design for selected Poisson’s ratios (]x , ]y) � (0.2, 0.05), (0.05, 0.2), (0.2, −0.05),
(−0.2, −0.05), (−0.05, −0.2), and (−0.2, 0.05) at points I, I′, II, III, III′, and IV in the Poisson’s ratio space, respectively, and the corresponding optimal parameters
(red points) in the design space. (D) Searching for the optimal parameters in the design space with γ2 � 60°. Top: contour plots of δ; bottom, configurations. For I,
θ1 � 106.8°, θ2 � 84°, γ1 � 46.2°, and γ2 � 60°. For I′, θ2 � 106.8°, θ1 � 84°, γ2 � 46.2°, and γ1 � 60°. For II, θ1 � 109.3°, θ2 � 290.0°, γ1 � 37.5°, and γ2 � 60°. For
III, θ1 � 248.8°, θ2 � 290.2°, γ1 � 36.9°, and γ2 � 60°. For III′, θ2 � 248.8°, θ1 � 290.2°, γ2 � 36.9°, and γ1 � 60°. For IV, θ1 � 253.6°, θ2 � 83.7°, γ1 � 46.2°, and
γ2 � 60°.
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would fill the regions A (pink), B (blue), C (yellow), and D
(green), which are the half of ]zx − ]zy space (i.e., regions A, B, C,
and D and regions A′, B′, C′, and D′ are symmetric about
]zx � ]zy, see Figure 4B). Also, this does not limit to γ2 � 60°,
which implies that the curves would fill the other half of ]zx − ]zy
space (i.e., regions A’+B’+C’+D′) by swapping the x-size and
y-size (or swapping γ1 and γ2), which means that a unit cell is
rotated by 90°. For example, if the design parameters γ1 � τ and
γ2 � ω obtain the point (]zx, ]zy) � (]τ , ]ω) in the Poisson’s ratio
space, then the point (]zx, ]zy) � (]ω, ]τ) can be obtained by γ1 �
ω and γ2 � τ.

The optimization of the structures for given Poisson’s ratios
in the x- and y-directions can be achieved by minimizing the
error, δ � (]zx − ]x)2 + (]zy − ]y)2, subjected to 0< θ1,
θ2 < 360°, and 0< γ1 ≤ γ2 < 90° (see SI for details), where
(]x, ]y) are the targeted Poisson’s ratios. To test this
method, we chose six points, I, I′, II, III, III′, and IV, in the
Poisson’s ratio space to represent the six targeted pairs of
Poisson’s ratios, as shown in Figure 4C, where points I, II, III,
and IV are four vertices of a rectangle, and I′ and III′ are the
symmetrical points of I and III about ]zx � ]zy. As a result, we
obtainedθ1 � 106.8°, θ2 � 84°, γ1 � 46.2°, and γ2 � 60° for
point I with (]x, ]y) � (0.2, 0.05). At point I′ with
(]x, ]y) � (0.05, 0.2), we have the structure with θ2 � 106.8°,
θ1 � 84°, γ2 � 46.2°, and γ1 � 60°, which is shown as the
structure I′ in Figure 4D. Other optimal design results for
points II, III, III′, and IV are also shown in Figures 4C,D (with
the resulting parameters listed in the caption of Figure 4),
where Figure 4C shows the ]zx − ]zy curves passing through
the six targeted points (left) and the corresponding parameters
in the 3D design space (θ1, γ1, γ2) (right), and Figure 4D
presents the contour plots and minima of δ and the
corresponding structural configurations. Taking
configurations II and IV as examples, the convex and
concave parts result in positive and negative Poisson’s
ratios, respectively, but the specific values are determined
by the design angles γ1 and γ2. This optimization method
provides an effective tool to design a ring-like unit with
targeted Poisson’s ratios, and the minimum value of δ can
be less than 10−12 for each case.

Multiple Deformation Patterns of 2DCellular
Structures
After understanding the deformation mechanism of one ring-
like unit, here we focus on that with multiple units. Four
identical ring-like units can be combined to form a four-unit
combination, which can be periodically replicated to
construct a 2D cellular structure, as shown in Figure 5A
(in the gray shade, the four-unit combination is displayed
with a yellow–pink–yellow–pink pattern because the diagonal
ring-like units are with the same configuration). Although the
four ring-like units are identically designed with γ1 � 45°,

γ2 � 60°, and β � 90°, four deformation patterns of each
ring-like unit (see Figure 1C, ①, ③, ④, and ⑥) make 4 × 4 �
16 discrete patterns for the four-unit combination. Figure 5B
introduces one pattern of four-unit combinations in detail,
and the other 15 patterns are shown in Figure 5C. Figure 5B
shows the relation between the dimensionless sizes xc/n and
yc/n (where xc and yc are defined as the sizes of the four-unit
combination in the x- and y-directions, see also
Supplementary Figure S2 and Eq. (14)). The four-unit
combination is with two ring-like units in pattern ①

(yellow) and the other two in pattern ③ (pink) (see
Figure 5B). Here, the four ring-like units have the same
value of θ1 within 0≤ θ1 ≤ 180° to maintain the same height
in the z-direction, which is necessary given the geometrical
compatibility requirements for building 3D cellular
structures. In the plot of Figure 5B, there is a sharp corner
in the xc/n − yc/n curve since, before the corner (stage 1), the
yellow unit dominates the xc value, and then, the pink unit
dominates the xc value (stage 2). Similar sharp corners, as well
as smooth xc/n − yc/n curves, can be found in the other 15
patterns in Figure 5C. In fact, the 16 patterns can be divided
into four groups based on the pattern of the diagonal ring-like
units in yellow (groups #1, #2, #3, and #4 in Figure 5C, where
the symbol “#a, b” means No. b in group #a), and within each
group, the pattern of the yellow unit remains unchanged.
Some size ranges related to the x- and y-dimensions of the
four-unit combination are identical. For example, in group #2,
the first two plots and last two plots individually have the same
xc range, while the first and fourth plots and the second and
third plots individually have the same yc range. This implies
that different four-unit combinations may be again connected
through the side with identical sizes to create a new unit
(comprising 4n (n = 2, 3, 4, . . . ) basic ring-like units), then the
number of deformation patterns of the resulting structure is
greatly increased. This operation can be recursively
implemented within a group (see the combination of #3.1
and #3.4 in Figure 5D) or across groups (see the combination
of #3.1 and #2.1 in Figure 5D).

The shearing deformation of the 2D cellular structures with
β ≠ 90° compared to the non-shearing case with β � 90° is
shown in Figure 6. Three representatives of the 16 discrete
patterns are chosen, as shown in Figures 6A–C, and the top
edges of the upper-left-most yellow structures are aligned with
the y-direction (Figure 6A). This is to show a rotation-like
effect of the 2D cellular structures with shearing deformations,
although the directions of key sides are fixed. This figure shows
the potential ability to control mechanical waves in the
shearing directions (see the possible shearing forces in
Figure 6B), which is beyond the topic of this work but will
be an interesting further work. The structures in Figure 6
(column 1–3) are shown on the x–y plane, and they can be
stacked in the z-direction layer by layer to build 3D cellular
structures (see Figure 6, column 4).
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FIGURE 5 |Multiple deformation patterns of 2D cellular structures. (A) 2D cellular structures comprising 5 × 5 four-unit combinations. (B) One deformation
pattern of a four-unit combination comprising four ring-like units. (C) Other 15 deformation patterns of the four-unit combination. Each deformation pattern is
represented by a xc/n − yc/n curve. For all units, the value of θ1 is the same, and 0≤ θ1 ≤180°. The 16 patterns can be divided into four groups, shown against
white (group #1), green (group #2), blue (group #3), and orange (group #4) backgrounds. (D) Combination within a group: #3.1 and #3.4; combination
across groups: #3.1 and #2.1.
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Another Method for Building 2D and 3D
Cellular Structures
Finally, we explore another design of cellular structures
consisting of multiple ring-like units with β � 90° (see
Figure 7). Different from the manner in Figure 6, the 2D
cellular structure is constructed by symmetrically connecting
the ring-like units with the same pattern in the x- and
y-direction, and the 3D cellular structure is also built by
stacking 2D structures. Similar to the units discussed
earlier, both the 2D and 3D structures are flat-foldable. By
taking advantage of our analysis of a unit cell, we can design
new 2D and 3D cellular structures exhibiting anisotropic and
isotropic deformation in the x–y plane under uniaxial
compression/tension in the z-direction. Similar to a ring-
like unit with γ1 � 45° and γ2 � 60° (Figure 1D, solid lines),
a 3D cellular structure comprising the same units shows two
anisotropic deformation behaviors: for ② → ①, we have
]zx > 0 and ]zy > 0 but ]zx ≠ ]zy; and for ② → ③, ]zx < 0
and ]zy > 0 (Figure 7A); likewise, the 3D cellular structure
shows two other anisotropic deformation behaviors: for
⑤ → ④, ]zx > 0, and ]zy < 0; and for ⑤ → ⑥, ]zx < 0 and
]zy < 0 but ]zx ≠ ]zy (Figure 7B). Although ]zx and ]zy have

the same sign, their values are different because of γ1 ≠ γ2 (see
also a ring-like unit in Figure 1D with γ1 � 45° and γ2 � 60°,
solid lines). Moreover, isotropic behaviors can be realized
with the same value of γ1 and γ2. Figure 7C shows two
isotropic deformation behaviors with γ1 � γ2 � 60°: for
② → ①, ]zx > 0 and ]zy > 0; for ② → ⑥, ]zx < 0, and ]zy < 0
(see also a ring-like unit in paths ② → ① and ⑤ → ⑥ in
Figure 1D with γ1 � γ2 � 60°, nonsolid lines, notice that
configurations ② and ⑤ are identical, as shown in Figures
1B,C). These cellular structures also have only one DOF with
β � 90° (folding and unfolding by manipulating one
parameter, i.e., the deformation angle θ1; see Figure 1B),
which can be easily controlled as an origami robot. Using
this construction method, we can realize the deformation
behavior of a 3D cellular structure only based on that of a
single unit.

The cellular structures in Figure 7 with 6 × 6 × 6 units look
like 2.5D because for each unit, the height is less than the
length or the width. But in essence, the structures are 3D since
the layers can be continuously stacked along the z-direction,
such as with 6 × 6 × 12 units. Here, we used 6 × 6 × 6 units for
clear visualization.

FIGURE 6 | Shearing deformation modes of the 2D cellular structure. Three of the 16 discrete patterns in Figure 5C, (A) #1.4 (B) #2.2 (C) #2.4; column 1–3, 2D
cellular structures with β � 70°, 90°, and 110°; column 4, 3D cellular structures with β � 90°.
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CONCLUSION

We have investigated the unique kinematics of kirigami-based
3D metamaterials with ring-like units. We foundd that the
various combinations of Poisson’s ratios (values and signs)
can be obtained with different combinations of the design
angles γ1 and γ2 and targeted Poisson’s ratios can be realized
by choosing the proper deformation paths. Additionally, we

numerically and experimentally verified the analytical
geometrical model of the ring-like unit cell. Interestingly,
we showed multiple continuous and discrete deformation
patterns for a ring-like unit and a multi-unit combination.
These 2D and 3D cellular structures, offering multiple
deformation patterns, show great potential for various
engineering applications, from robotics, and impact
absorbers to biomedical implants.

FIGURE 7 | Three patterns of 3D cellular structures. (A) Deformation paths ② → ① and② → ③ with γ1 � 45° and γ2 � 60°. (B) Deformation paths
⑤ → ④ and⑤ → ⑥ with γ1 � 45° and γ2 � 60°. (C) Deformation paths ② → ① and② → ⑥ with γ1 � γ2 � 60°. Anisotropic pattern: (A) and (B); isotropic pattern:
(C). Top: 2D metamaterials with 6 × 6 units. Bottom: 3D metamaterials with 6 × 6 × 6 units.
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